Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (22): 4646-4657.doi: 10.3864/j.issn.0578-1752.2020.22.011

• HORTICULTURE • Previous Articles     Next Articles

The Influencing Factors of in-vitro Ovule Development in Seedless Grape and Its Physiological Changes

LI GuiRong1,2,QUAN Ran1,CHENG ShanShan1,HOU XiaoJin1,FAN XiuCai3,HU HuiLing1()   

  1. 1 School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, Henan
    2 Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang 453003, Henan
    3 Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences Zhengzhou 453003
  • Received:2020-03-25 Accepted:2020-07-13 Online:2020-11-16 Published:2020-11-28
  • Contact: HuiLing HU E-mail:hu-huiling@163.com

Abstract:

【Objective】The influencing factors of in-vitro ovule development in seedless grape were studied to improve the efficiency of seedless grape embryo rescue breeding.【Method】 ‘Ruby’ seedless grape was used as the material. Young fruits were at harvested 65 days after natural pollination. Then, these fruits were disinfected, and ovules were stripped and inoculated on different medium. The effects of different medium treatments (4 different basic medium with 4 different sucrose quality added, thus 16 treatments in total) and different culture time on ovule development rate and physiological indexes were studied, and the correlation between ovule development rate and different physiological indexes was also analyzed. 【Result】Different treatments had different effects on development rate of ovule cultured in vitro. When solid-liquid double-layer medium (modified MM3 solid medium + 8 g·L -1 ER liquid medium), 45 g·L -1 sucrose was added and the culture time was 49 d, the ovule development rate was the highest of (42.23 ± 6.93) %. Different treatments had different effects on the physiological indexes of ovule cultured in vitro. When the basic medium was solid-liquid double-layer medium, the change of starch content was not significant, and soluble protein content, total phenol content and SOD enzyme activity increased, while POD enzyme and PPO enzyme activity showed a decreasing trend. With the increase of sucrose quality in the basic medium, the difference in starch content was not significant, while soluble protein, total phenol content and SOD enzyme activity showed a trend of first increasing and then decreasing, while POD and PPO enzyme activities showed a trend of gradually increasing. When the medium treatment was the same, with the extension of the in vitro culture time, starch content gradually decreased, while soluble protein content, total phenol content and SOD enzyme activity increased first and then decreased, and POD enzyme and PPO enzyme activities increased gradually. Correlation analysis showed that ovule development rate had a significant positive correlation with soluble protein content, total phenol content and SOD enzyme activity, and a significant negative correlation with POD enzyme activity and PPO enzyme activity, but no significant correlation with starch content were found. 【Conclusion】When using the solid-liquid double-layer medium (modified MM3 solid medium + 8 g·L -1 ER liquid medium) with 45 g·L -1 sucrose added and the culture time of 49 d, the physiological activity of in-vitro ovule was strong. Ovule development rate had a significant positive correlation with the content of soluble protein, total phenol content and SOD enzyme activity, and a significant negative correlation with POD enzyme activity and PPO enzyme activity.

Key words: seedless grape, embryo rescue, ovule development, in vitro culture, physiological indexes

Table 1

Different medium treatments"

编号 NO. 基本培养基 Basic medium 蔗糖 Sugar (g·L-1)
M1 MS固体培养基MS solid medium 30
M2 MM3固体培养基MM3 solid medium 30
M3 改良MM3固体培养基Modified MM3 solid medium 30
M4 固液双层培养基(改良MM3固体培养基+8 mg·L-1 ER液体培养基)
Solid-liquid double-layer medium (modified MM3 solid medium + 8mg·L-1 ER liquid medium)
30
M5 MS固体培养基MS solid medium 45
M6 MM3固体培养基MM3 solid medium 45
M7 改良MM3固体培养基Modified MM3 solid medium 45
M8 固液双层培养基(改良MM3固体培养基+8 mg·L-1 ER液体培养基)
Solid-liquid double-layer medium (modified MM3 solid medium + 8mg·L-1 ER liquid medium)
45
M9 MS固体培养基MS solid medium 60
M10 MM3固体培养基MM3 solid medium 60
M11 改良MM3固体培养基Modified MM3 solid medium 60
M12 固液双层培养基(改良MM3固体培养基+8nmg·L-1 ER液体培养基)
Solid-liquid double-layer medium (modified MM3 solid medium + 8 mg·L-1 ER liquid medium)
60
M13 MS固体培养基 MS solid medium 75
M14 MM3固体培养基 MM3 solid medium 75
M15 改良MM3固体培养基Modified MM3 solid medium 75
M16 固液双层培养基(改良MM3固体培养基+8 mg·L-1 ER液体培养基)
Solid-liquid double-layer medium (modified MM3 solid medium + 8 mg·L-1 ER liquid medium)
75

Table 2

Effects of different medium and culture time on ovule development rate in vitro (%)"

培养基
Medium
时间Time (d)
42 49 56 63
M1 0.00±0.00f 1.10±1.91j 2.20±1.91d 1.10±1.91b
M2 1.10±1.91ef 5.57±1.96ij 4.43±1.96cd 4.47±3.87ab
M3 2.20±1.91ef 10.00±3.30hi 6.70±0.00cd 5.57±5.10ab
M4 3.33±3.35def 14.43±1.96gh 15.57±1.96b 8.87±5.10a
M5 4.47±3.87cdef 16.67±3.35f 24.43±1.96a 5.57±1.96ab
M6 5.57±5.10cdef 25.57±1.96ef 26.67±3.35a 5.57±5.10ab
M7 8.87±5.10abcdef 32.20±1.91cd 28.90±3.81a 6.70±0.00ab
M8 17.77±13.85a 42.23±6.93a 30.00±3.30a 8.90±1.91a
M9 7.77±5.08bcde 23.33±3.35e 25.57±1.96a 7.77±5.08ab
M10 12.23±5.08abcd 30.00±3.30de 26.67±3.35a 7.77±5.08ab
M11 13.33±3.35abc 36.67±3.35bc 28.90±3.81a 8.90±3.81a
M12 16.67±3.35bc 40.00±3.30ab 28.90±3.81a 8.90±3.81a
M13 3.33±3.35def 7.80±1.91i 4.47±3.87cd 3.33±3.35ab
M14 4.47±3.87cdef 8.90±1.91hi 5.57±5.10cd 4.47±3.87ab
M15 7.80±1.91bcde 8.90±1.91hi 8.87±5.10c 4.47±3.87ab
M16 10.00±0.00abcde 10.00±3.30hi 10.00±0.00c 6.67±3.35ab

Table 3

Effects of different medium and culture time on starch content of ovule in vitro (%)"

培养基
Medium
时间Time (d)
42 49 56 63
M1 10.06±0.09c 7.95±0.20b 7.15±0.05a 5.05±0.03b
M2 10.09±0.10bc 8.06±0.08a 7.16±0.03a 5.06±0.03ab
M3 10.13±0.07abc 8.09±0.03a 7.17±0.02a 5.09±0.05ab
M4 10.19±0.03a 8.11±0.05a 7.18±0.03a 5.10±0.03ab
M5 10.18±0.02ab 8.11±0.02a 7.17±0.06a 5.04±0.02b
M6 10.16±0.06ab 8.10±0.03a 7.18±0.03a 5.07±0.02ab
M7 10.15±0.04ab 8.12±0.03a 7.19±0.02a 5.08±0.06ab
M8 10.18±0.03ab 8.13±0.04a 7.20±0.02a 5.09±0.03ab
M9 10.16±0.02ab 8.10±0.03a 7.16±0.03a 5.09±0.02ab
M10 10.18±0.02ab 8.11±0.03a 7.18±0.04a 5.09±0.05ab
M11 10.19±0.03a 8.12±0.11a 7.19±0.03a 5.09±0.04ab
M12 10.21±0.02a 8.10±0.03a 7.20±0.05a 5.11±0.02a
M13 10.14±0.01abc 8.11±0.03a 7.16±0.05a 5.04±0.01b
M14 10.15±0.01ab 8.19±0.01a 7.16±0.01a 5.04±0.02b
M15 10.15±0.02ab 8.07±0.05a 7.19±0.03a 5.05±0.02b
M16 10.17±0.04ab 8.09±0.02a 7.19±0.03a 5.07±0.02ab

Table 4

Effects of different medium and culture time on soluble protein content of ovule in vitro (mg·g-1)"

培养基
Medium
时间Time (d)
42 49 56 63
M1 0.28±0.04cde 0.32±0.03def 0.31±0.03cde 0.18±0.04bcde
M2 0.30±0.01cd 0.34±0.04de 0.32±0.03bcd 0.20±0.02abc
M3 0.33±0.04bc 0.37±0.04bcd 0.33±0.04bc 0.22±0.04abc
M4 0.36±0.01b 0.40±0.04bc 0.36±0.03b 0.22±0.03ab
M5 0.23±0.02fg 0.31±0.05def 0.3±0.01cde 0.20±0.05abc
M6 0.26±0.02def 0.36±0.02cd 0.36±0.01b 0.23±0.04ab
M7 0.35±0.03b 0.44±0.03b 0.43±0.03a 0.26±0.04a
M8 0.46±0.03a 0.49±0.03a 0.47±0.05a 0.26±0.05a
M9 0.19±0.02hi 0.21±0.04h 0.21±0.01gh 0.18±0.04bcde
M10 0.21±0.02gh 0.25±0.01gh 0.24±0.01fg 0.19±0.04abcd
M11 0.25±0.04efg 0.27±0.03fg 0.27±0.01ef 0.21±0.04abc
M12 0.26±0.05defg 0.28±0.05ef 0.27±0.01def 0.25±0.03ab
M13 0.11±0.02k 0.13±0.02j 0.13±0.03j 0.09±0.04f
M14 0.12±0.02jk 0.14±0.01ij 0.14±0.04ij 0.11±0.04ef
M15 0.14±0.02jk 0.18±0.02hij 0.17±0.04hi 0.12±0.03def
M16 0.16±0.03jk 0.19±0.03hi 0.18±0.04hi 0.14±0.05cdef

Table 5

Effects of different medium and culture time on phenolics content of ovule in vitro (mg·g-1)"

培养基
Medium
时间Time (d)
42 49 56 63
M1 1.10±0.04l 2.32±0.03i 2.30±0.03gh 0.71±0.03h
M2 1.16±0.03k 2.33±0.03i 2.32±0.03gh 0.82±0.06g
M3 1.26±0.03j 2.37±0.04hi 2.35±0.02g 0.83±0.06g
M4 1.36±0.03i 2.41±0.04h 2.41±0.03f 0.90±0.03f
M5 1.78±0.03h 3.29±0.03g 3.30±0.01e 0.97±0.04e
M6 1.96±0.03g 3.37±0.02f 3.36±0.01d 1.00±0.03e
M7 2.08±0.04f 3.42±0.03e 3.43±0.03c 1.02±0.01de
M8 2.19±0.04e 3.48±0.04d 3.47±0.05c 1.07±0.01d
M9 2.74±0.07d 4.21±0.04c 4.21±0.01b 1.32±0.03c
M10 3.00±0.03c 4.22±0.02bc 4.22±0.03ab 1.40±0.03b
M11 3.20±0.03b 4.27±0.03ab 4.27±0.02a 1.42±0.03b
M12 3.37±0.04a 4.28±0.05a 4.27±0.01a 1.54±0.04a
M13 2.09±0.02f 2.13±0.02k 2.13±0.03j 0.60±0.03i
M14 2.11±0.03f 2.14±0.01k 2.14±0.06j 0.70±0.04h
M15 2.17±0.02e 2.25±0.03j 2.24±0.04i 0.75±0.03h
M16 2.19±0.03e 2.31±0.03i 2.28±0.06hi 0.81±0.03g

Table 6

The effect of different medium and culture time on SOD activity (U·g-1 FW) of ovule in vitro"

培养基
Medium
时间Time (d)
42 49 56 63
M1 17.57±0.31l 28.93±0.45g 28.63±0.42i 12.33±0.15i
M2 18.90±0.30k 29.90±1.13g 28.90±0.30i 13.90±0.30h
M3 19.30±0.46jk 31.90±0.20f 31.00±0.26f 15.00±0.28g
M4 21.27±0.32h 33.13±0.68e 32.9±0.26de 16.43±1.08f
M5 24.00±0.46e 29.47±0.51g 29.30±0.56hi 17.57±0.31e
M6 26.60±0.26d 31.07±0.47f 30.43±0.50fg 19.50±0.20c
M7 29.20±0.30c 33.03±0.71e 32.37±0.45e 20.60±0.42b
M8 32.23±0.31a 36.20±0.56c 35.53±0.40c 21.55±0.70a
M9 29.20±0.30c 29.93±0.55g 29.83±0.65gh 15.57±0.301
M10 30.60±0.30b 34.27±0.51d 33.53±0.64d 18.50±0.20d
M11 31.07±0.47b 38.07±0.38b 37.17±0.61b 19.53±0.35c
M12 32.40±0.35a 40.17±1.00a 39.20±0.52a 20.60±0.30b
M13 19.50±0.20j 19.57±0.25k 18.90±0.40m 10.17±0.42j
M14 20.60±0.30i 22.23±0.35j 20.87±0.31l 11.60±0.30i
M15 21.87±0.35g 24.00±0.46i 25.90±0.46k 13.87±0.35h
M16 22.90±0.30f 26.60±0.26h 27.53±0.29j 13.90±0.30h

Table 7

Effect of different medium and culture time on POD activity of ovule in vitro (U·g-1 FW)"

培养基
Medium
时间Time (d)
42 49 56 63
M1 9.43±0.32bcd 9.37±0.15bcd 13.27±0.29ef 15.13±0.68e
M2 8.83±0.12def 8.87±0.21def 11.57±0.21h 13.93±0.25fg
M3 7.53±0.12g 7.63±0.25g 10.37±0.21j 11.75±0.64h
M4 7.23±0.15g 7.23±0.15g 9.57±0.12k 11.00±0.39h
M5 9.67±0.57bc 9.97±0.38ab 12.83±0.32fg 16.23±0.74d
M6 9.13±0.25cde 9.27±0.47cd 11.07±0.15i 14.87±0.57ef
M7 8.87±0.31def 8.97±0.12de 9.03±0.23lm 13.25±0.49g
M8 8.43±0.25f 8.47±0.21ef 8.63±0.23m 11.95±0.68h
M9 10.03±0.21ab 9.97±0.38ab 13.63±0.23e 18.17±0.55c
M10 9.77±0.76bc 9.67±0.71abc 12.57±0.32g 15.03±0.71e
M11 8.23±0.35f 8.33±0.51f 10.97±0.40i 13.07±0.47g
M12 7.47±0.40g 7.53±0.15g 9.37±0.06kl 11.47±0.51h
M13 10.57±0.25a 10.17±0.32a 18.87±0.35a 22.17±10.00a
M14 9.97±0.31ab 10.17±0.32a 17.33±0.25b 20.07±0.38b
M15 9.77±0.40bc 9.87±0.21abc 15.73±0.59c 19.53±0.15b
M16 8.57±0.31ef 8.87±0.25def 14.87±0.35d 18.50±0.10c

Table 8

Effect of different medium and culture time on PPO activity of ovule in vitro (U·g-1 FW)"

培养基
Medium
时间Time (d)
42 49 56 63
M1 2.67±0.40efg 3.67±0.25bc 3.77±0.47ef 5.77±0.31fg
M2 2.57±0.35fg 3.37±0.31bcde 3.33±0.15h 5.57±0.35gh
M3 2.47±0.35fg 3.23±0.12e 3.17±0.12j 5.10±0.01hi
M4 2.47±0.40fg 3.07±0.23e 3.03±0.31k 4.98±0.22i
M5 2.57±0.31fg 3.77±0.47b 3.83±0.31fg 7.03±0.32cd
M6 2.47±0.40fg 3.33±0.15bcde 3.77±0.23i 6.87±0.06cd
M7 2.37±0.46g 3.17±0.12de 3.67±0.25lm 6.55±0.21de
M8 2.37±0.38g 3.03±0.31e 3.53±0.40m 6.25±0.33ef
M9 3.67±0.25abc 3.57±0.21bcd 3.97±0.21e 7.63±0.25b
M10 3.33±0.21bcd 3.57±0.15bcd 3.87±0.06g 6.33±0.38e
M11 3.23±0.12cde 3.53±0.25bcd 3.47±0.25i 6.17±0.32ef
M12 3.07±0.23def 3.17±0.06de 3.37±0.23kl 5.77±0.31fg
M13 4.10±0.17a 4.87±0.25a 5.77±0.31a 8.67±0.25a
M14 3.87±0.40ab 4.77±0.23a 5.57±0.21b 8.33±0.38a
M15 3.33±0.21bcd 4.63±0.31a 5.53±0.29c 7.63±0.21b
M16 3.23±0.12cde 4.43±0.15a 5.53±0.31d 7.27±0.15bc

Table 9

Correlation coefficient of different physiological indexes and ovule development rate"

生理指标
Physiological index
相关系数
Correlation coefficient
淀粉含量 Starch content (%) 0.062
可溶性蛋白含量 Soluble protein content (mg·g-1) 0.430**
总酚含量 Phenolics content (mg·g-1) 0.800**
SOD酶活性 SOD activity (U·g-1 FW) 0.733**
POD酶活性 POD activity (U·g-1 FW) -0.331**
PPO酶活性 PPO activity (U·g-1 FW) -0.325**

Fig. 1

In vitro ovule development and embryo germination during embryo rescue of selfing ‘Ruby seedless’ grape A: Selfing ‘Ruby seedless grape’ fruit; B: In vitro ovule cultured; C-D: Developmental ovule; E-F: Embryo germination; G-H: Transplanting domestication"

Table 1

0 Embryo germination rate"

材料
Material
胚珠发育总数(个)
No. of ovule development
胚萌发总数(个)
No. of embryo germination
胚萌发率
Embryo germination rate (%)
E1 107 87 81.3%
E2 272 240 88.2%
E3 250 202 80.8%
E4 89 68 76.4%
[1] 李莎莎, 王跃进 . 葡萄无核基因及无核育种研究进展. 园艺学报, 2019,46(9):1711-1726.
LI S S, WANG Y J . Advances in seedless gene researches and seedless breeding in grapevine. Acta Horticulturae Sinica, 2019,46(9):1711-1726. (in Chinese)
[2] 李桂荣, 王跃进, 唐冬梅, 王西平, 骆强伟 . 无核白葡萄胚挽救育种技术研究. 西北植物学报, 2001,21(3):432-436.
LI G R, WANG Y J, TANG D M, WANG X P, LUO Q W . The studies on embryo rescue techniques of ‘Thompson Seedless’ grape. Acta Botanica Boreali-Occidentalia Sinica, 2001,21(3):432-436. (in Chinese)
[3] 徐海英, 阎爱玲, 张国军 . 葡萄二倍体与四倍体品种间杂交胚珠的离体培养. 果树学报, 2001,18(6):317-320.
XU H Y, YAN A L, ZHANG G J . Study on the in ovulo embryo culture of the crossed progeny between diploid and tetraploid grape cultivars. Journal of Fruit Science, 2001,18(6):317-320. (in Chinese)
[4] 潘学军 . 无核抗病葡萄胚挽救技术体系优化及新品系培育[D]. 杨凌: 西北农林科技大学, 2005.
PAN X J . Innovating in the technique system of embryo rescue of stenospermocarpic grape and breeding new cultivars of both seedless and disease-resistance traits[D]. Yangling: Northwest A & F University, 2005. (in Chinese)
[5] VALDEZ J G . Immature embryo rescue of grapevine ( Vitis vinifera L.) after an extended period of seed trace culture. Vitis, 2005,44(1):17-23.
[6] TIAN L L, WANG Y J, NIU L, TANG D M . Breeding of disease-resistant seedless grapes using Chinese wild Vitis spp.: I. In vitro embryo rescue and plant development. Scientia Horticulture, 2008,117(2):136-141.
doi: 10.1016/j.scienta.2008.03.024
[7] LI G R, JI W, WANG G, ZHANG J X, WANG Y J . An improved embryo-rescue protocol for hybrid progeny from seedless Vitis vinifera grapes × wild Chines. Vitis species. In Vitro Cellular & Developmental Biology Plant, 2014,50(1):110-120.
doi: 10.1007/s11627-013-9543-7 pmid: 26316680
[8] 闫爱玲, 孙磊, 王慧玲, 张国军, 王晓玥, 徐海英 . 无核葡萄'Kismis’胚挽救技术研究. 中国果树, 2016(6):29-31, 35.
YAN A L, SUN L, WANG H L, ZHANG G J, WANG X Y, XU H Y . Study on embryo rescue technology of 'kismis' seedless grape. Chinese Fruit, 2016(6):29-31, 35. (in Chinese)
[9] RAMMING D W, EMERSHAD R L . In ovulo embryo culture of seeded and seedless Vitis vinifera(Abstr). Hortscience, 1982,17(3):487.
[10] SPIEGEL-ROY P, SAHAR N, BARON J, LAVI U . In vitro culture and plant formation from grape cultivars with abortive ovules and seeds. Journal of the American Society for Horticultural Science, 1985,110(1):109-112.
[11] GRAY D J, FISHER L C, MORTENSEN J A . Comparison of methodologies for in ovulo embryo rescue of seedless grapes. Hortscience, 1987,22(6):1334-1335.
[12] 唐冬梅 . 无核葡萄杂交胚挽救新种质创建与技术完善[D]. 杨凌: 西北农林科技大学, 2010.
TANG D M . Novel germplasm innovation of seedless grapes by embryo rescue and technique improvement[D]. Yangling: Northwest A & F University, 2010. (in Chinese)
[13] 王爱玲, 王跃进, 唐冬梅, 张剑侠, 张朝红 . 提高无核葡萄胚挽救中幼胚成苗率的研究. 中国农业科学, 2010,43(20):4238-4245.
WANG A L, WANG Y J, TANG D M, ZHANG J X, ZHANG C H . Research on improvement of seedling rate in embryo rescue of seedless grapes. Scientia Agricultura Sinica, 2010,43(20):4238-4245. (in Chinese)
[14] 赵雅楠, 骆强伟, 王跃进 . 利用胚挽救技术创制无核抗寒葡萄新种质. 中国农业科学, 2018,51(21):4119-4130.
doi: 10.3864/j.issn.0578-1752.2018.21.010
ZHAO Y N, LUO Q W, WANG Y J . Breeding for grape germplasm involved in seedlessness with cold-resistant using embryo rescue. Scientia Agricultura Sinica, 2018,51(21):4119-4130. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.21.010
[15] 李志瑛, 骆强伟, 王跃进 . 无核葡萄胚挽救育种与杂种后代分子标记辅助选择. 果树学报, 2019,36(1):31-42.
LI Z Y, LUO Q W, WANG Y J . Breeding seedless grapevine via embryo rescue and marker-assisted selection in hybrid progenies. Journal of Fruit Science, 2019,36(1):31-42. (in Chinese)
[16] RAMMING D W . The use of embryo culture in fruit breeding. HortScience, 1990,25:393-398.
doi: 10.21273/HORTSCI.25.4.393
[17] LIU S M, SYKES S R, CLINGELEFFER P R . Effect of culture medium, genotype, and year of cross on embryo development and recovery from in vitro cultured ovules in breeding stenospermocarpic seedless grape varieties. Australian Journal of Agricultural Research, 2008,59(2):175-182.
doi: 10.1071/AR07165
[18] 李桂荣 . 无核葡萄胚胎发育的生理特性和胚挽救育种技术的研究[D]. 杨凌: 西北农林科技大学, 2013.
LI G R . Studies on physiological characteristics of embryo development and breeding techniques on embryo rescue in seedless grapes[D]. Yangling: Northwest A & F University, 2013. (in Chinese)
[19] LI J, WANG X H, WANG X P, WANG Y J . Embryo rescue technique and its applications for seedless breeding in grape. Plant Cell Tissue & Organ Culture, 2015,120(3):861-880.
[20] JIAO Y T, LI Z Q, XU K Y, GUO Y R, ZHANG C, LI T M, JIANG Y, LIU G T, XU Y . Study on improving plantlet development and embryo germination rates in in-vitro embryo rescue of seedless grapevine. New Zealand Journal of Crop & Horticultural Science, 2018,46(1):39-53.
[21] 韩宇蕾 . 无核葡萄胚挽救育种与分子标记辅助选择应用[D]. 杨凌: 西北农林科技大学, 2019.
HAN Y L . Breeding for new seedless grapevine varieties using embryo rescue and marker-assisted selection[D]. Yangling: Northwest A & F University, 2019. (in Chinese)
[22] 亓桂梅, 潘春云, 汤小宁, 杨立英 . 无核葡萄杂交胚珠的培养技术. 果树科学, 1998,15(4):364-367, 385.
QI G M, PAN C Y, TANG X N, YANG L Y . Cultural technology of seedless grape hybrid ovules. Journal of Fruit Science, 1998,15(4):364-367, 385. (in Chinese)
[23] 温晓敏, 张娜, 路凤珍, 田淑芬 . 红宝石无核和希姆劳特葡萄杂交胚挽救技术研究. 天津师范大学学报(自然科学版), 2017,37(5):32-35.
WEN X M, ZHANG N, LU F Z, TIAN S F . Embryo rescue techniques of the reciprocal crosses between Ruby Seedless grape and Himrod Seedless grape. Journal of Tianjin Normal University (Natural Science Edition), 2017,37(5):32-35. (in Chinese)
[24] 田淑芬, 月丫, 张娜, 郭艳芳 . 红宝石无核与玫瑰香型葡萄杂交胚挽救技术研究. 中外葡萄与葡萄酒, 2018(4):69-72.
TIAN S F, YUE Y, ZHANG N, GUO Y F . Research on embryo rescue techniques of the reciprocal crosses between 'Ruby Seedless' and muscat aroma type. Sino-Overseas Grapevine & Wine, 2018(4):69-72. (in Chinese)
[25] 郝燕, 杨瑞, 王玉安, 张坤, 李红旭 . 无核葡萄新品种‘紫丰’的选育. 果树学报, 2019,36(4):533-536.
HAO Y, YANG R, WANG Y A, ZHANG K, LI H X . A new seedless grape cultivar 'Zifeng'. Journal of Fruit Science, 2019,36(4):533-536. (in Chinese)
[26] 张剑侠, 唐冬梅, 王跃进 . 无核葡萄新品种‘秦红1号’. 园艺学报, 2015,42(S2):2831-2832.
doi: 10.16420/j.issn.0513-353x.2015-0654
ZHANG J X, TANG D M, WANG Y J . A new seedless grape cultivar 'Qinhong 1'. Acta Horticulturae Sinica, 2015,42(S2):2831-2832. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2015-0654
[27] 田莉莉 . 抗病无核葡萄胚挽救育种及种质创新[D]. 杨凌: 西北农林科技大学, 2007.
TIAN L L . Breeding for the disease-resistant seedless grape novel varieties and innovating of new germplasms using embryo rescue[D]. Yangling: Northwest A & F University, 2007. (in Chinese)
[28] 唐冬梅, 王跃进, 赵荣华, 潘学军, 蔡军社, 张剑侠, 张朝红, 骆强伟 . 无核葡萄胚挽救中影响胚发育的因子. 中国农业科学, 2009,42(7):2449-2457.
TANG D M, WANG Y J, ZHAO R H, PAN X J, CAI J S, ZHANG J X, ZHANG C H, LUO Q W . Factors influencing embryo development in embryo rescue of seedless grapes. Scientia Agricultura Sinica, 2009,42(7):2449-2457. (in Chinese)
[29] 罗尧幸 . 耐寒无核葡萄胚挽救种质创新研究[D]. 山西: 山西农业大学, 2018.
LUO Y X . Study on germplasm innovation of cold-tolerant and seedless grapes by embryo rescue[D]. Shanxi: Shanxi Agricultural University, 2018. (in Chinese)
[30] GRAY D J, MORTENSEN J A, BENTON C M, DURHAM R E, MOORE G A . Ovule culture to obtain progeny from hybrid seedless bunch grapes. Journal of the American Society for Horticultural Science, 1990,115(6):1019-1024.
doi: 10.21273/JASHS.115.6.1019
[31] 王飞, 王跃进, 周建锡 . 无核葡萄与中国野生葡萄杂种的胚挽救技术研究. 园艺学报, 2006,33(5):1079-1082.
WANG F, WANG Y J, ZHOU J X . Breeding technology of embryo rescue in seedless grape with Chinese wild grape. Acta Horticulturae Sinica, 2006,33(5):1079-1082. (in Chinese)
[32] 李顺雨 . 种子败育型葡萄胚败育的形态学观察及生理基础[D]. 贵阳: 贵州大学, 2009.
LI S Y . Morphological observation and physiological basis of embryo abortion in seed-aborting grape[D]. Guiyang: Guizhou University, 2009. (in Chinese)
[33] 朱林, 李佩芬, 卢炳芝, 于向荣 . 无核葡萄品种的胚珠培养和胚分化(简报). 植物生理学通讯, 1992,28(4):273-274.
ZHU L, LI P F, LU B Z, YU X R . Study on ovule culture and embryo differentiation of seedless grape varieties. Plant Physiology Communications, 1992,28(4):273-274. (in Chinese)
[34] LAFON-PLACETTE C, KÖHLER C. Embryo and endosperm, partners in seed development. Current Opinion in Plant Biology, 2014,17:64-69.
doi: 10.1016/j.pbi.2013.11.008
[35] 寇艳茹 . 板栗胚胎发育生理机制及调控技术研究[D]. 北京: 北京林业大学, 2015.
KOU Y R . Studies on physiological mechanism of embryonic development and its regulation in Chinese chesnut[D]. Beijing: Beijing Forestry University, 2015. (in Chinese)
[36] 江淑平 . 葡萄无核品种胚败育因子及其机理的研究[D]. 杨凌: 西北农林科技大学, 2004.
JIANG S P . Factors and mechanism of embryonic abortion in seedless grapes[D]. Yangling: Northwest A & F University, 2004. (in Chinese)
[37] 董姝娟, 郭修武 . 几个葡萄品种胚胎发育过程中保护酶活性、丙二醛及内含营养物质含量的变化. 中外葡萄与葡萄酒, 2008(2):12-16.
DONG S J, GUO X W . Change of protective enzyme activity, contents of MDA and inner nutriments during the embryonic development of several grape cultivars Sino-Overseas Grapevine & Wine, 2008(2):12-16. (in Chinese)
[38] 王静波 . 无核葡萄胚胎发育形态学与生理特性研究[D]. 太谷: 山西农业大学, 2018.
WANG J B . Research on morphological and physiological characteristics of embryo development in seedless grapes[D]. Taigu: Shanxi Agricultural University, 2018. (in Chinese)
[39] 张朝红, 王跃进, 王西平, 杨亚州 . ‘杨格尔’与‘京秀’葡萄胚珠发育过程中的活性氧代谢比较. 园艺学报, 2007,34(6):1361-1366.
ZHANG C H, WANG Y J, WANG X P, WANG Y Z . A comparative study on metabolism of reactive oxygen species during ovule development in seeded and seedless grapes. Acta Horticulturae Sinica, 2007,34(6):1361-1366. (in Chinese)
[40] 潘学军, 李顺雨, 张文娥, 刘崇怀 . 种子败育型葡萄胚珠败育前后抗氧化物质及丙二醛含量的变化. 园艺学报, 2011,38(增刊):2482.
PAN X J, LI S Y, ZHANG W E, LIU C H . Changes of antioxidant and malondialdehyde contents in ovules of seed abortive grapes before and after abortion. Acta Horticulturae Sinica, 2011,38(Suppl.):2482. (in Chinese)
[41] 纪薇, 郭荣荣, 王静波, 焦晓博, 闫钊, 昌秦湘, 董志刚, 王跃进 . 无核葡萄胚败育生理生化因子灰色关联分析. 园艺学报, 2019,46(8):1473-1485.
JI W, GUO R R, WANG J B, JIAO X B, YAN Z, CHANG Q X, DONG Z G, WANG Y J . Grey correlation analysis of physiological and biochemical factors in embryo abortion of seedless grape. Acta Horticulturae Sinica, 2019,46(8):1473-1485. (in Chinese)
[1] PeiPei ZHU,YiJia LUO,Wen XIANG,MingLei ZHANG,JianXia ZHANG. Rescue and Molecular Marker Assisted-Selection of the Cold-Resistant Seedless Grape Hybrid Embryo [J]. Scientia Agricultura Sinica, 2021, 54(6): 1218-1228.
[2] XIE KaiDong,PENG Jun,YUAN DongYa,QIANG RuiRui,XIE ShanPeng,ZHOU Rui,XIA QiangMing,WU XiaoMeng,KE FuZhi,LIU GaoPing,GROSSER Jude W,GUO WenWu. Production of Citrus Triploids Based on Interploidy Crossing with Bendizao and Man Tangerines as Female Parents [J]. Scientia Agricultura Sinica, 2020, 53(23): 4961-4968.
[3] JIA ShanShan,LUO QiangWei,LI ShaSha,WANG YueJin. Optimization of Embryo Rescue Technique and Production of Potential Seedless Grape Germplasm with Rosy Aroma [J]. Scientia Agricultura Sinica, 2020, 53(16): 3344-3355.
[4] YaNan ZHAO,QiangWei LUO,YueJin WANG. Breeding for Grape Germplasm Involved in Seedlessness with Cold-Resistant Using Embryo Rescue [J]. Scientia Agricultura Sinica, 2018, 51(21): 4119-4130.
[5] MU TingTing, DU HuiLing, ZHANG FuYao, JING XiaoLan, GUO Qi, LI ZhiHua, LIU Zhang, TIAN Gang. Effects of Exogenous Selenium on the Physiological Activity, Grain Selenium Content, Yield and Quality of Foxtail Millet [J]. Scientia Agricultura Sinica, 2017, 50(1): 51-63.
[6] LIU Chang-you, FAN Bao-jie, CAO Zhi-min, SU Qiu-zhu, WANG Yan, ZHANG Zhi-xiao, CHENG Xu-zhen, TIAN Jing. Interspecific Hybridization Among Vigna Species [J]. Scientia Agricultura Sinica, 2015, 48(3): 426-435.
[7] WANG Wei-Bo, CUI Hai-Rui, LU Mei-Zhen, SHU Qing-Yao, SHEN Sheng-Quan. Research on Carbon Metabolism Characteristics of Transgenic Bt Rice [J]. Scientia Agricultura Sinica, 2013, 46(8): 1564-1570.
[8] GAO YONG , MEN Xing-Yuan, YU YI , ZHOU Hong-Xu. Changes of Physiological Indexes of Jujube, Peach, Cherry and Grape Leaves Damaged by Apolygus lucorum in Northern China [J]. Scientia Agricultura Sinica, 2012, 45(22): 4627-4634.
[9] . Comparative Study on Heat Resistance of Lily Hybrids and Their Parents
[J]. Scientia Agricultura Sinica, 2011, 44(6): 1201-1209 .
[10] WU Sheng-jiang,SONG Zhao-peng,HE Fan,SUN Jian-feng,GONG Chang-rong
. Changes of Cell Ultrastructure and Some Physiological Indexes and Physical Properties of Tobacco Leaves During Bulk Flue-Curing
[J]. Scientia Agricultura Sinica, 2011, 44(1): 125-132 .
[11] GUAN Zhi-yong,CHEN Fa-di,TENG Nian-jun,CHEN Su-mei,LIU Pu-sheng
. Study on the NaCl Tolerance in Five Plant Species from Dendranthema and Its Relatives
[J]. Scientia Agricultura Sinica, 2010, 43(4): 787-794 .
[12] WANG Ai-ling,WANG Yue-jin,TANG Dong-mei,ZHANG Jian-xia,ZHANG Chao-hong
.

Research on Improvement of Seedling Rate in Embryo Rescue of Seedless Grapes

[J]. Scientia Agricultura Sinica, 2010, 43(20): 4238-4245 .
[13] TANG Dong-mei,WANG Yue-jin,ZHAO Rong-hua,PAN Xue-jun,CAI Jun-she,ZHANG Jian-xia,ZHANG Chao-hong,LUO Qiang-wei
. Factors Influencing Embryo Development in Embryo Rescue of Seedless Grapes#br# [J]. Scientia Agricultura Sinica, 2009, 42(7): 2449-2457 .
[14] ,,,,. Studies on Induction of Haploid Cucumbers by Irradiated Pollen Pollination and Their Characterization [J]. Scientia Agricultura Sinica, 2006, 39(7): 1428-1436 .
[15] . Determination of the Proper Sampling Period for Embryo Rescue from Crosses Between Diploid and Tetraploid Grape Cultivars [J]. Scientia Agricultura Sinica, 2005, 38(03): 629-633 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!