Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (8): 1400-1412.doi: 10.3864/j.issn.0578-1752.2019.08.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Quantitative Analysis of Driving-Factors of Soil Acidification in Qiyang County, Hunan Province

ZHOU HaiYan,XU MingGang(),CAI ZeJiang,WEN ShiLin,WU HongHui   

  1. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Improving Quality of Arable Land, Beijing 100081
  • Received:2018-09-29 Accepted:2018-11-27 Online:2019-04-16 Published:2019-04-26
  • Contact: MingGang XU E-mail:xuminggang@caas.cn

Abstract:

【Objective】In Qiyang County, Hunan Province which is a typical county of China, quantifying key acidity inducing factors could provide theoretical bases for combating soil acidification, and provide scientific and technological supports for red soil acidification remediation in China. 【Method】To achieve our objective, data of fertilizer rate, biomass (or yield) of main crops and trees, and above-ground nutrient contents reported within the experimental site were obtained from a large number of published literatures and statistical yearbooks. We quantified the acidity-inducing factors (nitrogen cycling process, BC (base cation) absorption and acid deposition) based on classical mass and charge balance. Relative contributions of the three key processes were used to illustrate the dominant factor of the soil acidification in uplands, paddy fields and woodlands. 【Result】For the whole county, nitrogen cycling process accounted for 66.5% (65.3% - 68.8%) of the total H + production, base absorption accounted for 33.0% (30.1%-34.4%), and acid deposition accounted for 0.5% (0.3% - 1.7%). Regardless of the land use patterns, nitrogen cycling process was the main source of H + production and main controlling factor of soil acidification. Among the three land use patterns, H + net production of upland was the highest (19.01 kmol·hm -2·a -1), followed by paddy field (16.5 kmol·hm -2·a -1), and woodland (3.2 kmol·hm -2·a -1) as the lowest. H + net production in dry farmland was about 6 times of woodland. H + net production of 6 main crop systems varies from 10.1 kmol·hm -2·a -1 to 30.0 kmol·hm -2·a -1, and followed the order: soybean>rape>peanut>rice>corn>sweet potato. Acidity production of the economic crops (rape, peanut and soybean) was generally higher than that of the grains (rice, corn, sweet potato); contribution rate of acidity-inducing of nitrogen cycling process among 6 main crop systems varied from 45.3% to 78.3%, contribution rate of acidity-inducing of base absorption varied from 21.4% to 54.2% . H + net production of 7 main woodland systems varied greatly from 1.96 kmol·hm -2·a -1 to 27.8 kmol·hm -2·a -1, and followed the order: citrus>chestnut>camellia oleifera abel>pine>fir>bamboo>slash pine. Acidity production of economic forest (citrus, chestnut and camellia oleifera abel) was generally higher than that of timber forest (pine, fir, bamboo and slash pine) ; contribution rate of acidity-inducing of nitrogen cycling process among 7 main woodland systems varied from 46.1% to 80.8%, and contribution rate of acidity-inducing of base absorption varied from 19.0% to 53.3% . The long-term field experiment combined with soil buffering curve technique was used to verify reliability of the calculation method of H + production. The simulated value of soil pH was positively correlated with the measured value significantly, with root mean square error (RMSE) of 0.15, while anastomosis degree between the two was high. 【Conclusion】 Nitrogen cycling process was the main controlling factor of red soil acidification in Qiyang County. The differences of total acidity production and contribution of acidity-inducing factors depended largely on land use patterns, crop types and tree species.

Key words: red soil, soil acidification, land use patterns, nitrogen cycling process, Qiyang County,Hunan Province

Table 1

Element input of main crops and orange"

输入形式
Input
作物类型
Crop
N
(kg·hm-2·a-1
P2O5
(kg·hm-2·a-1
K2O
(kg·hm-2·a-1
Ca
(kg·hm-2·a-1
Mg
(kg·hm-2·a-1
化肥带入
Chemical fertilizer input
水稻 Rice 180 59 78 1.4 -
玉米Corn 216 65 42 1.6 -
花生Peanut 120 52 70 1.2 -
油菜Rape 160 51 74 1.2 -
甘薯Sweet potato 102 45 51 1.1 -
大豆Soybean 165 41 41 1.0 -
柑橘Citrus 239 83 93 2.0 -
大气沉降
Atmospheric deposition
47.6 - 2.8 15 2.4

Table 2

Grain dry matter yield and element contents in seeds and straws for typical crops"

作物
Crop
面积
Area
(hm2
籽粒产量
Grain yield
(kg·hm-2)
秸秆产量
Straw yield
(kg·hm-2)
P(%) K(%) Ca(%) Mg(%)
籽粒
Grain
秸秆
Straw
籽粒
Grain
秸秆
Straw
籽粒
Grain
秸秆
Straw
籽粒
Grain
秸秆
Straw
水稻 Rice 71133 6660 5997 0.35 0.176 0.19 1.99 0.03 0.54 0.12 0.212
玉米Corn 3224 3420 4104 0.26 0.152 0.34 1.18 0.013 0.54 0.120 0.224
花生Peanut 2863 2610 2093 0.5 0.163 0.85 1.09 0.074 1.76 0.255 0.56
油菜Rape 6144 1470 2195 1.47 0.144 7.77 1.94 - 1.52 0.94 0.25
甘薯Sweet potato 6023 4320 2159 0.17 0.283 0.73 3.05 0.14 2.11 0.073 0.46
大豆Soybean 4401 3045 4880 0.85 0.196 2.17 1.17 0.26 1.71 0.24 0.48

Table 3

Input-output fluxes of N in typical agricultural systems"

作物类型
Cropping systems
施氮量
N rate
(kg·hm-2·a-1)
氮沉降
N deposition
(kg·hm-2·a-1)
秸秆吸氮量
Straw N uptake
(%)
籽粒吸氮量
Grain N uptake
(%)
NH3挥发
NH3 volatilization
(%)
NO3-N淋洗量
NO3-N leaching
(%)
水稻 Rice 180 47.6 1.20 1.21 17.3 2.9
玉米Corn 216 47.6 0.92 1.15 24.5 20.2
花生Peanut 120 47.6 1.82 4.57 24.8 12.9
油菜Rape 160 47.6 0.87 8.67 24.6 15.1
甘薯Sweet potato 102 47.6 2.37 0.33 25.3 11.4
大豆Soybean 165* 47.6 1.81 7.82 25.0 11.7
柑橘Citrus 239 47.6 - - 24.6 17.7

Table 4

Wood biomass, element contents in stem wood and branches for typical timber forests"

林木类型
Tree species
面积
Area
(hm2)
生物量
Biomass (kg·hm-2)
树干养分含量
Element content in stem wood (%)
树枝养分含量
Element content in branch wood (%)
树皮养分含量
Element content in bark wood (%)
树干Stem 树枝
Branch
树皮Bark N P K Ca Mg N P K Ca Mg N P K Ca Mg
湿地松
Slash pine
21080 34059 9874 7095 0.194 0.008 0.105 0.214 0.019 0.485 0.036 0.256 0.867 0.07 0.266 0.018 0.086 0.309 0.031
杉木
Fir
20876 62406 9664 8386 0.075 0.007 0.031 0.067 0.015 0.443 0.032 0.289 0.543 0.207 0.283 0.024 0.231 0.432 0.045
马尾松Pine 7905 67400 12100 5910 0.17 0.014 0.121 0.235 0.05 0.381 0.026 0.143 0.164 0.099 0.477 0.042 0.353 0.856 0.144

Bamboo
7108 42685 3488 - 0.247 0.016 0.225 0.013 0.029 0.386 0.017 0.108 0.015 0.02 - - - - -

Table 5

Wood biomass, element contents in stem, branches and fruits for typical economic forests"

林木类型
Tree species
面积
Area
(hm2
生物量
Biomass (kg·hm-2)
枝干养分含量
Element content in stem wood (%)
果实养分含量
Element content in fruits (%)
枝干
Stems and branches
果实
Fruits
N P K Ca Mg N P K Ca Mg
板栗Chestnut 137 13725 3750 0.978 0.186 0.253 1.400 0.210 1.376 0.27 0.664 2.048 0.222
油茶林Camellia oleifera 28513 7681 1798 0.65 0.045 0.31 0.129 0.131 0.831 0.093 0.971 0.437 0.129
柑橘Citrus 2068 26190 40397 0.513 0.070 0.420 1.193 0.247 0.158 0.052 0.236 0.062 0.016

Table 6

Grain dry matter yield and element contents for long term experiment of wheat-corn"

作物类型
Crop types
平均产量Average yield (kg·hm-2·a-1) 养分含量 Element content (%)
1990-1995 1996-2000 2001-2005 2006-2010 2011-2012 P K Ca Mg
小麦
Wheat
籽粒Grain 1788 905 928 374 316 0.364 0.48 0.047 0.15
秸秆 Straw 1967 995 1020 411 347 0.80 1.05 0.52 0.17
玉米
Corn
籽粒 Grain 3369 3237 1858 1326 1188 0.26 0.39 0.007 0.12
秸秆 Straw 3032 2913 1672 1194 1088 0.15 1.18 0.54 0.22

Table 7

H+ production of acidity-inducing factors among the different land use patterns"

利用类型
Land use pattern
氮循环 N cycling process 盐基吸收 BC uptake 酸雨 Acid deposition 总H+产量
Total H+ production
(kmol·hm-2·a-1
磷吸收
P uptake
(kmol·hm-2·a-1
H+净产量
H+ net production
(kmol·hm-2·a-1
H+产量
H+ production
(kmol·hm-2·a-1)
贡献率
Contribution (%)
H+产量
H+ production
(kmol·hm-2·a-1)
贡献率
Contribution (%)
H+产量
H+ production
(kmol·hm-2·a-1)
贡献率
Contribution (%)
林地
Forest soil
2.2 68.2 1.0 30.1 0.056 1.7 3.2 -0.05 3.2
水田Paddy 11.5 65.3 6.1 34.4 0.056 0.3 17.6 -1.1 16.5
旱地Upland 13.6 68.8 6.1 30.9 0.056 0.3 19.7 -0.7 19.0
全县*
Whole county
7.3 66.5 3.6 33.0 0.056 0.5 10.9 -0.5 10.4

Table 8

H+ production of acidity-inducing factors among the six main crop systems"

作物类型
Crop system
氮循环过程
N cycling process
盐基吸收
BC uptake (kmol·hm-2·a-1)
盐基吸收贡献率 BC uptake contribution (%) 磷吸收
P uptake process
(kmol·hm-2·a-1)
H+净产量
H+ net production
(kmol·hm-2·a-1)
H+产量
H+ production
(kmol·hm-2·a-1)
贡献率
Contribution
(%)
K Ca Mg
甘薯 Sweet potato 4.8 45.3 2.49 2.57 0.65 54.2 -0.439 10.1
玉米 Corn 12.2 78.3 1.54 1.13 0.66 21.4 -0.488 15.1
水稻 Rice 11.5 65.3 3.35 1.67 1.04 34.4 -1.096 16.5
花生 Peanut 14.6 78.3 1.15 1.93 0.92 21.4 -0.532 18.1
油菜 Rape 16.5 71.2 4.00 1.66 0.96 28.6 -0.795 22.4
大豆 Soybean 21.8 70.1 3.15 4.56 1.53 29.7 -1.147 30.0

Table 9

H+ production of acidity-inducing factors among the seven main woodland systems"

林地类型
Forest system
氮循环过程
N cycling process
盐基吸收
BC uptake (kmol·hm-2·a-1)
盐基吸收贡献率 BC uptake contribution (%) 磷吸收
P uptake process
(kmol·hm-2·a-1)
H+净产量
H+ net production (kmol·hm-2·a-1)
H+产量
H+ production
(kmol·hm-2·a-1)
贡献率
Contribution
(%)
K Ca Mg
湿地松 Slash pine 1.3 66.8 0.09 0.45 0.06 30.4 -0.012 2.0
竹 Bamboo 1.6 77.0 0.17 0.17 0.09 20.3 -0.024 2.1
杉木 Fir 1.4 62.8 0.11 0.50 0.18 34.7 -0.019 2.3
马尾松 Pine 1.9 69.3 0.15 0.33 0.32 28.7 -0.033 2.8
油茶林 Camellia oleifera 2.1 63.9 0.48 0.42 0.23 34.4 -0.060 3.2
板栗 Chestnut 5.0 46.1 0.68 4.31 0.80 53.3 -0.368 10.5
柑橘 Citrus 23.0 80.8 2.58 2.03 0.80 19.0 -0.702 27.8

Table 10

Soil buffer capacity and H+ net production of wheat-corn long-term experiment in Qiyang County"

年份
Year
y = a - bx H+净产量
H+ net production (kmol·hm-2·a-1)
a b R2
1991 5.70 0.0602 0.9698 5.02
1992 5.60 0.0631 0.9639 5.02
1993 5.40 0.0610 0.9855 5.02
1994 5.26 0.0650 0.9566 5.02
1995 5.30 0.0593 0.9551 5.02
1996 5.20 0.0701 0.9270 4.51
1997 4.60 0.0601 0.9359 4.51
1998 4.60 0.0603 0.9728 4.51
1999 4.30 0.0489 0.9639 4.51
2000 4.20 0.0400 0.9229 4.51
2001 4.30 0.0393 0.9566 3.76
2002 4.32 0.0593 0.9889 3.76
2003 4.31 0.0434 0.9387 3.76
2004 4.60 0.0439 0.9855 3.76
2005 4.46 0.0383 0.9591 3.76
2006 4.48 0.0292 0.9852 3.20
2007 4.33 0.0489 0.9607 3.20
2008 4.53 0.0373 0.9229 3.20
2009 4.50 0.0383 0.9579 3.20
2010 4.30 0.0312 09851 3.20
2011 4.38 0.0292 0.9889 3.11
2012 4.30 0.0219 0.9589 3.11

Fig. 1

The changes of simulated value and measured value of soil pH in different years"

Fig. 2

Comparison of simulated value and measured value of soil pH"

[1] 徐仁扣, 李九玉, 周世伟, 徐明岗, 沈仁芳 . 我国农田土壤酸化调控的科学问题与技术措施. 中国科学院院刊, 2018,33(2):160-167.
XU R K, LI J Y, ZHOU S W, XU M G, SHEN R F . Scientific issues and controlling strategies of soil acidification of croplands in China. Bulletin of Chinese Academy of Sciences, 2018,33(2):160-167. (in Chinese)
[2] GUO J H, LIU X J, ZHANG Y, SHEN J L, HAN W X, ZHANG W F, CHRISTIE P, GOULDING K W T, VITOUSEK P M, ZHANG F S . Significant acidification in major Chinese croplands. Science, 2010,327(5968):1008-1010.
doi: 10.1126/science.1182570
[3] 2016年全国耕地质量监测报告. . (2017 -09-01[ 2018-06-22].
[4] 曾沐梵 . 长期施肥导致农田土壤酸化的机制及缓解策略[D]. 北京: 中国农业大学, 2017.
ZENG M F . Mechanisms of cropland soil acidification induced by the long-term fertilization and mitigation strategy[D]. Beijing: China Agricultural University, 2017. ( in Chinese)
[5] DE VRIES W, BREEUWSMA A . Relative importance of natural and anthropogenic proton sources in soils in the Netherlands. Water, Air, & Soil Pollution, 1986,28(1/2):173-184.
[6] VAN BREEMEN N, DRISCOLL C, MULDER J . Acidic deposition and internal proton sources in acidification of soils and waters. Nature, 1984,307(5952):599-604.
[7] RENGEL Z . Handbook of Soil Acidity. New York:Marcel Dekker Inc. 2003.
[8] 解淑艳, 王瑞斌, 郑皓皓 . 2005-2011年全国酸雨状况分析. 环境监测与预警, 2012,4(5):33-37.
XIE S Y, WANG R B, ZHENG H H . Analysis on the acid rain from 2005 to 2011 in China. Environmental Monitoring and Forewarning, 2012,4(5):33-37. (in Chinese)
[9] ZENG M F, De Vries W, BONTEN L T C, ZHU Q C, HAO T X, LIU X J, XU M G, SHI X J, ZHANG F S, SHEN J B . Model-based analysis of the long-term effects of fertilization management on cropland soil acidification. Environmental Science & Technology, 2017,51(7):3843-3851.
[10] ZHU Q C, DE VRIES W, LIU X J, ZENG M F, HAO T X, DU E Z, ZHANG F S, SHEN J B . The contribution of atmospheric deposition and forest harvesting to forest soil acidification in China since 1980. Atmospheric Environment, 2016,146:215-222.
doi: 10.1016/j.atmosenv.2016.04.023
[11] 叶雪梅, 郝吉明, 段雷, 周中平 . 中国地表水酸化敏感性的区划. 环境科学, 2002,23(1):16-21
YE X M, HAO J M, DUAN L, ZHOU Z P . Mapping sensitivity of surface waters to acidification in China. Environmental Science, 2002,23(1):16-21. (in Chinese)
[12] 徐明岗, 张文菊, 黄绍敏 . 中国土壤肥力演变. 2版. 北京: 中国农业科学技术出版社, 2015
XU M G, ZHANG W J, HUANG S M. Soil Fertility Evolution in China. 2nd ed. Beijing: China Agricultural Science and Technology Press, 2015. ( in Chinese)
[13] 姬钢 . 不同土地利用方式下红壤酸化特征及趋势[D]. 北京: 中国农业科学院, 2015.
JI G . Acidification characteristics and trend of red soil under different land uses[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015. ( in Chinese)
[14] 周晓阳, 周世伟, 徐明岗, Colinet Gilles . 中国南方水稻土酸化演变特征及影响因素. 中国农业科学, 2015,48(23):4811-4817.
ZHOU X Y, ZHOU S W, XU M G, COLINET G . Evolution characteristics and influence factors of acidification in paddy soil of southern China. Scientia Agricultura Sinica, 2015, 48(23):4811-4817. (in Chinese)
[15] 祁阳政府网: 祁阳县地理概况. . (2013-10-21[ 2017-09-10].
[16] 祁阳县国民经济与社会发展统计公报. [ 2017-09-18].
[17] 张卫峰, 易俊杰, 张福锁 . 中国肥料发展研究报告(2016). 北京: 中国农业大学出版社, 2017.
ZHANG W F, YI J J, ZHANG F S. The Research Report of Fertilizer Development in China(2016). Beijing: China Agricultural University Press, 2017. ( in Chinese)
[18] 汪家铭 . 国内钾肥供需现状与市场展望. 化工管理, 2009(9):17-23.
WANG J M . Current situation and market prospect of potash fertilizer in China. Chemical Management, 2009(9):17-23. (in Chinese)
[19] CUI Z L, YUE S C, WANG G L, MENG Q F, WU L, YANG Z P, ZHANG Q, LI S Q, ZHANG F S, CHEN X P . Closing the yield gap could reduce projected greenhouse gas emissions: a case study of maize production in China. Global Change Biology, 2013,19(8):2467-2477.
doi: 10.1111/gcb.12213
[20] CUI Z L, WANG G L, YUE S C, WU L, ZHANG F S, CHEN X P . Closing the N use efficiency gap to achieve food and environmental security. Environmental Science & Technology, 2014,48:5780-5787.
[21] 全国农业技术推广中心. 中国有机肥料养分志. 北京: 中国农业出版社, 1999.
National Agro-tech Extension and Service Center. Organic Fertilizer Resources in China. Beijing: China Agricultural Press, 1999. ( in Chinese)
[22] 李小坤 . 水稻营养特性及科学施肥. 北京: 中国农业出版社, 2016.
LI X K. Rice nutrition Characterization and Scientific Fertilization. Beijing: China Agricultural Press, 2016. ( in Chinese)
[23] 鲁如坤 . 土壤-植物营养学原理与施肥. 北京: 化学工业出版社, 1998.
LU R K. Principle of Soil-plant Nutrition and Fertilization. Beijing: Chemical Industry Press, 1998. ( in Chinese)
[24] 段文学, 张海燕, 解备涛, 汪宝卿, 张立明 . 甘薯氮素营养研究进展. 西北农业学报, 2015,24(12):14-23.
DUAN W X, ZHANG H Y, XIE B T, WANG B Q, ZHANG L M . Research advances of nitrogen nutrition in sweet potato. Acta Agriculture Boreali - occidentalis Sinica, 2015,24(12):14-23. (in Chinese)
[25] 薛艳芳, 张慧, 刘开昌, 夏海勇, 高英波, 王庆成, 温立玉, 孔玮琳, 张虎虎, 付希强, 齐世军, 李宗新 . 黄淮海区主推玉米品种籽粒主要矿物质元素含量分析. 玉米科学, 2017,25(5):56-62.
XUE Y F, ZHANG H, LIU K C, XIA H Y, GAO Y B, WANG Q C, WEN L Y, KONG W L, ZHANG H H, FU X Q, QI S J, LI Z X . Analysis of major elements in grain of the popularized maize varieties in Huanghuaihai plain. Journal of Maize Sciences, 2017,25(5):56-62. (in Chinese)
[26] SMIL V . Nitrogen in crop production: an account of global flows. Global Biogeochemical Cycles, 1999,13(2):647-662.
doi: 10.1029/1999GB900015
[27] 李书田, 金继运 . 中国不同区域农田养分输入,输出与平衡. 中国农业科学, 2011,44(20):4207-4229.
doi: 10.3864/j.issn.0578-1752.2011.20.009
LI S T, JIN J Y . Characteristics of nutrient input/output and nutrient balance in different regions of China. Scientia Agricultura Sinica, 2011,44(20):4207-4229. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2011.20.009
[28] 朱齐超 . 区域尺度中国土壤酸化定量研究及模型分析[D]. 北京: 中国农业大学, 2017.
ZHU Q C . Quantification and modeling on soil acidification at regional scale of China[D]. Beijing: China Agricultural University, 2017. ( in Chinese)
[29] DE VRIES W, BREEUWSMA A . The relation between soil acidification and element cycling. Water, Air, & Soil Pollution, 1987,35(3/4):293-310.
[30] 周才平, 欧阳华, 裴志永, 徐兴良 . 中国森林生态系统的土壤净氮矿化研究. 植物生态学报, 2003,27(2):170-176.
ZHOU C P, OU Y H, PEI Z Y, XU X L . Net soil nitrogen mineralization in Chinese forest ecosystems. Acta Phytoecologica Sinica, 2003,27(2):170-176. (in Chinese)
[31] 巨晓棠, 刘学军, 张福锁 . 冬小麦/夏玉米轮作体系中土壤氮素矿化及预测. 应用生态学报, 2003,14(12):2241-2245.
JU X T, LIU X J, ZHANG F S . Soil nitrogen mineralization and its prediction in winter wheat-summer maize rotation system. Chinese Journal of Applied Ecology, 2003,14(12):2241-2245. (in Chinese)
[32] 湖南省环境质量状况公报(2002-2016) [R/OL]. ( 2017- 04- 05)[2017- 09-11]. .
[33] 2016年中国环境状况公报[R/OL]. ( 2017- 05- 31) [2018-11-19]. .
[34] 陈灵芝, 黄建辉, 严昌荣 . 中国森林生态系统养分循环. 北京: 气象出版社, 1997.
CHEN L Z, HUANG J H, YAN C R. Element cycle of Forest Ecosystem in China. Beijing: China Meteorological Press, 1997. ( in Chinese)
[35] 罗云建, 王效科, 张小全, 逯非 . 中国森林生态系统生物量及其分配研究. 北京: 中国林业出版社, 2013.
LUO Y J, WANG X K, ZHANG X Q, LU F. Research of Community Biomass and Distribution of Forest Ecosystem in China. Beijing: China Forestry Publishing House, 2013. ( in Chinese)
[36] 冯宗炜 . 中国森林生态系统的生物量和生产力 . 北京: 科学出版社, 1999.
FENG Z W. Community Biomass and Productivity of Forest Cosystems in China. Beijing: Science Press, 1999. ( in Chinese)
[37] 何方, 姚小华 . 中国油茶栽培. 北京: 中国林业出版社, 2013.
HE F, YAO X H. Cultivation of Amellia Oleifera C.Abel in China. Beijing: China Forestry Publishing House, 2013. ( in Chinese)
[38] 成杰民, 胡光鲁, 潘根兴 . 用酸碱滴定曲线拟合参数表征土壤对酸缓冲能力的新方法. 农业环境科学学报, 2004,23(3):569-573.
CHENG J M, HU G L, PAN G X . New method for evaluating buffering capacity and equilibrium pH of paddy soil with simulation parameter. Journal of Agro-Environment Science, 2004,23(3):569-573. (in Chinese)
[39] 蔡泽江 . 长期施肥下红壤酸化特征及影响因素[D]. 北京: 中国农业科学院, 2010.
CAI Z J . Acidification characteristics of red soil under long-term fertilization and effect factors[D]. Beijing: Chinese Academy of Agricultural Sciences, 2010. ( in Chinese)
[40] 王伯仁, 李冬初, 徐明岗 . 中国生态系统定位观测与研究数据集:农田生态系统卷湖南祁阳站(1960-2006). 北京: 中国农业出版社, 2010.
WANG B R, LI D C, XU M G. Chinese Ecosystem Observation and Research Dataset: Cropland Ecosystem Volume: Hunan Qiyang Station (1960-2006). Beijing: China Agricultural Press, 2010. ( in Chinese)
[41] 鲁向晖 . 基于气候变化的豫西冬小麦保护性耕作效果模拟研究[D]. 杨凌: 西北农林科技大学, 2010.
LU X H . Simulation of climate change on conservation tillage of winter wheat in western region of Henan province[D]. Yangling: Northwest Agriculture and Forest University, 2010. ( in Chinese)
[42] 宋文峰, 王超, 陈荣府, 文石林, 王伯仁, 沈仁芳 . 长期不同施肥下小麦离子吸收对土壤酸化贡献能力的比较. 土壤, 2017,49(1):7-12.
SONG W F, WANG C, CHEN R F, WEN S L, WANG B R, SHEN R F . Comparison of contribution of wheat ionic uptake to soil acidification under long-term different fertilization. Soils, 2017,49(1):7-12. (in Chinese)
[1] XiaoLei LI,YuJun ZHANG,FengMin SHEN,GuiYing JIANG,Fang LIU,KaiLou LIU,ShiLiang LIU. The Effects of Long-Term Fertilization on the Labile Organic Matter and Carbon Pool Management Index in Different Soil Layers in Red Soil [J]. Scientia Agricultura Sinica, 2020, 53(6): 1189-1201.
[2] Peng YAN,WenYan HAN,Xin LI,LiPing ZHANG,Lan ZHANG. Present Situation and Analysis of Soil Acidification in Chinese Tea Garden [J]. Scientia Agricultura Sinica, 2020, 53(4): 795-801.
[3] OU HuiPing,ZHOU LiuQiang,HUANG JinSheng,XIE RuLin,ZHU XiaoHui,PENG JiaYu,ZENG Yan,MO ZongBiao,TAN HongWei,YE ShengQin. Change of Phosphorus in Lateritic Red Soil and Its Effect on Sugarcane Yield and Phosphorus Loss in Runoff Under 11-Year Continuous Application of Excessive Phosphorus Fertilizer [J]. Scientia Agricultura Sinica, 2020, 53(22): 4623-4633.
[4] ZHONG Liang,GUO Xi,GUO JiaXin,HAN Yi,ZHU Qing,XIONG Xing. Soil Texture Classification of Hyperspectral Based on Data Mining Technology [J]. Scientia Agricultura Sinica, 2020, 53(21): 4449-4459.
[5] WANG YuanPeng,HUANG Jing,SUN YuXiang,LIU KaiLou,ZHOU Hu,HAN TianFu,DU JiangXue,JIANG XianJun,CHEN Jin,ZHANG HuiMin. Spatiotemporal Variability Characteristics of Soil Fertility in Red Soil Paddy Region in the Past 35 Years—A Case Study of Jinxian County [J]. Scientia Agricultura Sinica, 2020, 53(16): 3294-3306.
[6] LI DongChu,WANG BoRen,HUANG Jing,ZHANG YangZhu,XU MingGang,ZHANG ShuXiang,ZHANG HuiMin. Change of Phosphorus in Red Soil and Its Effect to Grain Yield Under Long-Term Different Fertilizations [J]. Scientia Agricultura Sinica, 2019, 52(21): 3830-3841.
[7] SHEN FengMin,JIANG GuiYing,ZHANG YuJun,LIU Fang,LIU ShiLiang,LIU KaiLou. Response of Different Forms of Nitrogen Migration in Typical Red Soil to Long-Term Different Fertilization Systems [J]. Scientia Agricultura Sinica, 2019, 52(14): 2468-2483.
[8] LÜ Bo,WANG YuHan,XIA Hao,YAO ZiHan,JIANG CunCang. Effects of Biochar and Other Amendments on the Cabbage Growth and Soil Fertility in Yellow-Brown Soil and Red Soil [J]. Scientia Agricultura Sinica, 2018, 51(22): 4306-4315.
[9] DU Bin, HU XiaoTao, WANG WenE, MA LiHua, ZHOU ShiWei. Stem Flow Influencing Factors Sensitivity Analysis and Stem Flow Model Applicability in Filling Stage of Alternate Furrow Irrigated Maize [J]. Scientia Agricultura Sinica, 2018, 51(2): 233-245.
[10] JIANG GuiYing, ZHANG YuJun, WEI Xi, ZHANG DongXu, LIU ShiLiang, LIU KaiLou, HUANG ShaoMin, SHEN FengMin. The Soil Infrared Spectral Characteristics of Soil Organic Matter under Different Carbon Saturation Levels [J]. Scientia Agricultura Sinica, 2018, 51(16): 3117-3129.
[11] CHENG YanHong, HUANG QianRu, WU Lin, HUANG ShangShu, ZHONG YiJun, SUN YongMing, ZHANG Kun, ZHANG XinLiang. Effects of Straw Mulching and Vetiver Grass Hedgerows on Soil Enzyme Activities and Soil Microbial Community Structure in Red Soil Sloping Land [J]. Scientia Agricultura Sinica, 2017, 50(23): 4602-4612.
[12] YING Jie-guan, LIN Qing-yi, ZHANG Meng-yang, HUANG Yi, PENG Shu-ang, JIANG Cun-cang. Mitigative Effect of Biochar on Aluminum Toxicity of Acid Soil and the Potential Mechanism [J]. Scientia Agricultura Sinica, 2016, 49(23): 4576-4583.
[13] ZHOU Jing, JIANG Xin, ZHOU Bao-ku, MA Ming-chao, GUAN Da-wei, ZHAO Bai-suo, CHEN San-feng, LI Jun. Effects of Long Term Application of Urea on Ammonia Oxidizing Archaea Community in Black Soil in Northeast China [J]. Scientia Agricultura Sinica, 2016, 49(2): 294-304.
[14] HE Yu-ting, WANG Chang-quan, SHEN Jie, LI Bin, LI Bing, CHEN Lin, PAN Xing-bing. Effects of Two Biochars on Red Soil Aggregate Stability and Microbial Community [J]. Scientia Agricultura Sinica, 2016, 49(12): 2333-2342.
[15] ZHU Pan, YING Jie-guan, PENG Shu-ang, JIANG Cun-cang. Effects of Biochar on Physico-Chemical Properties of Acid Red Soil Under Simulated Rainfall Condition [J]. Scientia Agricultura Sinica, 2015, 48(5): 1035-1040.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!