Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (16): 3213-3225.doi: 10.3864/j.issn.0578-1752.2023.16.013

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles     Next Articles

Analysis of Drug Resistance and Epidemic Characteristics of optrA/lsa(E) in Enterococcus faecalis from Pig Farms in Aksu Area of Xinjiang

WANG Dong(), CHEN WanZhao, LI HongBo, QIN Lei, XU QiQi, LIU ZePeng, XIA LiNing()   

  1. College of Veterinary Medicine, Xinjiang Agricultural University/Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, Urumqi 830052
  • Received:2022-05-18 Accepted:2023-02-14 Online:2023-08-16 Published:2023-08-18

Abstract:

【Objective】 The purpose of this study was to investigate the prevalence of optrA and lsa(E) genes in Enterococcus faecalis isolates from pig farms in Aksu region of Xinjiang and the resistance profiles of these optrA/lsa(E)-carrying isolates, which would provide scientific data for evaluating the impact and hazard of these two important resistance genes. 【Method】PCR screening of optrA and lsa(E) genes were conducted for the collected 322 E. faecalis isolates in laboratory of veterinary pharmacology from Xinjiang Agricultural University. The minimum inhibitory concentrations (MICs) of doxycycline, linezolid, florfenicol, vancomycin, levofloxacin, enrofloxacin, gentamicin and valnemulin were determined by agar dilution method recommended by CLSI documents. Corresponding resistance genes, including ermA, ermB, ermC, fexA, fexB, tet(K), tet(L), tet(M), aac(6')-le- aph(2")-Ia, and cfr, were detected by PCR method. 31 strains with different backgrounds were selected to determine the MLST types and subjected to conjugation transfer experiments. 【Result】A total of 193 E. faecalis isolates were positive for optrA and/or lsa(E), of which 38 strains co-harbored optrA and lsa(E), 9 strains produced only optrA gene, and 146 strains contained only lsa(E) gene. The 193 E. faecalis strains showed 100% resistance to erythromycin, tylosin, tetracycline, doxycycline, gentamicin and valnemulin. Although the detection rate of optrA gene was much lower than that of lsa(E), the bacterial resistance degree in optrA-carrying isolates was significantly higher than that in strains carrying only lsa(E) gene and optrA and lsa(E)-negative strains. The detection rates of resistance genes also showed similar trend. E. faecalis strains carrying both optrA and lsa(E) and strains carrying only optrA showed multiresistance to 8 and 10 antibiotics, accounting for 84.6% and 100.0%, respectively. E. faecalis strains carrying only lsa(E) and optrA and lsa(E)-negative strains were mainly resistant to 6-8 antibitoics, accounting for 84.6% and 100.0%, respectively. Further analysis showed that detection rates of optrA and lsa(E) genes were higher in the pig farms with high resistance degree. Screening of resistance genes showed that ermB, ermC, tet(K), tet(L), tet(M), aac(6')-Ie-aph(2")-Ia, and fex(A) genes were presented in the 193 E. faecalis strains. In general, the detection rates of resistance genes in E. faecalis strains carrying both optrA and lsa(E) and single optrA genes were higher than that in strains carrying single lsa(E) and optrA and lsa(E)-negative strains. The results of MLST and conjugation transfer experiments indicated that optrA/lsa(E)-producing E. faecalis strains were genetically complex and clonal and horizontal transfer co-existed in these pig farms. 【Conclusion】The high carriage rate of optrA and lsa(E) genes and the high level of drug resistance in E. faecalis in pig farms in Aksu region of Xinjiang indicated that antibiotic resistance was serious in this region, which could threaten not only pig industry, but also public health. Preventive and control actions should be taken immediately to prevent further deterioration of antibiotic resistance.

Key words: Aksu area, pig farms, Enterococcus faecalis, OptrA gene, Lsa(E) gene, drug resistance

Table 1

Primer sequences, fragment sizes and annealing temperatures of optrA and lsa(E)"

引物名称
Primer
引物序列
Sequence (5'-3')
片段大小
Products (bp)
退火温度
Annealing temperature (℃)
optrA-F AGGTGGTCAGCGAACTAA 1466 54
optrA-R ATCAACTGTTCCCATTCA
lsa(E)-F TTGTACGGAATGTATGG 675 52
lsa(E)-R TTCGCTTCTATTAAGCACTCTT

Table 2

Primer sequences, fragment sizes and annealing temperatures of relevant drug resistance genes"

引物名称
Primer
引物序列
Sequences (5'-3')
片段大小
Products (bp)
退火温度
Annealing temperature (℃)
ermA-F TCTAAAAAGCATGTAAAAGAA 645 53.0
ermA-R CTTCGATAGTTTATTAATATTAGT
ermB-F GAAAAAGTACTCAACCAAATA 639 50.0
ermB-R AGTAACGGTACTTAAATTGTTTAC
ermC-F TCGAAACGTAATATAGATAAA 642 47.5
ermC-R GCTAATATTGTTTAAATCGTCAAT
tet(L)-F GTTGCGCGCTATATTCCAAA 788 51.7
tet(L)-R TTAAGCAAACTCATTCCAGC
tet(K)-F TTAGGTGAAGGGTTAGGTCC 718 49.9
tet(K)-R GCAAACTCATTCCAGAAGCA
tet(M)-F ACAGAAAGCTTATTATATAAC 171 48.5
tet(M)-R TGGCGTGTCTATGATGTTCAC
fexA-F GTACTTGTAGGTGCAATTACGGCTGA 1272 57.0
fexA-R CGCATCTGAGTAGGACATAGCGTC
fexB-F TTCCCACTATTGGTGAAAGGAT 750 51.9
fexB-R GCAATTCCCTTTTATGGACGTT
cfr-F TGAAGTATAAAGCAGGTTGGGAGT 746 53.2
cfr-R ACCATATAATTGACCACAAGCAGC
aac(6')-aph(2")-F CCAAGAGCAATAAGGGATACC 672 58.0
aac(6')-aph(2")-R ACCCTCAAAAACTGTTGTTGC

Table 3

Detection results of positive strains carrying optrA and lsa(E) in Enterococcus faecalis"

基因携带情况
Gene carriage status
检出率(检出数/菌株总数)Detectable rate (Number of detections/ total number of strains)
A猪场 A farm B猪场 B farm C猪场 C farm D猪场 D farm 合计 Total
共存菌株 Coexistence of two genes 4.5%(2/44) 27.2%(22/81) 0(0/35) 8.6%(14/162) 11.8%(38/322)
仅检出optrA的菌株
Strains with only the optrA detected
4.5%(2/44) 8.6%(7/81) 0(0/35) 0(0/162) 2.8%(9/322)
仅检出lsa(E)的菌株
Strains with only the lsa(E) detected
11.4%(5/44) 33.3%(27/81) 22.8%(8/35) 63.0%(102/162) 45.3%(146/322)

Table 4

Enterococcus faecalis drug sensitivity tests in different farms"

抗菌药物
Antibacterial drug
猪场(耐药数/菌株数)Swine farm (Number of drug resistance/ Number of strains)
A猪场 A farm B猪场 B farm C猪场C farm D猪场 D farm 合计 Total
AMP 0.0% a(0/44) 0.0% a(0/81) 0.0% a(0/146) 0.0% a(0/162) 0.0%(0/322)
ERY 97.7% a(43//44) 100.0% a(81/81) 94.3% a(33/35) 100.0% a(162/162) 99.1%(319/322)
TYL 97.7% a(43/44) 100.0% a(81/81) 91.4% a(32/35) 100.0% a(162/162) 98.8%(318/322)
LZD 11.4% a(5/44) 35.8% b(29/81) 0.0% c(0/35) 7.4% ac(12/162) 14.3%(46/322)
TET 100.0% a(44/44) 100.0% a(81/81) 97.1% a(34/35) 100.0% a(162/162) 99.7%(321/322)
DOX 100.0% a(44/44) 100.0% a(81/81) 100.0% a(35/35) 100.0% a(162/162) 100.0%(322/322)
VAN 0.0% a(0/44) 0.0% a(0/81) 0.0% a(0/35) 0.0% a(0/162) 0.0%(0/322)
FFC 29.5% a(13/44) 54.3% b(44/81) 0.0% c(0/35) 17.9% a(29/162) 26.7%(86/322)
LEV 11.4% ab(5/44) 96.3% c(78/81) 8.6% b(3/35) 23.5% a(38/162) 38.5%(124/322)
ENR 27.3% a(12/44) 96.3% b(78/81) 5.7% c(2/35) 27.8% a(45/162) 42.5%(137/322)
GEN 100.0% a(44/44) 100.0% a(81/81) 100.0% a(35/35) 96.3% a(156/162) 98.1%(316/322)
VAL 100.0% a(44/44) 100.0% a(81/81) 100.0% a(35/35) 96.3% a(156/162) 98.1%(316/322)

Table 5

The drug sensitivity test for Enterococcus faecalis carrying the target gene"

抗菌药物
Antibacterial drug
耐药率(耐药菌株数/菌株总数)Drug resistance rate (number of drug-resistant strains/total number of strains)
共存菌株
Strain with coexistence of two genes
仅检出optrA的菌株
Strains with only the optrA detected
仅检出lsa(E)的菌株
Only lsa(E) positive strains
optrAlsa(E)阴性菌株
optrA, lsa(E) negative strains
AMP 0 a(0/38) 0 a(0/9) 0 a(0/146) 0.0% a(0/129)
ERY 100.0% a(38/38) 100.0% a(9/9) 100.0% a(146/146) 97.7% a(126/129)
TYL 100.0% a(38/38) 100.0% a(9/9) 100.0% a(146/146) 96.9% a(125/129)
LZD 100.0% a(38/38) 100.0% a(9/9) 0% b(0/146) 0.0% b(0/129)
VAL 100.0% a(38/38) 100.0% a(9/9) 100.0% a(146/146) 99.2% a(128/129)
TET 100.0% a(38/38) 100.0% a(9/9) 100.0% a(146/146) 99.2% a(128/129)
DOX 100.0% a(38/38) 100.0% a(9/9) 100.0% a(146/146) 100.0% a(129/129)
VAN 0 a(0/38) 0 a(0/9) 0 a(0/146) 0 a(0/129)
FFC 100.0% a(38/38) 100.0% a(9/9) 13.7% b(20/146) 17.8% b(23/129)
LEV 52.6% a(20/38) 77.0% a(7/9) 40.4% a(59/146) 29.5% b(38/129)
ENR 55.3% a(21/38) 77.0% a(7/9) 45.9% a(67/146) 29.5% b(38/129)
GEN 100.0% a(38/38) 100.0% a(9/9) 95.9% a(140/146) 100.0% a(129/129)

Fig. 1

Multidrug resistance results in Enterococcus faecalis carrying optrA and/or lsa(E)"

Table 6

Detection of other drug resistance genes in some cases of Enterococcus faecalis carrying optrA and/or lsa(E)"

耐药基因
Drug-resistant gene
耐药基因检出率(耐药菌株数/菌株总数)
Detection rate of drug-resistant genes (number of drug-resistant strains/total number of strains)
共存菌株
Strain with coexistence
of two genes
仅检出optrA的菌株
Strains with only the optrA detected
仅检出lsa(E)的菌株
Only lsa(E) positive
strains
optrAlsa(E)阴性菌株
optrA, lsa(E) negative
strains
ermA 89.5% a(34/38) 100.0% a(9/9) 1.4% b(2/146) 3.1%b(4/129)
ermB 100.0% a(38/38) 100.0% a(9/9) 100.0% a(146/146) 94.6%a(122/129)
ermC 28.9% ab(11/38) 55.5% b(5/9) 20.5% a(30/146) 45.7%a(59/129)
fexA 97.4% a(37/38) 88.8% a(8/9) 6.8% b(10/146) 6.2%b(8/129)
fexB 0 a(0/38) 0 a(0/9) 0.7% a(1/146) 1.6%a(2/129)
tet(K) 84.2% a(32/38) 100.0% a(9/9) 39.7% b(58/146) 71.3%a(92/129)
tet(L) 100.0% a(38/38) 100.0% a(9/9) 89.7% a(131/146) 90.7%a(117/129)
tet(M) 100.0% a(38/38) 100.0% a(9/9) 100.0% a(146/146) 100.0%a(129/129)
aac(6')-le -aph(2")-Ia 100.0% a(38/38) 44.4% b(4/9) 93.2% a(136/146) 39.5%b(51/129)
cfr 0 a(0/38) 0 a(0/9) 0 a(0/146) 0.0%a(0/129)

Table 7

Enterococcus faecalis selection and MLST results"

菌株 Strain 携带基因 Carried gene 猪场 Swine farm ST分型 ST type
A1 optrA、lsa(E) A ST16
A13 lsa(E) A ST480
A22 optrA A ST16
A43 optrA A ST633
B45 lsa(E) B ST1061
B51 lsa(E) B ST1061
B53 lsa(E) B ST1058
B77 optrA、lsa(E) B ST1058
B78 optrA、lsa(E) B ST1058
B80 optrA B ST1058
B89 optrA、lsa(E) B ST1061
B101 optrA、lsa(E) B ST1058
B119 optrA、lsa(E) B ST1058
B120 optrA B ST1058
B121 optrA、lsa(E) B ST1061
B122 optrA B ST1058
B125 lsa(E) B ST1061
C140 lsa(E) C ST1007
C144 lsa(E) C ST532
C145 lsa(E) C ST532
C148 lsa(E) C ST81
C152 lsa(E) C ST532
C159 lsa(E) C ST1061
C160 lsa(E) C ST1061
D5 optrA、lsa(E) D ST632
D9 lsa(E) D ST32
D32 optrA、lsa(E) D ST369
D105 optrA、lsa(E) D ST369
D108 lsa(E) D ST632
D158 lsa(E) D ST369
D159 optrA、lsa(E) D ST369

Fig. 2

MLST results of some Enterococcus faecalis carrying optrA and/or lsa(E)"

Table 8

Conjugation transfer experiments"

菌株编号 Strain No. 基因 Gene 接合效率 Efficiency of conjugation ST分型 ST type
B101 optrAlsa(E) 1.2×10-4 ST1058
D105 optrA 9.6×10-5 ST369

Table 9

Results of drug sensitivity test of conjugation transfer experiments"

菌株编号
Strain No.
MIC (μg·mL-1)
沃尼妙林
Valnemulin
林可霉素
Lincomycin
氟苯尼考
Florfenicol
利奈唑胺
Linezolid
利福平
Rifampicin
夫西地酸
Fusidic
JH2-2 64 32 4 1 >512 >512
B101 512 >512 64 4 1 8
B101-1 256 >512 4 1 >512 >512
D105 256 32 64 4 1 8
D105-1 64 32 64 4 >512 >512

Fig. 3

Splice transfer PCR validation 1: JH2- 2-optrA; 2: JH2- 2-lsa(E); 3: D105-optrA; 4: D105-1-optrA; 5: optrA positive control; 6: B101-1-optrA; 7: negative; 8: B101; 9: B101-1- lsa(E); 10: lsa(E) positive control; M: DL2000"

[1]
MAGIORAKOS A P, SRINIVASAN A, CAREY R B, CARMELI Y, FALAGAS M E, GISKE C G, HARBARTH S, HINDLER J F, KAHLMETER G, OLSSON-LILJEQUIST B, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection, 2012, 18(3): 268-281.

doi: 10.1111/j.1469-0691.2011.03570.x
[2]
BONTEN M J, WILLEMS R, WEINSTEIN R A. Vancomycin- resistant Enterococci: Why are they here, and where do they come from? The Lancet Infectious Diseases, 2001, 1(5): 314-325.

doi: 10.1016/S1473-3099(01)00145-1
[3]
BOUCHER H W, COREY G R. Epidemiology of methicillin-resistant Staphylococcus aureus. Clinical Infectious Diseases, 2008, 46 (Supplement_5): S344-S349.

doi: 10.1086/589846
[4]
LIU H, FEI C, ZHANG Y, LIU G, LIU J, DONG J. Presence, distribution and molecular epidemiology of multi-drug-resistant Gram-negative bacilli from medical personnel of intensive care units in Tianjin, China, 2007-2015. Journal of Hospital Infection, 2017, 96(2): 101-110.

doi: S0195-6701(17)30018-X pmid: 28268024
[5]
FREITAS A R, TEDIM A P, NOVAIS C, LANZA V F, PEIXE L. Comparative genomics of global optrA-carrying Enterococcus faecalis uncovers a common chromosomal hotspot for optrA acquisition within a diversity of core and accessory genomes. Microbial Genomics, 2020, 6(6): e000350.
[6]
LI X S, DONG W C, WANG X M, HU G Z, WANG Y B, CAI B Y, WU C M, WANG Y, DU X D. Presence and genetic environment of pleuromutilin-lincosamide-streptogramin A resistance gene lsa(E) in Enterococci of human and swine origin. Journal of Antimicrobial Chemotherapy, 2014, 69(5): 1424-1426.

doi: 10.1093/jac/dkt502
[7]
WANG Y, Y, CAI J C, SCHWARZ S, CUI L Q, HU Z D, ZHANG R, LI J, ZHAO Q, HE T, WANG D C, et al. A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin. Journal of Antimicrobial Chemotherapy, 2015, 70(8): 2182-2190.

doi: 10.1093/jac/dkv116
[8]
WENDLANDT S, LOZANO C, KADLEC K, GÓMEZ-SANZ E, ZARAZAGA M, TORRES C, SCHWARZ S. The enterococcal ABC transporter gene lsa(E) confers combined resistance to lincosamides, pleuromutilins and streptogramin A antibiotics in methicillin-susceptible and methicillin-resistant Staphylococcus aureus. Journal of Antimicrobial Chemotherapy, 2013, 68(2): 473-475.

doi: 10.1093/jac/dks398
[9]
LI D X, WANG Y, SCHWARZ S, CAI J C, FAN R, LI J, FEßLER A T, ZHANG R, WU C M, SHEN J Z. Co-location of the oxazolidinone resistance genes optrA and cfr on a multiresistance plasmid from Staphylococcus sciuri. Journal of Antimicrobial Chemotherapy, 2016, 71(6): 1474-1478.

doi: 10.1093/jac/dkw040
[10]
VAN DEN BOGAARD A E, STOBBERINGH E E. Epidemiology of resistance to antibiotics. Links between animals and humans. International Journal of Antimicrobial Agents, 2000, 14(4): 327-335.

doi: 10.1016/s0924-8579(00)00145-x pmid: 10794955
[11]
ENNAHAR S, CAI Y M. Biochemical and genetic evidence for the transfer of Enterococcus solitarius Collins et al. 1989 to the genus Tetragenococcus as Tetragenococcus solitarius comb. nov. International Journal of Systematic and Evolutionary Microbiology, 2005, 55(Pt 2): 589-592.

doi: 10.1099/ijs.0.63205-0
[12]
南海辰, 底丽娜, 夏利宁. 新疆多源喹诺酮类耐药大肠杆菌耐药基因检测及分析. 中国农业科学, 2014, 47(20): 4096-4108. doi:10.3864/j.issn.0578-1752.2014.20.018.

doi: 10.3864/j.issn.0578-1752.2014.20.018
NAN H C, DI L N, XIA L N. Detection and analysis of resistance genes in quinolone-resistant Escherichia coil isolates from different livestocks in Xinjiang. Scientia Agricultura Sinica, 2014, 47(20): 4096-4108. doi:10.3864/j.issn.0578-1752.2014.20.018. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2014.20.018
[13]
陈朝喜, 贺冬梅, 汤承. 川西北高原2009—2016年牦牛源大肠杆菌耐药性变迁和整合子携带分析. 中国农业科学, 2017, 50(9): 1705-1713. doi:10.3864/j.issn.0578-1752.2017.09.016.

doi: 10.3864/j.issn.0578-1752.2017.09.016
CHEN C X, HE D M, TANG C. Vicissitude of drug resistance and integron-carrying of Escherichia coli isolated from yak between 2009 and 2016 in northwest Sichuan Plateau. Scientia Agricultura Sinica, 2017, 50(9): 1705-1713. doi:10.3864/j.issn.0578-1752.2017.09.016. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2017.09.016
[14]
轩慧勇, 宋强强, 刘雪连, 宋超慧, 徐琦琦, 秦蕾, 夏利宁. 2015—2017年新疆动物源鼠伤寒沙门菌耐药性分析. 中国农业大学学报, 2021, 26(2): 88-97.
XUAN H Y, SONG Q Q, LIU X L, SONG C H, XU Q Q, QIN L, XIA L N. Drug resistance of Salmonella Typhimurium isolated from animals in Xinjiang, 2015-2017. Journal of China Agricultural University, 2021, 26(2): 88-97. (in Chinese)
[15]
李君. 猪源耐甲氧西林金黄色葡萄球菌流行病学特征及遗传进化分析[D]. 北京: 中国农业大学, 2017.
LI J. Epidemiological characteristics and phylogenetic analysis of pig associated methicillin-resistant Staphylococcus aureus[D]. Beijing: China Agricultural University, 2017. (in Chinese)
[16]
CLSI. Performance Standards for Antimicrobial Susceptibility Testing[EB/OL]. [2021/3/23]. https://clsi.org/standards/products/microbiology/documents/m100/.
[17]
李德喜. 恶唑烷酮类耐药基因cfr和optrA在猪源MRSA和CoNS中流行及传播机制的研究[D]. 北京: 中国农业大学, 2016.
LI D X. The epidemiological study on the oxazolidinones resistance genes cfr and optra and theirs transmission mechanism among MRSA and CoNS isolates from swine[D]. Beijing: China Agricultural University, 2016. (in Chinese)
[18]
刘志远, 许淑珍, 马纪平. 高耐庆大霉素粪肠球菌质粒接合转移试验的方法探讨. 中华医院感染学杂志, 2005, 15(6): 608-610.
LIU Z Y, XU S Z, MA J P. Plasmid conjugation method for high level gentamicin resistant Enterococcus. Chinese Journal of Nosoconmiology, 2005, 15(6): 608-610. (in Chinese)
[19]
杜蓉, 冯萍. 肠球菌的耐药机制研究进展. 华西医学, 2006, 21(2): 395-396.
DU R, FENG P. Research progress on drug resistance mechanism of Enterococci. West China Medical Journal, 2006, 21(2): 395-396. (in Chinese)
[20]
许建文, 史道华. 万古霉素耐药肠球菌耐药机制的研究进展. 中国抗生素杂志, 2016, 41(5): 329-334.
XU J W, SHI D H. Progress of vancomycin resistance mechanism of Enterococcus spp. Chinese Journal of Antibiotics, 2016, 41(5): 329-334. (in Chinese)
[21]
伊思达, 高懿, 陈丽, 黄金虎, 王晓明, 王丽平. 猪源粪肠球菌对常用抗菌药物的耐药性分析及其酰胺醇类耐药基因的检测. 畜牧与兽医, 2021, 53(10): 83-88.
YI S D, GAO Y, CHEN L, HUANG J H, WANG X M, WANG L P. Antimicrobial susceptibility and phenicols resistance genes in Eenterococcus faecalis isolated from swine. Animal Husbandry & Veterinary Medicine, 2021, 53(10): 83-88. (in Chinese)
[22]
商艳红. 耐药基因optrAlsa(E)在猪源肠球菌和链球菌中流行及传播机制的研究[D]. 杨凌: 西北农林科技大学, 2019.
SHANG Y H. The epidemiological characteristics and dissemination mechanism of resistance gene OptrA and lsa(E) among Enterococcus and Streptococcus suis from swine[D]. Yangling: Northwest A & F University, 2019. (in Chinese)
[23]
顾欣, 商军, 张文刚, 姜芹. 猪源分离粪肠球菌的耐药性及基因型分析. 中国抗生素杂志, 2017, 42(3): 225-229.
GU X, SHANG J, ZHANG W G, JIANG Q. Analysis of genotype and antimicrobial resistance of Enterococcus faecalis isolates from pigs. Chinese Journal of Antibiotics, 2017, 42(3): 225-229. (in Chinese)
[24]
齐亚银. 动物源粪/屎肠球菌抗生素耐药表型及耐药基因型的检测.中国畜牧兽医学会2014年学术年会论文集. 广州, 2014: 524.
QI Y Y. Detection of antibiotic resistance phenotype and genotype of Enterococcus faecalis/faecium from animals. Proceedings of the 2014 academic annual meeting of the Chinese Association of Animal Science and Veterinary Medicine. Guangzhou, 2014: 524. (in Chinese)
[25]
高懿. 江苏猪源肠球菌的耐药性调查及其酰胺醇类/噁唑烷酮类和磷霉素耐药基因的水平传播机制分析[D]. 南京: 南京农业大学, 2019.
GAO Y. Antimicrobial susceptibility and the epidemiological characteristics of amphenicols/oxazolidinones and fosfomycin resistance genes in Enterococcus from swine in Jiangsu Province[D]. Nanjing: Nanjing Agricultural University, 2019. (in Chinese)
[26]
蒋逸凡, 李岱霞, 鲍翔宇, 黎满香. 湖南省部分地区猪、鸡源粪肠球菌耐药性及多位点序列分型分析. 中国动物传染病学报, 2020, 28(6): 102-107.
JIANG Y F, LI D X, BAO X Y, LI M X. Drug resistance and multi-locus sequence typing of Enterococcus faecalis strains isolated from pigs and chickens in Hunan Province. Chinese Journal of Veterinary Parasitology, 2020, 28(6): 102-107. (in Chinese)
[27]
ZHENG B W, XU H, YU X, JIANG X W, ZHANG J, CHEN Y B, HUANG J W, HUANG C, XIAO Y H. Low prevalence of MCR-1-producing Klebsiella pneumoniae in bloodstream infections in China. Clinical Microbiology and Infection, 2018, 24(2): 205-206.

doi: 10.1016/j.cmi.2017.08.004
[28]
BAI B, HU K T, LI H, YAO W M, LI D Y, CHEN Z, CHENG H, ZHENG J X, PAN W G, DENG M G, LIU X J, LIN Z W, DENG Q W, YU Z J. Effect of tedizolid on clinical Enterococcus isolates: in vitro activity, distribution of virulence factor, resistance genes and multilocus sequence typing. FEMS Microbiology Letters, 2018, 365(3): fnx284.
[29]
KUCH A, WILLEMS R J L, WERNER G, COQUE T M, HAMMERUM A M, SUNDSFJORD A, KLARE I, RUIZ- GARBAJOSA P, SIMONSEN G S, VAN LUIT-ASBROEK M, et al. Insight into antimicrobial susceptibility and population structure of contemporary human Enterococcus faecalis isolates from Europe. Journal of Antimicrobial Chemotherapy, 2012, 67(3): 551-558.

doi: 10.1093/jac/dkr544
[30]
RUIZ-GARBAJOSA P, BONTEN M J M, ROBINSON D A, TOP J, NALLAPAREDDY S R, TORRES C, COQUE T M, CANTÓN R, BAQUERO F, MURRAY B E, et al. Multilocus sequence typing scheme for Enterococcus faecalis reveals hospital-adapted genetic complexes in a background of high rates of recombination. Journal of Clinical Microbiology, 2006, 44(6): 2220-2228.

doi: 10.1128/JCM.02596-05
[31]
YAN X M, WANG J, TAO X X, JIA H B, MENG F L, YANG H, YOU Y H, ZHENG B, HU Y, BU X X, ZHANG J Z. A conjugative MDR pMG1-like plasmid carrying the lsa(E) gene of Enterococcus faecium with potential transmission to Staphylococcus aureus. Frontiers in Microbiology, 2021, 12: 667415.

doi: 10.3389/fmicb.2021.667415
[32]
HE T, SHEN Y B, SCHWARZ S, CAI J C, LV Y, LI J, FEßLER A T, ZHANG R, WU C M, SHEN J Z, WANG Y. Genetic environment of the transferable oxazolidinone/phenicol resistance gene optrA in Enterococcus faecalis isolates of human and animal origin. Journal of Antimicrobial Chemotherapy, 2016, 71(6): 1466-1473.

doi: 10.1093/jac/dkw016
[1] LI ShuMin, FANG LiangXing, LI Liang, ZHAO Meng, LU Xiao, GU WeiQi, LIAO XiaoPing, SUN Jian, XIONG YanQiong, LIU YaHong. Investigation on the Antibiotic Resistance of Staphylococcus Methicillin-Resistant MLSB from Food Animals in Six Provinces of China [J]. Scientia Agricultura Sinica, 2019, 52(9): 1646-1656.
[2] CHEN ChaoXi, HE DongMei, TANG Cheng. Vicissitude of Drug Resistance and Integron-Carrying of Escherichia coli Isolated from Yak Between 2009 and 2016 in Northwest Sichuan Plateau [J]. Scientia Agricultura Sinica, 2017, 50(9): 1705-1713.
[3] ,,,,,. Construction of Subtractive cDNA Libraries of Eimeria tenella to Maduramycin and Diclazuril by Suppression Subtractive Hybridization [J]. Scientia Agricultura Sinica, 2005, 38(08): 1712-1716 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!