Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (22): 4552-4560.doi: 10.3864/j.issn.0578-1752.2023.22.015

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles    

Modeling Net Energy Requirement of 1-60 Days Old Wenchang Hen

XU XiaoJing1,2,3(), WEI LiMin2,3, ZHAO ShaoMeng1, ZHAO GuiPing1,2,3, ZHANG MinHong1, FENG JingHai1()   

  1. 1 Institute of Animal Sciences, Chinese Academy of Agricultural Sciences/State Key Laboratory of Animal Nutrition and Feeding, Beijing 100193
    2 Sanya Institute, Hainan Academy of Agricultural Sciences(Hainan experimental animal research center), Sanya 572025, Hainan
    3 Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Science, Haikou 571100
  • Received:2023-02-12 Accepted:2023-04-04 Online:2023-11-16 Published:2023-11-17

Abstract:

【Objective】The aim of this study was to determine the net energy requirements of Wenchang hens aged 1-60 days, so as to provide a scientific basis for efficient breeding of Wenchang hens. 【Method】The net energy requirements of growth (NEg) and maintenance (NEm) of Wenchang hens aged 1-30 and 31-60 days were estimated by factorial method. In experiment 1, three hundred 1-day-old healthy Wenchang chicken chicks were randomly divided into 6 replicates and routinely fed until 56 days of age. The body weight (BW) and net body energy (BE) of Wenchang hens were measured every week, and then a linear regression model between BW and BE was established. The slope was the NEg of Wenchang hen. The NEm of Wenchang hens was investigated in two phases. Two hundred and forty healthy Wenchang hens with similar BW were selected at 1 and 31 days of age, respectively. The birds were randomly divided into four treatment groups with six replicates. The four treatment groups were fed the same metabolic diets, which were ad libitum, 20%, 40% and 60% restricted. Test period was 30 days per period. During the middle stage of the experiment (14 and 44 days old), excreta were collected continuously for 3 days to determine dietary apparent metabolizable energy (AME) at different feeding levels; at the beginning and end of each stage, retained energy (RE), metabolizable energy intake (MEi) and heat production (HP, HP = MEi-RE) of Wenchang hens were measured, and a regression model between the logarithm of HP and MEi was established: lg(HP) = a + b×MEi; the HP when MEi = 0 was calculated, which was the NEm of Wenchang hens.【Result】With the increase of age, BW, daily gain (ADG), feed intake (ADFI), feed conversion ratio (G/F) and BE of Wenchang hens significantly increased (P<0.001). The NEg value was 8.20 and 12.07 kJ·g-1 in Wenchang hens aged 1-30 days and 31-60 days, respectively. Restriction significantly increased the AME value of diet (P<0.001); MEi and HP significantly decreased with the decrease of food intake (P<0.001); there was a significant logarithmic regression relationship between MEi and log HP (R2 = 0.91 and 0.90, P<0.001), and the NEm value at 1-30 days and 31-60 days of age was 300.61 and 398.11 kJ·kg-1BW0.75·d-1, respectively. 【Conclusion】The NEg and NEm of Wenchang hens were different at different growth stages, and the daily net energy requirement of Wenchang hens could be predicted according to BW and ADG. The prediction models were: NE1-30d = 300.61×BW0.75 + 8.20×ADG and NE31-60d = 398.11×BW0.75 + 12.07×ADG.

Key words: Wenchang hen, net energy requirement for maintenance, net energy requirement for growth, growth stage, predictive model

Table 1

Composition and nutrient levels of the basal diet (as-fed basis)"

原料组成
Ingredients (%)
1-30日龄
1-30 days
31-60日龄
31-60 days
营养水平
Nutrients (%)
1-30日龄
1-30 days
31-60日龄
31-60 days
玉米Corn 53.07 61.83 代谢能 ME ((MJ·kg-1)2) 12.48 12.84
豆粕 Soybean meal 38.50 30.00 粗蛋白质CP2) 20.80 18.03
豆油 Soybean oil 3.70 3.90 钙 Ca 0.95 0.85
食盐NaCl 0.40 0.30 总磷TAP 0.77 0.63
磷酸氢钙CaHPO4 1.79 1.30 有效磷 AP 0.40 0.30
石粉Limestone 1.14 1.26 赖氨酸 Lys 1.15 1.00
预混料 Premix1) 1.00 1.00 蛋氨酸 Met 0.45 0.40
DL-蛋氨酸 DL-Met 0.14 0.13 苏氨酸 Thr 0.80 0.68
赖氨酸 Lys 0.00 0.08 色氨酸 Try 0.25 0.20
胆碱Choline 0.26 0.20
合计 Total 100 100

Table 2

Performance of Wenchang hens at different weeks of age"

周龄
Week
末体重
Final body weight (g)
平均日增重
Average daily gain (g)
平均日采食量
Average daily feed intake (g)
料重比
Feed : weight (g·g-1)
0 27.98i
1 64.45h 5.39e 7.72h 1.48d
2 115.58g 8.39d 14.18g 1.94c
3 207.36f 13.39c 23.59f 1.80cd
4 312.13e 14.68c 31.97e 2.14c
5 411.27d 14.91c 40.01d 2.85b
6 540.00c 18.96ab 46.41c 2.54b
7 689.80b 21.26a 56.69b 2.66b
8 820.84a 18.52b 65.59a 3.64a
SEM 15.31 2.02 1.87 0.32
P <0.001 <0.001 <0.001 <0.001

Table 3

Body composition of Wenchang hens at different weeks of age"

周龄
Week(week)
体净能
Body net energy (kJ)
体净能含量
Body net energy content (kJ·g-1)
体蛋白含量
Body protein content (g·g-1)
体脂肪含量
Body lipids content (g·g-1)
0 151h 5.39f 0.15e 0.05f
1 448h 6.95e 0.16e 0.08e
2 878g 7.60d 0.19d 0.09de
3 1615f 7.78d 0.19cd 0.09cd
4 2476e 7.92cd 0.20bcd 0.09cde
5 3484d 8.47c 0.20bc 0.11c
6 5295c 9.81b 0.21ab 0.14b
7 6809b 9.87b 0.20b 0.15ab
8 8608 a 10.48a 0.22a 0.16a
SEM 353.00 0.51 0.010 0.013
P <0.001 <0.001 <0.001 <0.001

Fig. 1

Linear regression analysis between body net energy and body weight of Wenchang hens a: 1-28 days; b: 29-56 days"

Table 4

Effect of feeding levels on performance of Wenchang hens"

组别
Group
末体重
Final body weight (g)
平均日增重
Average daily gain (g)
平均日采食量
Average daily feed intake (g)
料重比
Feed : weight (g·g-1)
1-30日龄 1-30d
自由采食组(AL) 330.5a 10.05a 21.42a 2.13
20%限饲组(20%RF) 276.2b 8.24b 17.34b 2.11
40%限饲组(40%RF) 211.1c 6.06c 13.01c 2.15
60%限饲组(60%RF) 152.3d 4.11d 8.67d 2.12
SEM 5.5 0.18 0.34 0.06
P <0.001 <0.001 <0.001 0.708
31-60日龄 31-60d
自由采食组(AL) 831.0a 16.69a 51.04a 3.07c
20%限饲组(20%RF) 697.4b 12.24b 40.44b 3.31c
40%限饲组(40%RF) 554.7c 7.48c 30.33c 4.08b
60%限饲组(60%RF) 412.3d 2.74d 20.22d 7.44a
SEM 21.1 0.71 1.21 0.36
P <0.001 <0.001 <0.001 <0.001

Table 5

The effect of feeding level on the energy balance in Wenchang hens (n=6)"

组别
Group
表观代谢能
AME (kJ·kg-1)
代谢能摄入量
MEi (kJ·kg-1BW0.75·d-1)
净能沉积量
RE(kJ·kg-1BW0.75·d-1)
产热量
HP (kJ·kg-1BW0.75·d-1)
1-30日龄 1-30d
自由采食组(AL) 12.48c 967.85a 296.65a 697.20a
20%限饲组(20%RF) 12.55c 890.94b 250.16b 640.79b
40%限饲组(40%RF) 12.63b 804.94c 197.46c 607.48c
60%限饲组(60%RF) 12.92a 678.21d 149.78d 528.45d
SEM 0.06 17.30 10.66 24.04
P <0.001 <0.001 <0.001 <0.001
31-60日龄 31-60d
自由采食组(AL) 12.84c 996.18a 252.16a 744.02a
20%限饲组(20%RF) 12.89c 868.39b 163.08b 705.32b
40%限饲组(40%RF) 13.06b 738.67c 87.52c 651.16c
60%限饲组(60%RF) 13.18a 566.50d -0.91d 567.41d
SEM 0.05 21.22 18.74 27.79
P <0.001 <0.001 <0.001 <0.001

Fig. 2

Logarithmic regression analysis of ME Intake and heat production in Wenchang hens (a: 1-30 days; b: 31-60 days)"

[1]
DE GROOTE G. A comparison of a new net energy system with the metabolisable energy system in broiler diet formulation, performance and profitability. British Poultry Science, 1974, 15(1): 75-95.

doi: 10.1080/00071667408416082
[2]
MILGEN J V, NOBLET J, DUBOIS S, CHWALIBOG A, JAKOBSEN K. Energetic efficiency of nutrient utilization in growing pigs. Energy Metabolism in Animals Symposium on Energy Metabolism in Animals, 2001.
[3]
邹轶, 张小凤, 刘松柏, 彭运智, 呙于明, 谭会泽. 净能体系在肉鸡应用中的研究进展. 中国畜牧兽医, 2019, 46(11): 3270-3276.

doi: 10.16431/j.cnki.1671-7236.2019.11.016
ZOU Y, ZHANG X F, LIU S B, PENG Y Z, GUO Y M, TAN H Z. Research advances of net energy application for broiler production. China Animal Husbandry & Veterinary Medicine, 2019, 46(11): 3270-3276. (in Chinese)
[4]
KERR B J, SOUTHERN L L, BIDNER T D, FRIESEN K G, EASTER R A. Influence of dietary protein level, amino acid supplementation, and dietary energy levels on growing-finishing pig performance and carcass composition. Journal of Animal Science, 2003, 81(12): 3075-3087.

doi: 10.2527/2003.81123075x pmid: 14677864
[5]
KLIS J, KWAKERNAAK C, JANSMAN A, BLOK M. Energy in poultry diets: adjusted AME or net energy. Proceedings of the 21st Annual Australian Poultry Science Sumposium, Sydney, New South Wales, 2010.
[6]
WOYENGO T A, JHA R, BELTRANENA E, PHARAZYN A, ZIJLSTRA R T. Nutrient digestibility of lentil and regular- and low-oligosaccharide, micronized full-fat soybean fed to grower pigs. Journal of Animal Science, 2014, 92(1): 229-237.

doi: 10.2527/jas.2013-6555 pmid: 24167001
[7]
NOBLET J, DUBOIS S, LASNIER J, WARPECHOWSKI M, DIMON P, CARRÉ B, VAN MILGEN J, LABUSSIÈRE E. Fasting heat production and metabolic BW in group-housed broilers. Animal, 2015, 9(7): 1138-1144.

doi: 10.1017/S1751731115000403 pmid: 25772629
[8]
NING D, YUAN J M, WANG Y W, PENG Y Z, GUO Y M. The net energy values of corn, dried distillers grains with solubles and wheat bran for laying hens using indirect calorimetry method. Asian-Australasian Journal of Animal Sciences, 2014, 27(2): 209-216.

doi: 10.5713/ajas.2013.13243 pmid: 25049945
[9]
LABUSSIÈRE E, VAN MILGEN J, DE LANGE C F M, NOBLET J. Maintenance energy requirements of growing pigs and calves are influenced by feeding level. The Journal of Nutrition, 2011, 141(10): 1855-1861.

doi: 10.3945/jn.111.141291
[10]
LIU W, LIN C H, WU Z K, LIU G H, YAN H J, YANG H M, CAI H Y. Estimation of the net energy requirement for maintenance in broilers. Asian-Australasian Journal of Animal Sciences, 2017, 30(6): 849-856.

doi: 10.5713/ajas.16.0484 pmid: 27764918
[11]
RIVERA-TORRES V, NOBLET J, DUBOIS S, VAN MILGEN J. Energy partitioning in male growing turkeys. Poultry Science, 2010, 89(3): 530-538.

doi: 10.3382/ps.2009-00353
[12]
BOEKHOLT H A, VAN DER GRINTEN P, SCHREURS V V A M, LOS M J N, LEFFERING C P. Effect of dietary energy restriction on retention of protein, fat and energy in broiler chickens. British Poultry Science, 1994, 35(4): 603-614.

pmid: 7828016
[13]
ZANCANELA V, MARCATO S M, FURLAN A C, GRIESER D O, TON A P S, BATISTA E, PERINE T P, DEL VESCO A P, POZZA P C. Models for predicting energy requirements in meat quail. Livestock Science, 2015, 171: 12-19.

doi: 10.1016/j.livsci.2014.10.002
[14]
YANG T, YU L X, WEN M, ZHAO H, CHEN X L, LIU G M, TIAN G, CAI J Y, JIA G. Modeling net energy requirements of 2 to 3-week-old Cherry Valley ducks. Asian-Australasian Journal of Animal Sciences, 2020, 33(10): 1624-1632.

doi: 10.5713/ajas.19.0561 pmid: 32054198
[15]
FILHO J J, SILVA J H V, SILVA C T, COSTA F, DE SOUSA J M B, GIVISIEZ P. Energy requirement for maintenance and gain for two genotypes of quails housed in different breeding rearing systems. Revista Brasileira de Zootecnia, 2011.
[16]
SILVA E P, CASTIBLANCO D M C, ARTONI S M B, LIMA M B, NOGUEIRA H S, SAKOMURA N K. Metabolisable energy partition for Japanese quails. Animal, 2020, 14: s275-s285.

doi: 10.1017/S1751731120001445
[17]
SAKOMURA N K, LONGO F A, OVIEDO-RONDON E O, BOA-VIAGEM C, FERRAUDO A. Modeling energy utilization and growth parameter description for broiler chickens 1. Poultry Science, 2005, 84(9): 1363-1369.

pmid: 16206556
[18]
SAKOMURA N, SILVA R, COUTO H, COON C, PACHECO C. Modeling metabolizable energy utilization in broiler breeder pullets. Poultry Science, 2003, 82(3): 419-427.

pmid: 12705403
[19]
LOPEZ G, LEESON S. Utilization of metabolizable energy by young broilers and birds of intermediate growth rate. Poultry Science, 2005, 84(7): 1069-1076.

pmid: 16050124
[20]
RABELLO C B V, SAKOMURA N K, LONGO F A, COUTO H P, PACHECO C R, FERNANDES J B K. Modelling energy utilisation in broiler breeder hens. British Poultry Science, 2006, 47(5): 622-631.

pmid: 17050108
[21]
GOUS R M. Modeling as a research tool in poultry science. Poultry Science, 2014, 93(1): 1-7.

doi: 10.3382/ps.2013-03466 pmid: 24570415
[22]
NIETO R, PRIETO C, FERNÁNDEZ-FÍGARES I, AGUILERA J F. Effect of dietary protein quality on energy metabolism in growing chickens. The British Journal of Nutrition, 1995, 74(2): 163-172.

doi: 10.1079/BJN19950120
[23]
BRAINER M M A, RABELLO C B V, SANTOS M J B, LOPES C C, LUDKE J V, SILVA J H V, LIMA R A. Prediction of the metabolizable energy requirements of free-range laying hens. Journal of Animal Science, 2016, 94(1): 117-124.

doi: 10.2527/jas.2015-9272 pmid: 26812318
[24]
于叶娜, 贾刚, 王康宁. 1-21日龄黄羽肉鸡净能需要量及其真可消化赖氨酸与净能适宜比例的研究. 动物营养学报, 2010, 22(6): 1536-1543.
YU Y N, JIA G, WANG K N. Requirement of net energy and appropriate ratio of true digestive lysine to net energy for yellow- feathered broilers aged 1 to 21 days. Chinese Journal of Animal Nutrition, 2010, 22(6): 1536-1543. (in Chinese)
[25]
朱中胜. 皖南三黄鸡能量和蛋白质需要量研究[D]. 合肥: 安徽农业大学, 2016.
ZHU Z S. Study on energy and protein requirement of Sanhuang chicken in southern Anhui Province[D]. Hefei: Anhui Agricultural University, 2016. (in Chinese)
[26]
李龙. 清远麻鸡生长规律与能量需要模型研究[D]. 广州: 华南农业大学, 2020.
LI L. Study on growth law and energy requirement model of Qingyuan ma chicken[D]. Guangzhou: South China Agricultural University, 2020. (in Chinese)
[27]
LATSHAW J D, MORITZ J S. The partitioning of metabolizable energy by broiler chickens. Poultry Science, 2009, 88(1): 98-105.

doi: 10.3382/ps.2008-00161 pmid: 19096063
[28]
NOURMOHAMMADI R, KHOSRAVINIA H, AFZALI N. Effects of feed form and xylanase supplementation on metabolizable energy partitioning in broiler chicken fed wheat-based diets. Journal of Animal Physiology and Animal Nutrition, 2018, 102(6): 1593-1600.

doi: 10.1111/jpn.12980 pmid: 30151983
[29]
LONGO F A, SAKOMURA N K, RABELLO C BV, FIGUEIREDO A N, FERNANDES J B K. Exigências energéticas para mantença e para o crescimento de frangos de corte. Revista Brasileira de Zootecnia, 2006, 35(1): 119-125.

doi: 10.1590/S1516-35982006000100015
[30]
SCOTT M L, NESHEIM M C, YOUNG R J. Nutrition of the chicken. 3rd ed, Ithaca, NY: Scott & Associates, 1982.
[31]
杨志刚. 肉仔鸡氨基酸营养需要仿真模型的研究[D]. 北京: 中国农业科学院, 2010.
YANG Z G. Study on simulation model of amino acid nutritional requirements of broilers[D]. Beijing: Chinese Academy of Agricultural Sciences, 2010. (in Chinese)
[32]
CLOSE W. The evaluation of feeds through calorimetry studies. Feedstuff Evaluation, 1990.
[33]
BLAXTER K L. Energy metabolism in animals and man. Cambridge: Cambridge University Press, 1989.
[1] CUI WeiNan, NIE ZhiGang, LI Guang, WANG Jun. Optimization of Dryland Wheat Grain Growth Model Parameters Based on an Improved Shuffled Frog Leaping Algorithm [J]. Scientia Agricultura Sinica, 2023, 56(12): 2274-2287.
[2] WANG Jun,LI Guang,YAN LiJuan,LIU Qiang,NIE ZhiGang. Simulation of Spring Wheat Yield Response to Temperature Changes of Different Growth Stages in Drylands [J]. Scientia Agricultura Sinica, 2020, 53(5): 904-916.
[3] WANG HaiLian,WANG RunFeng,LIU Bin,ZHANG HuaWen. Effects of Harvesting at Different Growth Stage on Agronomic and Nutritional Quality Related Traits of Sweet Sorghum [J]. Scientia Agricultura Sinica, 2020, 53(14): 2804-2813.
[4] WeiSong ZHAO,QingGang GUO,SheZeng LI,YaJiao WANG,XiuYun LU,PeiPei WANG,ZhenHe SU,XiaoYun ZHANG,Ping MA. Control Efficacy of Broccoli Residues on Cotton Verticillium Wilt and Its Effect on Soil Bacterial Community at Different Growth Stages [J]. Scientia Agricultura Sinica, 2019, 52(24): 4505-4517.
[5] WANG QianQian,JIA RunYu,LI HongCheng,ZHOU Hang,YANG WenTao,GU JiaoFeng,PENG PeiQin,LIAO BoHan. Key Growth Stage of Cd Accumulation in Brown Rice Through a Hydroponic Experiment with Cd Stress [J]. Scientia Agricultura Sinica, 2018, 51(23): 4424-4433.
[6] CHEN Bo, ZHOU NianBing, GUO BaoWei, SHU Peng, ZHANG HongCheng, HUO ZhongYang, CHENG FeiHu, HUA Jin, HUANG DaShan, CHEN ZhongPing, CHEN Heng, LIU YunFa, LIAO ShiLiang. Differences of Double-Cropping Late Rice in Yield, Growth Stage and Utilization of Temperature and Illumination in Different Latitudes of Jiangxi Province [J]. Scientia Agricultura Sinica, 2017, 50(8): 1403-1415.
[7] WANG Jun-juan, WANG De-long, YIN Zu-jun, WANG Shuai, FAN Wei-li, LU Xu-ke, MU Min, GUO Li-xue, YE Wu-wei, YU Shu-xun. Identification of the Chilling Resistance from Germination Stage to Seedling Stage in Upland Cotton [J]. Scientia Agricultura Sinica, 2016, 49(17): 3332-3346.
[8] WANG Yi, ZHANG Xia, YANG Wen-yu, SUN Xin, SU Ben-ying, CUI Liang. Effect of Shading on Soybean Leaf Photosynthesis and Chlorophyll Fluorescence Characteristics at Different Growth Stages [J]. Scientia Agricultura Sinica, 2016, 49(11): 2072-2081.
[9] LI Jia-nan, YANG Wei, PENG Na, CHEN Chan-you. Toxicity Analysis of Kidney Bean and Construction of Its Prediction Model [J]. Scientia Agricultura Sinica, 2015, 48(4): 727-734.
[10] DONG Xiang-li, GAO Yue-e, LI Bao-hua, YONG Dao-jing, WANG Cai-xia, LI Gui-fang, LI Bao-du. Epidemic Dynamics of Apple Marssonina Leaf Blotch over Whole Growth Season in the Central Area of Shandong Peninsula [J]. Scientia Agricultura Sinica, 2015, 48(3): 479-487.
[11] YAO Ning, SONG Li-bing, LIU Jian, FENG Hao, WU Shu-fang, HE Jian-qiang. Effects of Water Stress at Different Growth Stages on the Development and Yields of Winter Wheat in Arid Region [J]. Scientia Agricultura Sinica, 2015, 48(12): 2379-2389.
[12] HUA Jin, ZHOU Nian-bing, ZHANG Jun, ZHANG Hong-cheng, HUO Zhong-yang, ZHOU Pei-jian, CHENG Fei-hu, LI Guo-ye, HUANG Da-shan, CHEN Zhong-ping, CHEN Guo-liang, DAI Qi-gen, XU Ke, WEI Hai-yan, GAO Hui, G. Selection of Late Rice Cultivars of Japonica Rice Switched from Indica Rice in Double Cropping Rice Area [J]. Scientia Agricultura Sinica, 2014, 47(23): 4582-4594.
[13] XU Ke-1, SUN Zhen-12, HUO Zhong-Yang-1, DAI Qi-Gen-1, ZHANG Hong-Cheng-1, LIU Jun-2, SONG Yun-Sheng-1, YANG Da-Liu-1, WEI Hai-Yan-1, WU Ai-Guo-2, WANG Xian-2, WU Dong-Dong-1. Effects of Seeding Date and Variety Type on Yield, Growth Stage and Utilization of Temperature and Sunshine in Rice [J]. Scientia Agricultura Sinica, 2013, 46(20): 4222-4233.
[14] ZHANG Jun, ZHANG Hong-Cheng, HUO Zhong-Yang, LI Guo-Ye, DONG Xiao-Bo, HUA Jin, GUO Bao-Wei, ZHOU Pei-Jian, CHENG Fei-Hu, HUANG Da-Shan, CHEN Zhong-Ping, CHEN Guo-Liang, DAI Qi-Gen, XU Ke, WEI Hai-Yan, GAO Hui. Effects of Cultivation Methods on Yield and Utilization of Temperature and Light of Late Japonica Rice in Southern Double Cropping Rice Areas [J]. Scientia Agricultura Sinica, 2013, 46(10): 2130-2141.
[15] YAO Yi, HUO Zhong-Yang, ZHANG Hong-Cheng, XIA Yan, NI Xiao-Cheng, DAI Qi-Gen, XU Ke, WEI Hai-Yan. Effects of Sowing Date on Growth Stage and Utilization of Temperature and Illumination of Direct Seeding Rice in Different Ecological Regions [J]. Scientia Agricultura Sinica, 2012, 45(4): 633-647.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!