Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (17): 3034-3048.doi: 10.3864/j.issn.0578-1752.2019.17.011

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Effects of Different Citric Acid Solutions on the Quality of Apricot Kernels During Debitterizing Mediated by Ultrasound Irradiation

SHI FangFang,ZHANG QingAn()   

  1. College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119
  • Received:2018-12-29 Accepted:2019-07-19 Online:2019-09-01 Published:2019-09-10
  • Contact: QingAn ZHANG E-mail:qinganzhang@snnu.edu.cn

Abstract:

【Objective】 In this paper, the effects of different pH values coupled with ultrasound irradiation on the color, texture and some physicochemical properties of the apricot kernels during debitterizing were investigated. Correlation analysis of all measured variables was conducted to simplify the evaluating indicators of the quality of debitterizing apricot kernels with different solvents. In addition, multivariate data analysis was applied to categorize the debitterizing solvents and provide the theoretical base for the selection of debitterizing solvents in the debitterizing processing of apricot kernels. 【Method】 Determinations of the amygdalin, water content and beta-glucosidase activity of the apricot kernels, and the contents of total phenols, proteins, reducing sugars and soluble solids in the debitterizing solutions were conducted by the high performance liquid chromatography, spectrophotometer and abbe refractometer, etc, respectively. In addition, the texture and organoleptic properties of the debitterized apricot kernels were also investigated by the texture analyzer and sensory evaluation test, respectively. Finally, principal component analysis (PCA) and cluster analysis (CA) were applied to classify the six kinds of debitterizing solvents. 【Result】 Compared with the untreated sample, the color, hardness, fracturability, chewiness, resilience, gumminess and sensory evaluation of the debitterized apricot kernels were significantly different after being debitterized by the six kinds of debitterizing solvents. In the meantime, the moisture content and the activity of beta-glucosidase of the apricot kernels increased significantly. Based on the comprehensive analysis of the physicochemical indicators, the debitterizing time was the shortest (only 90 min), and the loss of the nutrients in the apricot kernels was less than the other treated samples, when the pH of the debitterizing solution was at the value of 5. Correlation analysis showed a certain correlation among the indicators. The results of PCA and CA provided the same classification, and the six kinds of debitterizing solvents could be classified into three categories. Moreover, the effects of the different solutions on the apricot kernels in the same category were not significant. 【Conclusion】 The citric acid solution with a pH of 5 could be used as the optimal solution to remove the bitterness of apricot kernels, which not only accelerated the bitterness of apricot kernels, but also reduced the loss of nutrients of apricot kernels. All these results could provide the support for the industrial rapid debitterizing of apricot kernels.

Key words: apricot kernel, debitterizing solvents, texture, sensory evaluation, principal component analysis, cluster analysis

Table 1

Parameters of the physical properties tested"

项目 Item 设置参数 Setup parameter
探头 Probe P/36R专用探头 Special probe
操作模式 Operator schema 压力测定 Piezometry
压缩比例 Strain rate 75%
触发点 Trigger 5 g
测试前速度 Pre-speed 1 mm·s-1
测试速度 Test speed 0.5 mm·s-1
测试后速度 Past-speed 0.5 mm·s-1

Table 2

Sensory evaluation of apricot kernels"

指标 Item 评价标准 Evaluation standard
色泽
Color
较白,偏黄
Whiter, Yellowish (15-11)
发黄
Yellow (10-6)
黄褐色
Tawny (5-1)
表观形状
Surface
颗粒完整
Complete grains (15-11)
颗粒稍有破损
Slightly damaged grain (10-6)
颗粒破损严重
Severe particle damage (5-1)
硬度
Hardness
硬度适中
Moderate hardness (20-17)
较硬或较软
Hard or soft (16-12)
过硬或过软
Too hard or too soft (11-1)
口味
Flavor
杏仁味浓郁
Fragrant apricot smell (20-17)
杏仁味较浓,有酸味
apricot smell, sour (16-12)
杏仁味淡,过酸
Less apricot smell, too sour (11-1)
脆性
Fragility
酥脆
Crisp (15-11)
较脆
Crispy (10-6)
质地不酥松
Not crisp (5-1)
黏性
Stickiness
爽口、不黏
Tasty, non-stick (15-11)
较黏
Sticky (10-6)
很黏
Too sticky (5-1)

Fig. 1

Changes of Amygdalin content in apricot kernels during debitterizing induced by ultrasound coupled with different pH of citric acid (UCDCA) A, B, C, D, E and F represent the figures of the apricot kernels debitterizing at different pH values of 2, 3, 4, 5, 6 and 7, respectively. Different lowercase letters indicate significant differences (P<0.05). The same as below"

Fig. 2

Apparent properties of the debitterized apricot kernels induced by UCDCA"

Table 3

Comparison of color parameters among the debitterized apricot kernels induced by UCDCA"

指标 Item L* a* b* △E
原样 Untreated 94.5±0.0b 9.1±0.4b 22.6±3.6b
脱苦溶液pH
Debitterizing solvents pH value
2 96.0±1.3a 14.8±0.4a 15.2±0.9cd 7.4±2.6ab
3 94.1±0.6bc 4.3±0.1e 10.7±0.4e 12.9±3.48a
4 93.3±0.3c 5.1±0.8d 17.8±0.4c 8.5±2.9ab
5 94.1±0.5bc 5.1±0.2d 12.9±0.4de 10.6±3.72ab
6 94.2±0.2bc 6.9±0.4c 26.5±0.9a 5.5±2.6b
7 94.5±0.0bW 5.6±0.4d 17.7±0.4c 6.3±2.8b

Table 4

Effects of different pH on the texture of apricot kernels induced by UCDCA"

指标 Item 硬度 Hardness (×104) 脆性 Fracturability (×104) 附着性 Adhesiveness 弹性 Springiness
原样 Untreated 3.2±0.2a 0.9±0.0e -105.4±6.7c 0.51±0.04b
脱苦酸液pH
Debitterizing solvents pH value
2 2.5±0.0c 1.8±0.1d -28.2±2.7b 0.59±0.03ab
3 3.0±0.1b 2.2±0.0c -10.3±1.2a 0.57±0.10ab
4 2.7±0.0c 2.4±0.1c -14.0±1.2a 0.69±0.08a
5 2.7±0.0c 2.3±0.1c -8.4±0.5a 0.65±0.03a
6 2.6±0.1c 2.6±0.1b -11.7±3.6a 0.59±0.03ab
7 2.7±0.1c 2.9±0.0a -9.6±1.2a 0.59±0.06ab
指标 Item 黏聚性 Cohesiveness 胶着性 Gumminess (×104) 咀嚼性 Chewiness (×103) 回复性 Resilience
原样 Untreated 0.51±0.05a 1.3±0.0ab 6.3±0.2de 0.35±0.02ab
脱苦酸液pH
Debitterizing solvents pH value
2 0.39±0.01b 1.0±0.0c 5.7±0.3e 0.25±0.01c
3 0.46±0.04a 1.4±0.2ab 7.3±0.4bcd 0.40±0.08a
4 0.45±0.02a 1.2±0.1bc 7.9±1.1bc 0.28±0.03bc
5 0.49±0.07a 1.6±0.1a 10.5±0.8a 0.34±0.04ab
6 0.34±0.02b 1.3±0.2ab 6.6±1.0cde 0.24±0.04c
7 0.46±0.02a 1.5±0.0a 8.3±1.0b 0.30±0.02bc

Fig. 3

Sensory evaluation of the debitterized apricot kernels induced by UCDCA"

Fig. 4

Effects of pH on the physicochemical properties of the debitterized apricot kernels and debitterizing solutions induced by UCDCA"

Table 5

Correlation coefficients between physicochemical parameters"

L* a* b* 硬度
Ha
脆性
Fr
附着性
Ad
弹性
Sp
黏聚性
Co
胶着性
Gu
咀嚼性
Ch
回复性
Re
水分含量
Mc
酶活
EA
总酚
TP
蛋白质
Pr
还原糖
Rs
可溶性
固形物
Ss
苦杏仁苷(仁中)
Am
L* 1.000
a* 0.898** 1.000 .937**
b* 0.822** 0.937** 1.000
硬度 Ha -0.488 -0.647 -0.811* 1.000
脆性 Fr -0.473 -0.611 -0.319 0.025 1.000
附着性 Ad -0.774* -0.952** -0.870** 0.669 0.716* 1.000
弹性 Sp -0.597 -0.284 -0.237 0.254 -0.010 0.135 1.000
黏聚性 Co -0.415 -0.553 -0.610 0.742** 0.091 0.480 0.410 1.000
胶着性 Gu -0.480 -0.771* -0.704* 0.717** 0.673* 0.905** -0.010 0.584 1.000
咀嚼性 Ch -0.535 -0.641 -0.634 0.834** 0.349 0.698 0.504 0.795* 0.801* 1.000
回复性 Re -0.371 -0.625 -0.802* 0.798** -0.027 0.562 -0.079 0.745* 0.576 0.494 1.000
水分含量
Mc
-0.316 -0.065 0.211 -0.328 0.444 0.018 0.678* 0.038 -0.054 0.195 -0.560 1.000
酶活 EA -0.654 -0.390 -0.405 0.385 0.060 0.358 0.696* 0.007 0.133 0.421 -0.096 0.304 1.000
总酚 TP -0.382 -0.450 -0.495 0.045 0.164 0.379 -0.389 -0.267 0.086 -0.324 0.341 -0.479 0.057 1.000
蛋白质 Pr 0.794* 0.863* 0.858* -0.742* -0.339 -0.752* -0.511 -0.876* -0.665 -0.781* -0.729* -0.141 -0.287 -0.087 1.000
还原糖 Rs -0.228 -0.381 -0.129 0.069 0.886* 0.598 -0.077 -0.048 0.676 0.406 -0.195 0.370 0.153 -0.061 -0.099 1.000
可溶性固形物
Ss
0.742* 0.745* 0.522 -0.326 -0.851* -.816* -0.407 -0.230 -0.705* -0.632 -0.019 -0.532 -0.549 -0.069 0.533 -0.808** 1.000
苦杏仁苷
(仁中)Am
0.227 0.294 0.585 -0.871** 0.454 -0.270 -0.201 -0.537 -0.305 -0.536 -0.702* 0.543 -0.370 -0.041 0.456 0.348 -0.102 1.000

Table 6

Principal component analysis of the physicochemical parameters"

指标
Index
因子权重 Component weight
因子1 Component 1 因子2 Component 2 因子3 Component 3
L* -0.87 -0.01 0.07
a* -0.95 0.20 -0.14
b* -0.86 0.48 -0.01
硬度 Ha 0.54 -0.77 0.18
脆性 Fr 0.66 0.45 0.53
附着性 Ad 0.96 -0.11 0.25
弹性 Sp 0.41 0.36 -0.75
黏聚性 Co 0.59 -0.37 -0.52
胶着性 Gu 0.85 -0.12 0.18
咀嚼性 Ch 0.81 -0.01 -0.44
回复性 Re 0.50 -0.84 -0.08
水分含量 Mc 0.22 0.86 -0.26
酶活 EA 0.69 0.52 -0.23
总酚 TP 0.20 -0.46 0.67
蛋白质 Pr -0.81 -0.56 0.05
还原糖 Rs 0.54 0.57 0.45
可溶性固形物 Ss -0.87 -0.47 -0.15
苦杏仁苷(仁中) Am -0.31 0.67 0.50
特征值 EV 8.52 4.56 2.50
贡献率 Contribution rate (%) 47.35 25.34 13.89

Fig. 5

Factor score diagram"

Fig. 6

Dendrogram of hierarchical cluster analysis (HCA) "

[1] MANDALARI G, TOMAINO A, ARCORACI T, MARTORANA M, LO T V, CACCIOLA F, RICH G T, BISIGNANO C, SAIJA A, DUGO P, CROSS K L, PARKER M L, WALDRON K W, WICKHAM M S . Characterization of polyphenols, lipids and dietary fiber from almond skins (Amygdalus communis L.). Journal of Food Composition and Analysis, 2010,23(2):166-174.
[2] YADA S, LAPSLEY K, HUANG G . A review of composition studies of cultivated almonds: Macronutrients and micronutrients. Journal of Food Composition and Analysis, 2011,24(4):469-480.
[3] FEMENIA A, ROSSELLO C, MULET A, CANELLAS J . Chemical composition of bitter and sweet apricot kernels. Journal of Agricultural and Food Chemistry, 1995,43(2):356-361.
[4] ZHANG Q A, ZHANG Z Q, YUE X F, FAN X H, LI T, CHEN S F . Response surface optimization of ultrasound-assisted oil extraction from autoclaved almond powder. Food Chemistry, 2009,116(2):513-518.
[5] 李科友, 史清华, 朱海兰, 唐德瑞 . 苦杏仁主要营养成分研究. 西北农业学报, 2003,12(2):119-121.
LI K Y, SHI Q H, ZHU H L, TANG D R . Study on main nutrient compositions of bitter almond. Acta Agriculturae Boreali-occidentalis Sinica, 2003,12(2):119-121. (in Chinese)
[6] 张贞亮 . 杏仁粕蛋白的提取工艺及品质控制的研究[D]. 保定: 河北农业大学, 2011.
ZHANG Z L . Study on extraction and quality control of almond dregs protein[D]. Baoding: Agricultural University of Hebei, 2011. (in Chinese)
[7] 张馨允, 宋云, 范学辉, 张清安 . 干制温度对脱苦杏仁品质的影响. 食品与机械, 2017,33(4):180-183.
ZHANG X Y, SONG Y, FAN X H, ZHANG Q A . Effect of drying temperature on quality of debitterized apricot kernels. Food and Machinery, 2017,33(4):180-183. (in Chinese)
[8] 王福花, 张占军 . 杏仁研究进展. 安徽农业科学, 2010,38(29):16239-16240.
WANG F H, ZHANG Z J . Research advances of almonds. Journal of Anhui Agricultural Sciences, 2010,38(29):16239-16240. (in Chinese)
[9] 侯智霞, 翟明普, 蔡秀芝, 苏淑钗, 李响 . 我国仁用杏生产现状分析. 北方园艺, 2008(2):39-41.
HOU Z X, ZHAI M P, CAI X Z, SU S C, LI X . Analysis on current situation ofArmeniaca vulgaris Lam. in China. Northern Horticulture, 2008(2):39-41. (in Chinese)
[10] BOLARINWA I F, ORFILA C, MORGAN M R . Amygdalin content of seeds, kernels and food products commercially-available in the UK. Food Chemistry, 2014,152(2):133-139.
[11] SONG Y, ZHANG Q A, FAN X H, ZHANG X Y . Effect of debitterizing treatment on the quality of the apricot kernels in the industrial processing. Journal of Food Processing and Preservation, 2017,42(7):1-8.
[12] 陈效兰, 雷钢铁 . 柠檬酸在食品工业中的应用. 山东食品科技, 2000,21(3):6-7.
CHEN X L, LEI G T . Application of citric acid in food industry. Journal of Shandong Food Science and Technology, 2000,21(3):6-7. (in Chinese)
[13] 李军 . 苦杏仁脱苦工艺的研究[D]. 北京: 北京林业大学, 2012.
LI J . Studies on the process of removal of bitterness from bitter apricot seed[D]. Beijing: Beijing Forestry University, 2012. (in Chinese)
[14] 张宁, 程新华 . 苦杏仁真空脱苦新方法及设备. CN92105361. 4.
ZHANG N, CHENG X H . Novel vacuum debitterizing method and equipment for apricot kernels. CN92105361. 4. (in Chinese)
[15] 张兵, 田兴旺, 王永平, 赵怀龙 . 苦杏仁的微波脱苦法. 陇东学院学报(自然科学版), 2003,13(2):39-40.
ZHANG B, TIAN X W, WANG Y P, ZHAO H L . Microwave debitterizing of apricot kernels. Journal of Longdong University (Natural Science Edition), 2003,13(2):39-40. (in Chinese)
[16] 张清安, 范学辉, 张扬俊娜, 张志琪 . 一种超声诱导苦杏仁快速脱苦的方法. ZL 201310376132.X.
ZHANG Q A, FAN X H, ZHANG Y J N, ZHANG Z Q . A rapid debitterizing method of apricot kernels induced by ultrasound. ZL 201310376132.X.(in Chinese)
[17] 范学辉, 张清安, 刘梅 . 苦杏仁脱苦方法研究进展. 食品工业科技, 2014,35(7):396-399.
FAN X H, ZHANG Q A, LIU M . Progress in detoxification techniques of apricot kernel. Science and Technology of Food Industry, 2014,35(7):396-399. (in Chinese)
[18] SILEM A, GUNTER H O, EINFELDT J, BOUALIA A . The occurrence of mass transport processes during the leaching of amygdalin from bitter apricot kernels: detoxification and flavour improvement. International Journal of Food Science and Technology, 2006,41(2):201-213.
[19] 许绍惠, 边立琪, 韩忠环, 周艳明, 贺东 . 山杏仁脱苦及对营养成分影响的研究初报. 沈阳农业大学学报, 1992,23(2):114-118.
XU S H, BIAN L Q, HAN Z H, ZHOU Y M, HE D . Study on Siberian apricot kernel debitterizing technology and its effect on nutritional composition. Journal of Shenyang Agricultural University, 1992,23(2):114-118. (in Chinese)
[20] 姜伟, 牛欣宇, 宋腱森, 李建忠, 何玉莲, 赵光辉 . 山杏仁油料的理化特性及综合利用. 粮油加工, 2014(4):37-39, 43.
JIANG W, NIU X Y, SONG J S, LI J Z, HE Y L, ZHAO G H . Physical and chemical properties and comprehensive utilization of wild apricot kernel oil. Cereals and Oils Processing, 2014(4):37-39, 43. (in Chinese)
[21] 朱蓓薇, 孙浩, 赵曼, 焦鹏 . 用正交试验对苦杏仁脱苦去毒技术的优选. 大连轻工业学院学报, 1992,11(3/4):12-16.
ZHU B W, SUN H, ZHAO M, JIAO P . The optimum selection of the debitterizing and detoxifying techniques of bitter almond by means of the pertendicular test method. Journal of Dalian Institute of Light Industry, 1992,11(3/4):12-16. (in Chinese)
[22] 张宁, 张馨允, 范学辉, 张清安 . 苦杏仁超声辅助快速脱苦工艺优化. 食品与机械, 2018,34(12):189-194.
ZHANG N, ZHANG X Y, FAN X H, ZHANG Q A . Optimization on fast debitterizing technologies of apricot seed by ultrasound with response surface methodology. Food and Machinery, 2018,34(12):189-194. (in Chinese)
[23] 史芳芳, 王娜娜, 范学辉, 张清安 . 苦杏仁脱苦过程中苦杏仁苷含量的变化及其与苦味的关系. 食品与机械, 2018,34(7):211-214.
SHI F F, WANG N N, FAN X H, ZHANG Q A . Changes of amygdalin content and its correlation with the bitterness in apricot kernels during the debitterizing processing. Food and Machinery, 2018,34(7):211-214. (in Chinese)
[24] 黄克昌, 邹建云, 马尚玄, 付镓榕, 郭刚军 . 不同焙烤条件对澳洲坚果带壳果品质的影响. 热带农业科技, 2018,41(3):27-31.
HUANG K C, ZOU J Y, MA S X, FU J R, GUO G J . The quality of macadamia nut in shell under different roasting conditions. Tropical Agricultural Science and Technology, 2018,41(3):27-31. (in Chinese)
[25] 魏益民, 邢亚楠, 张影全, 孔雁, 李明, 张波, 唐娜 . 兰州拉面制作过程及产品的感官评价方法. 中国农业科学, 2016,49(20):4016-4029.
doi: 10.3864/j.issn.0578-1752.2016.20.015
WEI Y M, XING Y N, ZHANG Y Q, KONG Y, LI M, ZHANG B, TANG N . The sensory evaluation methods of production process and product of Lanzhou hand-extended noodles. Scientia Agricultura Sinica, 2016,49(20):4016-4029. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.20.015
[26] ZHANG Q A, WEI C X, FAN X H, SHI F F . Chemical compositions and antioxidant capacity of by-products generated during the apricot kernels processing, CyTA-Journal of Food, 2018,16(1):422-428.
[27] 宋云 . 苦杏仁脱苦及干制工艺对杏仁品质的影响[D]. 陕西: 陕西师范大学, 2016.
SONG Y . Effects of apricot kernels debitterizing and dry processing technology on quality[D]. Shaanxi: Shaanxi Normal University, 2016. (in Chinese)
[28] 朱蓓薇, 孙浩, 赵曼, 焦鹏 . pH值不同的浸泡液对杏仁脱苦去毒的影响. 食品工业科技, 1993,15(2):3-6.
ZHU B W, SUN H, ZHAO M, JIAO P . Influence of soaking solution with different pH values on the bitterness removal and detoxication of bitter almond. Science and Technology of Food Industry, 1993,15(2):3-6. (in Chinese)
[29] 林炳芳, 陶宁萍 . 梅果苦杏仁苷酶特性与青梅汁脱苦工艺的研究. 南京农业大学学报, 1996,19(4):87-91.
LIN B F, TAO N P . Amygdalase activities of gage fruits and debitterizing technique of gage juice. Journal of Nanjing Agricultural University, 1996,19(4):87-91. (in Chinese)
[30] TOKPOHOZIN S E, FISCHER S, SACHER B, BECKER T . β-D-Glucosidase as “key enzyme” for sorghum cyanogenic glucoside (dhurrin) removal and beer bioflavouring. Food and Chemical Toxicology, 2016,97:217-223.
[31] FAN X H, ZHANG X Y, ZHANG Q A, ZHAO W Q, SHI F F . Optimization of ultrasound parameters and its effect on the properties of the activity of beta-glucosidase in apricot kernels. Ultrasonics Sonochemistry, 2019,52:468-476.
[32] ZHANG N, ZHANG Q A, YAO J L, ZHANG X Y . Changes of amygdalin and volatile components of apricot kernels during the ultrasonically-accelerated debitterizing. Ultrasonics Sonochemistry, 2019. . 2019. 104614.
[33] RICHARDSON D P, ASTRUP A, COCAUL A, ELLIS P . The nutritional and health benefits of almonds: A healthy food choice. Food Science and Technology Bulletin Functional Foods, 2009,6(4):41-50.
[34] 陈申如, 张其标, 倪辉 . 酸法提取鲢鱼鱼肉蛋白质技术的研究. 海洋水产研究, 2004,25(5):61-64.
CHEN S R, ZHANG Q B, NI H . Study on protein recovery from silver carp flesh by acid solubilization. Marine Fisheries Research, 2004, 25(5):61-64. (in Chinese)
[35] 王婷婷 . 超声波处理对红葡萄酒贮存期颜色变化的影响机理研究[D]. 西安: 陕西师范大学, 2018.
WANG T T . Effect of ultrasonic treatment on the color changes of red wine and its mechanism during storage[D]. Xi’an: Shaanxi Normal University, 2018. (in Chinese)
[36] 汤庆发, 谢颖, 陈飞龙, 郭阳, 宋帅, 罗佳波 . 苦杏仁中苦杏仁苷的存在形式及其影响因素. 中国实验方剂学杂志, 2013,19(8):107-109.
TANG Q F, XIE Y, CHEN F L, GUO Y, SONG S, LUO J B . Existing form of amygdalin in bitter almond and influence factors. Chinese Journal of Experimental Traditional Medical Formulae, 2013,19(8):107-109. (in Chinese)
[37] 周进, 银鹏 . pH调控对里氏木霉菌产β-葡萄糖苷酶的影响机制. 清华大学学报(自然科学版), 2012,52(2):271-276.
ZHOU J, YIN P . Mechanisms of pH control on β-glucosidase produced in Trichoderma reesei. Journal of Tsinghua University (Natural Science Edition), 2012,52(2):271-276. (in Chinese)
[38] 郭宏垚, 李冬, 雷雄, 王小静, 刚勇, 李稳宏 . 花椒多酚提取工艺响应面优化及动力学分析. 食品科学, 2018,39(2):247-253.
GUO H Y, LI D, LEI X, WANG X J, GANG Y, LI W H . Optimization by response surface methodology and kinetics of extraction of polyphenols from Chinese Prickly Ash. Food Science, 2018,39(2):247-253. (in Chinese)
[39] 贾仕杰, 宁玮钰, 曾栋, 王金玲 . 红树莓籽中活性物质提取工艺优化. 食品工业科技, 2018,39(23):188-192, 198.
JIA S J, NING W Y, ZENG D, WANG J L . Optimization of extraction process of active components from Red Raspberry Seeds. Science and Technology of Food Industry, 2018,39(23):188-192, 198. (in Chinese)
[40] 方媛, 赵武奇, 张清安, 郭玉蓉 . ‘红富士’苹果蠕变特性与果实品质的相关分析. 中国农业科学, 2016,49(4):717-726.
doi: 10.3864/j.issn.0578-1752.2016.04.011
FANG Y, ZHAO W Q, ZHANG Q A, GUO Y R . The correlation analysis between quality and creep property of ‘Fuji’ apple. Scientia Agricultura Sinica, 2016,49(4):717-726. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.04.011
[41] NAMBISAN B . Strategies for elimination of cyanogens from cassava for reducing toxicity and improving food safety. Food and Chemical Toxicology, 2011,49(3):690-693.
[42] 公丽艳, 孟宪军, 刘乃侨, 毕金峰 . 基于主成分与聚类分析的苹果加工品质评价. 农业工程学报, 2014,30(13):276-285.
GONG L Y, MENG X J, LIU N Q, BI J F . Evaluation of apple quality based on principal component and hierarchical cluster analysis. Transactions of the Chinese Society of Agricultural Engineering, 2014,30(13):276-285. (in Chinese)
[1] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
[2] WANG XiuXiu,XING AiShuang,YANG Ru,HE ShouPu,JIA YinHua,PAN ZhaoE,WANG LiRu,DU XiongMing,SONG XianLiang. Comprehensive Evaluation of Phenotypic Characters of Nature Population in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(6): 1082-1094.
[3] CAI WeiDi,ZHANG Yu,LIU HaiYan,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Early Detection on Wheat Canopy Powdery Mildew with Hyperspectral Imaging [J]. Scientia Agricultura Sinica, 2022, 55(6): 1110-1126.
[4] DU JinXia,LI YiSha,LI MeiLin,CHEN WenHan,ZHANG MuQing. Evaluation of Resistance to Leaf Scald Disease in Different Sugarcane Genotypes [J]. Scientia Agricultura Sinica, 2022, 55(21): 4118-4130.
[5] Yue GE,DeQuan ZHANG,ShaoBo LI,Li CHEN,XiaoChun ZHENG,Ce LIANG,TongJing YAN,JinHuo LI,ZhenYu WANG. Eating Quality Evaluation of Lamb in Different Postmortem Phases Based on Consumers’ Sensory Preferences [J]. Scientia Agricultura Sinica, 2022, 55(18): 3640-3651.
[6] SHEN Zhe,ZHANG RenLian,LONG HuaiYu,XU AiGuo. Research on Spatial Distribution of Soil Texture in Southern Ningxia Based on Machine Learning [J]. Scientia Agricultura Sinica, 2022, 55(15): 2961-2972.
[7] LI WenLi, YUAN JianLong, DUAN HuiMin, JIANG TongHui, LIU LingLing, ZHANG Feng. Comprehensive Evaluation of Potato Tuber Texture [J]. Scientia Agricultura Sinica, 2022, 55(12): 2278-2293.
[8] TAN FengLing,ZHAN Ping,WANG Peng,TIAN HongLei. Effects of Thermal Sterilization on Aroma Quality of Flat Peach Juice Based on Sensory Evaluation and GC-MS Combined with OPLS-DA [J]. Scientia Agricultura Sinica, 2022, 55(12): 2425-2435.
[9] ZHANG YuanYuan,LIU WenJing,ZHANG BinBin,CAI ZhiXiang,SONG HongFeng,YU MingLiang,MA RuiJuan. Characterization of the Lactone Volatile Compounds in Different Types of Peach (Prunus persica L.) Fruit and Evaluations of Their Contributions to Fruit Overall Aroma [J]. Scientia Agricultura Sinica, 2022, 55(10): 2026-2037.
[10] WANG Yang,WANG WenHui,TONG Wei,JIA XiaoHui,DU YanMin. Quality Analysis of Frozen Pear Based on Color, Aroma, Taste and Texture [J]. Scientia Agricultura Sinica, 2021, 54(9): 1981-1992.
[11] NIE XingHua, ZHENG RuiJie, ZHAO YongLian, CAO QingQin, QIN Ling, XING Yu. Genetic Diversity Evaluation of Castanea in China Based on Fluorescently Labeled SSR [J]. Scientia Agricultura Sinica, 2021, 54(8): 1739-1750.
[12] Hui LU,YuJie YUAN,SiQi ZHANG,Hong CHEN,Duo CHEN,XiaoYuan ZHONG,Bo LI,Fei DENG,Yong CHEN,GuiYong LI,WanJun REN. Evaluation of Rice Eating Quality and Optimization of Varieties of Southwest Indica Hybrid Rice Based on Three Taste Evaluation Methods [J]. Scientia Agricultura Sinica, 2021, 54(6): 1243-1257.
[13] HaiYu TAO,AiWu ZHANG,HaiYang PANG,XiaoYan KANG. Smart-Phone Application in Situ Grassland Biomass Estimation [J]. Scientia Agricultura Sinica, 2021, 54(5): 933-944.
[14] LI KaiFeng,YIN YuHe,WANG Qiong,LIN TuanRong,GUO HuaChun. Correlation Analysis of Volatile Flavor Components and Metabolites Among Potato Varieties [J]. Scientia Agricultura Sinica, 2021, 54(4): 792-803.
[15] ZHANG BinBin,CAI ZhiXiang,SHEN ZhiJun,YAN Juan,MA RuiJuan,YU MingLiang. Diversity Analysis of Phenotypic Characters in Germplasm Resources of Ornamental Peaches [J]. Scientia Agricultura Sinica, 2021, 54(11): 2406-2418.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!