Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (17): 3461-3478.doi: 10.3864/j.issn.0578-1752.2023.17.018

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles     Next Articles

Prokaryotic Expression and Metal Binding Characterization of Metallothionein 1A and 2A of Sus scrofa

YANG HuiZhen1(), YANG Huan1, WU ZiXuan1, FAN KuoHai2, YIN Wei1, SUN PanPan1, ZHONG Jia1, SUN Na1, LI HongQuan1()   

  1. 1Shanxi Key Laboratory for Modernization of TCVM/College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi
    2Shanxi Key Laboratory for Modernization of TCVM/Animal Experimental Center, Shanxi Agricultural University, Taigu 030801, Shanxi
  • Received:2022-08-26 Accepted:2023-03-28 Online:2023-09-01 Published:2023-09-08
  • Contact: LI HongQuan

Abstract:

【Objective】 The study mainly made the bioinformatics analysis, carried out prokaryotic expression, and explored the metal binding characterization of Sus scrofa metallothionein-1A (SsMT-1A) and metallothionein-2A (SsMT-2A) with Zn(Ⅱ) and Cu(Ⅰ), so as to provide a theoretical basis for the study of the mechanism of action of adding Zn and Cu in diet inducing porcine metallothionein expression, thereby regulating the Zn and Cu homeostasis in vivo, and then promoting the porcine production performance. 【Method】 Firstly, the porcine gene sequences of SsMT-1A and SsMT-2A were obtained from NCBI. Afterwards, their protein sequence characteristics were analyzed by ClustalX2 software and ExPASy database, and then the phylogenetic tree of MT protein molecular was constructed between them and other species using the Mega-X. Secondly, the prokaryotic expression vector pET-28a-SUMO-SsMT-1A/SsMT-2A were constructed and verified by PCR, double digestion, and gene sequencing. Subsequently, the recombinant plasmid was transformed into BL21(DE3) plysS and the expression of SsMT-1A and SsMT-2A was induced using the IPTG. Then, the SUMO-SsMT-1A/SsMT-2A recombinant protein were purified by Ni-NTA affinity chromatography and Superdex-75 column, and were analyzed by Western-blot. In the end, the properties of SsMT-1A and SsMT-2A binding Zn(Ⅱ) and Cu(Ⅰ) were surveyed by the tolerance analysis of Escherichia coli containing SsMT-1A and SsMT-2A genes, circular dichroism (CD), matrix assisted laser analytic ionization time of flight mass spectrometry (MALDI-TOF-MS), and isothermal micrometer calorimetry (ITC). 【Result】 Bioinformatics analysis showed that the protein sequences of SsMT-1A and SsMT-2A were highly homologous, and their cysteine (Cys) content and arrangement motifs were perfectly consistent, and there existed only 8 amino acid residues discrepancy. Through the prokaryotic expression, purification, and SUMO enzyme digestion, the SsMT-1A/SsMT-2A fusion protein were successfully obtained. The tolerance analysis of metal demonstrated that compared with SsMT-2A, E. coli containing SsMT-1A genes had the stronger resistance to Zn and Cu. The CD spectrum illustrated that SsMT-1A and SsMT-2A could combine with Zn(Ⅱ) and Cu(Ⅰ) and both of them exhibited the preference with Zn(Ⅱ) coordination. But SsMT-1A exhibited the stronger binding ability with Zn(Ⅱ) than SsMT-2A. MALDI-TOF-MS results showed that the experimental molecular weights of apo-SsMT-1A and apo-SsMT-2A were respective 6 047.5 Da and 6 048 Da, and the stability order of both of them was and Cu(Ⅰ)> Zn(Ⅱ). ITC results showed that the affinity constants of SsMT-1A and SsMT-2A coordinating Cu(Ⅰ) were higher than that of Zn(Ⅱ), and the stoichiometries of both of them binding Cu(Ⅰ) were 7, while the stoichiometry of SsMT-1A binding Zn(Ⅱ) was 2. 【Conclusion】 Although SsMT-1A and SsMT-2A possessed the high homology, the difference of 8 amino acid residues determined their different binding feature with Zn(Ⅱ) and Cu(Ⅰ). Although SsMT-1A and SsMT-2A shared a highly consistent binding behavior of Zn(Ⅱ) and Cu(Ⅰ), their characteristics of binding Zn(Ⅱ) and Cu(Ⅰ) was slightly different. Thus, they should not be considered as completely physiological equivalent molecules. According to the relationship of structure and function of MT, SsMT-1A might play a role in detoxification of heavy metal ions and SsMT-2A might mainly regulate Zn homeostasis. The study laid a foundation for further elucidating the role of SsMT-1A and SsMT-2A in regulating metal ion homeostasis to promote pig production performance.

Key words: Sus scrofa, metallothionein-1A, metallothionein-2A, bioinformatics analysis, prokaryotic expression, metal binding characteristic

Fig. 1

Protein sequence alignment of SsMT-1A and SsMT- 2A"

Table 1

Amino acid composition of SsMT-1A and SsMT-2A"

氨基酸
Amino acid
SsMT-1A SsMT-2A 氨基酸
Amino acid
SsMT-1A SsMT-2A
数量
Number
占比
Proportion (%)
数量
Number
占比
Proportion (%)
数量
Number
占比
Proportion (%)
数量
Number
占比
Proportion (%)
Ala(A) 7 11.5 7 11.5 Lys(K) 5 8.2 8 13.1
Arg(R) 2 3.3 0 0.0 Met(M) 1 1.6 1 1.6
Asn(N) 1 1.6 1 1.6 Phe(F) 0 0.0 0 0.0
Asp(D) 2 3.3 3 4.9 Pro(P) 3 4.9 2 3.3
Cys(C) 20 32.8 20 32.8 Ser(S) 9 14.8 8 13.1
Gln(Q) 1 1.6 1 1.6 Thr(T) 3 4.9 2 3.3
Glu(E) 0 0.0 0 0.0 Trp(W) 0 0.0 0 0.0
Gly(G) 6 9.8 6 9.8 Tyr(Y) 0 0.0 0 0.0
His(H) 0 0.0 0 0.0 Val(V) 0 0.0 1 1.6
Ile(I) 1 1.6 1 1.6 Pyl(O) 0 0.0 0 0.0
Leu(L) 0 0.0 0 0.0 Sec(U) 0 0.0 0 0.0

Table 2

Physicochemical properties of SsMT-1A and SsMT-2A"

蛋白质
Protein
氨基酸数
Amino acid
number
理论分子
Theoretical molecular weight (Da)
等电点
Isoelectric
point
不稳定系数
Instability index
(%)
正电荷
Positive
charge
负电荷
Negative
charge
SsMT-1A 61 5944 8.39 75.94 7 2
SsMT-2A 61 5945 8.38 60.23 8 3

Fig. 2

Phylogenic tree of between SsMT-1A and SsMT-2A and other species MT"

Fig. 3

Identification of TOP 10 E. coli containing pET-28a- SUMO-SsMT-1A/SsMT-2A vector by PCR a: PCR product of pET-28a-SUMO-SsMT-1A plasmid; b: PCR product of pET-28a-SUMO-SsMT-2A plasmids; in the a, M: 2000 DNA Ladder; Line 1: SsMT-1A gene fragment; in the b, M: 2000 DNA Ladder; Line 1: SsMT-2A gene fragment"

Fig. 4

Identification of pET-28a-SUMO-SsMT-1A/SsMT-2A plasmids by double restriction digestion M: 5000 DNA Ladder; Line 1: Identification of pET-28a-SUMO-SsMT-1A plasmid by double restriction digestion; Line 2: Identification of pET-28a-SUMO-SsMT-2A plasmid by double restriction digestion"

Fig. 5

SDS-PAGE identification of SUMO-SsMT-1A and SUMO-SsMT-2A M: Marker; Line 1: bacterial protein containing the pET-28a vector; Line 2: bacterial protein containing the pET-28a-SUMO vector; Line 3: bacterial protein containing the pET-28a-SUMO-SsMT-1A vector; Line 4: bacterial protein containing the pET-28a-SUMO-SsMT-2A vector; Line 5: the supernatant of bacterial protein containing the pET-28a-SUMO-SsMT-1A vector; Line 6: the supernatant of bacterial protein containing the pET-28a- SUMO-SsMT-2A vector"

Fig. 6

Western blot identification of SUMO-SsMT-1A and SUMO-SsMT-2A M: Marker; Line 1: the supernatant of bacterial protein containing the pET-28a-SUMO-SsMT-1A vector; Line 2: the supernatant of bacterial protein containing the pET-28a-SUMO-SsMT-2A vector"

Fig. 7

Gradient elution of Ni-NTA column purification of SUMO-SsMT-1A (left) and SUMO-SsMT-2A (right) Gradient elution of Ni-NTA column purification of SUMO-SsMT-1A and SUMO-SsMT-2A; M: Marker; Line 1: the supernatant of bacterial protein containing the pET-28a-SUMO-SsMT-1A\ SsMT-2A vector; Line 2: the flowing liquid; Line 3: the eluting liquid containing 10 mmol·L-1 imidazole; Line 4: the eluting liquid containing 25 mmol·L-1 imidazole; Line 5: the eluting liquid containing 50 mmol·L-1 imidazole; Line 6: the eluting liquid containing 100 mmol·L-1 imidazole; Line 7: the eluting liquid containing 200 mmol·L-1 imidazole; Line 8: the eluting liquid containing 300 mmol·L-1 imidazole; Line 9: the eluting liquid containing 400 mmol·L-1 imidazole"

Fig. 8

Purification of SUMO-SsMT-1A and SUMO-SsMT-2A by affinity chromatography M: Marker; Line 1 and 5: the supernatants of bacterial protein containing the pET-28a-SUMO-SsMT-1A\ SsMT-2A vector; Line 2 and 6: the flowing liquid; Line 3 and 7: the eluting liquid containing 50 mmol·L-1 imidazole; Line 4 and 8: the eluting liquid containing 200 mmol·L-1 imidazole"

Fig. 9

Purification of SUMO-SsMT-1 and SUMO-SsMT-2A by Superdex-75 column a and b:the purification of SUMO-SsMT-1A and SUMO-SsMT-2A by Superdex-75 column;In Fig.9a, Line 1-9: the protein eluate in different collecting tubes;In Fig.9b, Line 1-8: the protein eluate in different collecting tubes"

Fig. 10

Removal of SUMO label of SUMO-SsMT-1A and SUMO-SsMT-2A by SUMO enzyme M:Marker;Line 1 and 3: SUMO-SsMT-1A and SUMO-SsMT-2A undigested by SUMO enzyme; Line 2 and 4: SUMO-SsMT-1A and SUMO-SsMT-2A digested by SUMO enzyme"

Effects of different concentrations of CuSO4 and ZnSO4 on the growth of E. coli containing SsMT-1A and SsMT-2A a and e: blank group; b, c, and d: 0.75, 1.5和3 mmol·L-1 CuSO4 treatment group; f, g, and h: 0.25, 0.5和1 mmol·L-1 ZnSO4 treatment group"

Fig. 12

Effects of different concentrations of CuSO4 and ZnSO4 on the growth curve of E. coli containing SsMT-1A and SsMT-2A a, b, c: growth curves of E. coli containing SsMT-1A and SsMT-2A in the medium containing different concentrations of CuSO4; d, e, f: growth curves of E. coli containing SsMT-1A and SsMT-2A in the medium containing different concentrations of ZnSO4"

Fig. 13

UV and CD spectrum of Zn-SsMT-1A, Zn-SsMT-2A, Cu-SsMT-1A and Cu-SsMT-2A a, b, c, and d: UV spectrum of Zn-SsMT-1A, Zn-SsMT-2A, Cu-SsMT-1A, and Cu-SsMT-2A; e, f, g, and h: CD spectrum of Zn-SsMT-1A, Zn-SsMT-2A, Cu-SsMT-1A, and Cu-SsMT-2A"

Fig. 14

MALDI-TOF-MS spectrum of Zn-SsMT-1A, Zn-SsMT-2A, Cu-SsMT-1A, and Cu-SsMT-2A at pH 2.4 a and b: MALDI-TOF-MS spectrum of apo-SsMT-1A and apo-SsMT-2A; c and d: MALDI-TOF-MS spectrum of Zn-SsMT-1A and Zn-SsMT-2A at pH 2.4; e and f: MALDI-TOF-MS spectrum of Cu-SsMT-1A and Cu-SsMT-2A at pH 2.4"

Table 3

Thermodynamic parameter of ZnSO4 and CuSO4 titration of apo-SsMT-1A and apo-SsMT-2A"

蛋白质
Protein
化学计量数
Stoichiometry
结合常数
Binding constant (mol-1)
焓变
Enthalpy change (joules·mol-1)
熵变
Entropy change (joules·mol-1·deg-1)
Zn-SsMT-1A 2 (1.11±0.52)×104 -9.919×105±1.35×107 -3.23×103
Zn-SsMT-2A
Cu-SsMT-1A 7 (1.15±2.4)×105 -1.631×106±4.69×107 -5.37×103
Cu-SsMT-2A 7 (1.11±1.7)×105 -1.473×106±3.05×107 -4.85×103

Fig. 15

ITC chromatograms of ZnSO4 and CuSO4 titrating apo-SsMT-1A and apo-SsMT-2A a and b: ITC chromatograms of ZnSO4 titrating apo-SsMT-1A and apo-SsMT-2A; c and d: ITC chromatograms of CuSO4 titrating apo-SsMT-1A and apo-SsMT-2A"

[1]
MAYASULA V K, ARUNACHALAM A, BABATUNDE S A, NAIDU S J, SELLAPPANA S, KRISHNAN B B, RAJENDRAN U S, JANARDHAN R I, BHATTA R. Trace minerals for improved performance: A review of Zn and Cu supplementation effects on male reproduction in goats. Tropical Animal Health and Production, 2021, 53(5): 491.

doi: 10.1007/s11250-021-02943-5 pmid: 34596788
[2]
JACELA J Y, DEROUCHEY J M, TOKACH M D, GOODBAND R D, NELSSEN J L, RENTER D G, DRITZ S S. Feed additives for swine: Fact sheets-high dietary levels of copper and zinc for young pigs, and phytase. Kansas Agricultural Experiment Station Research Reports, 2010(10): 87-91.
[3]
HOLEN J P, URRIOLA P E, SCHWARTZ M, JANG J C, SHURSON G C, JOHNSTON L J. Effects of supplementing late-gestation sow diets with zinc on preweaning mortality of pigs under commercial rearing conditions. Translational Animal Science, 2020, 4(2): 519-530.

doi: 10.1093/tas/txaa010
[4]
王荣蛟, 信爱国, 张春勇, 李美荃, 梅文南, 安清聪, 陈克嶙, 郭荣富. 乳酸锌对仔猪小肠形态学、小肠黏膜金属硫蛋白1和组织急性期蛋白mRNA表达的影响. 动物营养学报, 2014, 26(4): 1068-1076.

doi: 10.3969/j.issn.1006-267x.2014.04.028
WANG R J, XIN A G, ZHANG C Y, LI M Q, MEI W N, AN Q C, CHEN K L, GUO R F. Effects of zinc lactate on intestinal morphology, mRNA expressions of metallothioneins 1 in intestinal mucosa and acute phase proteins in tissues of weaner piglets. Chinese Journal of Animal Nutrition, 2014, 26(4): 1068-1076. (in Chinese)
[5]
HILL G M, SHANNON M C. Copper and zinc nutritional issues for agricultural animal production. Biological Trace Element Research, 2019, 188(1): 148-159.

doi: 10.1007/s12011-018-1578-5 pmid: 30612303
[6]
高阳, 周业勋, 张继泽, 杨连玉. 高剂量铜、锌在猪饲粮中的应用、潜在危害及解决策略. 动物营养学报, 2018, 30(7): 2459-2466.
GAO Y, ZHOU Y X, ZHANG J Z, YANG L Y. Application, potential hazards and solution strategy of high-does copper and zinc in pig diets. Chinese Journal of Animal Nutrition, 2018, 30(7): 2459-2466. (in Chinese)
[7]
陆扬, 胡二永, 字正浩, 孙国荣, 夏东. 降铜对植酸酶在断奶仔猪饲粮中应用的影响. 中国农业科学, 2015, 48(14): 2884-2890.

doi: 10.3864/j.issn.0578-1752.2015.14.020
LU Y, HU E Y, ZI Z H, SUN G R, XIA D. Improvement of the effects of phytase application by lowering the high level of copper in piglets diets. Scientia Agricultura Sinica, 2015, 48(14): 2884-2890. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2015.14.020
[8]
王宝维, 陈苗璐, 王秉翰, 张名爱, 葛文华, 程凡升, 岳斌. 锌对5—15周龄鹅免疫、抗氧化功能、金属硫蛋白-Ⅰ基因表达量的影响及变量相关性分析. 中国农业科学, 2015, 48(9): 1825-1835.

doi: 10.3864/j.issn.0578-1752.2015.09.16
WANG B W, CHEN M L, WANG B H, ZHANG M A, GE W H, CHENG F S, YUE B. Effects of dietary zinc on immunity, antioxidant capacity and MT-Ⅰ mRNA gene expression level and their factor correlation analysis of 5-15 weeks old goose. Scientia Agricultura Sinica, 2015, 48(9): 1825-1835. (in Chinese)
[9]
MALAVOLTA M, PABIS K. Elevated metallothionein expression in long-lived species. Aging, 2022, 14(1): 1-3.

doi: 10.18632/aging.v14i1
[10]
潘娜, 朱风华, 王友令, 陈甫, 赵才兵, 朱连勤. 日粮添加高水平硫酸锌和纳米氧化铜对鸡脏器组织锌铜沉积的影响. 中国农业科学, 2011, 44(23): 4874-4881.

doi: 10.3864/j.issn.0578-1752.2011.23.014
PAN N, ZHU F H, WANG Y L, CHEN F, ZHAO C B, ZHU L Q. Effects of diets supplemented with nano-CuO and high level of zinc sulfate on copper and zinc contents of visceral tissues of chickens. Scientia Agricultura Sinica, 2011, 44(23): 4874-4881. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2011.23.014
[11]
TANAKA Y K, OGRA Y. Evaluation of copper metabolism in neonatal rats by speciation analysis using liquid chromatography hyphenated to ICP mass spectrometry. Metallomics, 2019, 11(10): 1679-1686.

doi: 10.1039/c9mt00158a pmid: 31417989
[12]
CAO J W, DUAN S Y, ZHANG H X, CHEN Y, GUO M Y. Zinc deficiency promoted fibrosis via ROS and TIMP/MMPs in the myocardium of mice. Biological Trace Element Research, 2020, 196(1): 145-152.

doi: 10.1007/s12011-019-01902-4
[13]
KWAK S Y, JANG W I, PARK S, CHO S S, LEE S B, KIM M J, PARK S, SHIM S, JANG H. Metallothionein 2 activation by pravastatin reinforces epithelial integrity and ameliorates radiation- induced enteropathy. EBioMedicine, 2021, 73: 103641.

doi: 10.1016/j.ebiom.2021.103641
[14]
HUANG M C, PAN P K, ZHENG Z F, CHEN N C, PENG J Y, HUANG P G. Multiple isoforms of metallothionein are expressed in the porcine liver. Gene, 1988, 211(1): 49-55.

doi: 10.1016/S0378-1119(98)00067-5
[15]
CHEN C F, WANG S H, LIN L Y. Identification and characterization of metallothionein III (growth inhibitory factor) from porcine brain. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 1996, 115(1): 27-32.

doi: 10.1016/0305-0491(96)00080-6
[16]
CAPDEVILA M, BOFILL R, PALACIOS Ò, ATRIAN S. State-of-the-art of metallothioneins at the beginning of the 21st century. Coordination Chemistry Reviews, 2012, 256(1/2): 46-62.

doi: 10.1016/j.ccr.2011.07.006
[17]
MOLEIRINHO A, CARNEIRO J, MATTHIESEN R, SILVA R M, AMORIM A, AZEVEDO L. Gains, losses and changes of function after gene duplication: Study of the metallothionein family. PLoS ONE, 2011, 6(4): e18487.

doi: 10.1371/journal.pone.0018487
[18]
ARTELLS E, PALACIOS Ò, CAPDEVILA M, ATRIAN S. Mammalian MT1 and MT2 metallothioneins differ in their metal binding abilities. Metallomics, 2013, 5(10): 1397-1410.

doi: 10.1039/c3mt00123g pmid: 23925449
[19]
VALLS M, BOFILL R, GONZALEZ-DUARTE R, GONZALEZ-DUARTE P, CAPDEVILA M, ATRIAN S. A new insight into metallothionein (MT) classification and evolution. The in vivo and in vitro metal binding features of Homarus americanus recombinant MT. The Journal of Biological Chemistry, 2001, 276(35): 32835-32843.

doi: 10.1074/jbc.M102151200
[20]
KONDRASHOV F A, KONDRASHOV A S. Role of selection in fixation of gene duplications. Journal of Theoretical Biology, 2006, 239(2): 141-151.

pmid: 16242725
[21]
PALACIOS O, PAGANI A, PÉREZ-RAFAEL S, EGG M, HÖCKNER M, BRANDSTÄTTER A, CAPDEVILA M, ATRIAN S, DALLINGER R. Shaping mechanisms of metal specificity in a family of metazoan metallothioneins: Evolutionary differentiation of mollusc metallothioneins. BMC Biology, 2011, 9: 4.

doi: 10.1186/1741-7007-9-4 pmid: 21255385
[22]
SERRA-BATISTE M, COLS N, ALCARAZ L A, DONAIRE A, GONZÁLEZ-DUARTE P, VAŠÁK M. The metal-binding properties of the blue crab copper specific CuMT-2: A crustacean metallothionein with two cysteine triplets. JBIC Journal of Biological Inorganic Chemistry, 2010, 15(5): 759-776.

doi: 10.1007/s00775-010-0644-z
[23]
ZAHID M T, SHAKOORI F R, ZULIFQAR S, AHMED I, AL-GHANIM K, MEHBOOB S, SHAKOORI A R. Molecular characterization of a copper metallothionein gene from a ciliate Tetrahymena farahensis. Journal of Cellular Biochemistry, 2016, 117(8): 1843-1854.

doi: 10.1002/jcb.v117.8
[24]
SUN D B, ZHANG H, WU G J, ZHU Q H, LV S W, GUO D H, WU R, BAO J. Metal-binding activity of the soluble recombinant pig metallothionein 1A expressed in Escherichia coli. Biological Trace Element Research, 2012, 150(1): 418-423.

doi: 10.1007/s12011-012-9470-1
[25]
GUO H C, SUN S Q, JIN Y, YANG S L, WEI Y Q, SUN D H, YIN S H, MA J W, LIU Z X, GUO J H, LUO J X, YIN H, LIU X T, LIU D X. Foot-and-mouth disease virus-like particles produced by a SUMO fusion protein system in Escherichia coli induce potent protective immune responses in Guinea pigs, swine and cattle. Veterinary Research, 2013, 44(1): 48.

doi: 10.1186/1297-9716-44-48
[26]
郭玉堃, 郭婉莹, 明胜利, 郭豫杰, 杨国宇. 猪繁殖与呼吸综合征病毒GP5/M蛋白可溶性表达及免疫原性分析. 中国兽医学报, 2018, 38(4): 609-617.
GUO Y K, GUO W Y, MING S L, GUO Y J, YANG G Y. Soluble expression and immunogenicity analysis of GP5/M protein from porcine reproductive and respiratory syndrome virus. Chinese Journal of Veterinary Science, 2018, 38(4): 609-617. (in Chinese)
[27]
ESPART A, MARÍN M, GIL-MORENO S, PALACIOS Ò, AMARO F, MARTÍN-GONZÁLEZ A, GUTIÉRREZ J C, CAPDEVILA M, ATRIAN S. Hints for metal-preference protein sequence determinants: different metal binding features of the five tetrahymena thermophila metallothioneins. International Journal of Biological Sciences, 2015, 11(4): 456-471.

doi: 10.7150/ijbs.11060 pmid: 25798065
[28]
YANG H Z, GU W J, CHEN W, HWANG J S, WANG L. Metal binding characterization of heterologously expressed metallothionein of the freshwater crab Sinopotamon henanense. Chemosphere, 2019, 235: 926-934.

doi: 10.1016/j.chemosphere.2019.06.097
[29]
PALACIOS Ò, JIMÉNEZ-MARTÍ E, NIEDERWANGER M, GIL-MORENO S, ZERBE O, ATRIAN S, DALLINGER R, CAPDEVILA M. Analysis of metal-binding features of the wild type and two domain-truncated mutant variants of Littorina littorea metallothionein reveals its Cd-specific character. International Journal of Molecular Sciences, 2017, 18(7): 1452.

doi: 10.3390/ijms18071452
[30]
PÉREZ-RAFAEL S, MEZGER A, LIEB B, DALLINGER R, CAPDEVILA M, PALACIOS Ò, ATRIAN S. The metal binding abilities of Megathura crenulata metallothionein (McMT) in the frame of Gastropoda MTs. Journal of Inorganic Biochemistry, 2012, 108: 84-90.

doi: 10.1016/j.jinorgbio.2011.11.025
[31]
PÉREZ-RAFAEL S, MONTEIRO F, DALLINGER R, ATRIAN S, PALACIOS Ò, CAPDEVILA M. Cantareus aspersus metallothionein metal binding abilities: The unspecific CaCd/CuMT isoform provides hints about the metal preference determinants in metallothioneins. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2014, 1844(9): 1694-1707.

doi: 10.1016/j.bbapap.2014.06.018
[32]
TOMAS M, PAGANI M A, ANDREO C S, CAPDEVILA M, ATRIAN S, BOFILL R. Sunflower metallothionein family characterisation. Study of the Zn(II)- and Cd(II)-binding abilities of the HaMT1 and HaMT2 isoforms. Journal of Inorganic Biochemistry, 2015, 148: 35-48.

doi: 10.1016/j.jinorgbio.2015.02.016 pmid: 25770010
[33]
SUTHERLAND D E K, STILLMAN M J. The “magic numbers” of metallothionein. Metallomics, 2011, 3(5): 444-463.

doi: 10.1039/c0mt00102c
[34]
CHU D Y, TANG Y, HUAN Y, HE W G, CAO W. The microcalorimetry study on the complexation of lead ion with metallothionein. Thermochimica Acta, 2000, 352/353: 205-212.

doi: 10.1016/S0040-6031(99)00468-2
[35]
DROZD A, WOJEWSKA D, PERIS-DÍAZ M D, JAKIMOWICZ P, KRĘŻEL A. Crosstalk of the structural and zinc buffering properties of mammalian metallothionein-2. Metallomics, 2018, 10(4): 595-613.

doi: 10.1039/C7MT00332C pmid: 29561927
[36]
KREZEL A, MARET W. Dual nanomolar and picomolar Zn(II) binding properties of metallothionein. Journal of the American Chemical Society, 2007, 129(35): 10911-10921.

pmid: 17696343
[1] YANG Ling, TIAN XiaoLi, GUI LianYou, WANG FuLian, ZHANG GuoHui. Interaction Mechanisms Between Bactrocera minax Odorant-Binding Protein BminOBP6 and Its Ligands [J]. Scientia Agricultura Sinica, 2023, 56(7): 1311-1321.
[2] LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212.
[3] Xiang XU,Yi XIE,LiYun SONG,LiLi SHEN,Ying LI,Yong WANG,MingHong LIU,DongYang LIU,XiaoYan WANG,CunXiao ZHAO,FengLong WANG,JinGuang YANG. Screening and Large-Scale Preparation of dsRNA for Highly Targeted Degradation of Tobacco Mosaic Virus (TMV) Nucleic Acids [J]. Scientia Agricultura Sinica, 2021, 54(6): 1143-1153.
[4] XiaoHe LIU,GuiSheng QIU,ZhaoGuo TONG,HuaiJiang ZHANG,WenTao YAN,Qiang YUE,LiNa SUN. Ligands Binding Characteristics of Chemosensory Protein CsasCSP16 of Carposina sasakii [J]. Scientia Agricultura Sinica, 2021, 54(5): 945-958.
[5] QIN JianHui,LI JinQiao,ZHAO Xu,LI KeBin,CAO YaZhong,YIN Jiao. Expression, Purification and Functional Analysis of Odorant Binding Protein 11 (OBP11) in Anomala corpulenta [J]. Scientia Agricultura Sinica, 2021, 54(14): 3017-3028.
[6] XIE KunLun,LIU LiMing,LIU Mei,PENG Bin,WU HuiJie,GU QinSheng. Prokaryotic Expression of dsRNA of Zucchini yellow mosaic virus and Its Control Efficacy on ZYMV [J]. Scientia Agricultura Sinica, 2020, 53(8): 1583-1593.
[7] WANG XinYue,SHI TianPei,ZHAO ZhiDa,HU WenPing,SHANG MingYu,ZHANG Li. The Analysis of PI3K-AKT Signal Pathway Based on the Proteomic Results of Sheep Embryonic Skeletal Muscle [J]. Scientia Agricultura Sinica, 2020, 53(14): 2956-5963.
[8] BI KeRan,LI Yin,HAN KaiKai,ZHAO DongMin,LIU QingTao,LIU YuZhuo,HUANG XinMei,YANG Jing. Prokaryotic Expression and Polyclonal Antibody Preparation of Duck Oligoadenylate Synthase-Like Protein [J]. Scientia Agricultura Sinica, 2019, 52(23): 4429-4436.
[9] Ling LI,Yao TAN,XiaoRong ZHOU,BaoPing PANG. Molecular Cloning, Prokaryotic Expression and Binding Characterization of Odorant Binding Protein GdauOBP20 in Galeruca daurica [J]. Scientia Agricultura Sinica, 2019, 52(20): 3705-3712.
[10] LI Du, NIU ChangYing, LI FengQi, LUO Chen. Binding Characterization of Odorant Binding Protein OBP56h in Drosophila suzukii with Small Molecular Compounds [J]. Scientia Agricultura Sinica, 2019, 52(15): 2616-2623.
[11] WANG Hui,CHAI ZhiXin,ZHU JiangJiang,ZHONG JinCheng,ZHANG ChengFu,Xin JinWei. Cloning and Identification of Long-Chain Non-Coding RNA Linc24063 and Its Correlation with the Expression Level of miRNAs in Yak [J]. Scientia Agricultura Sinica, 2019, 52(14): 2538-2547.
[12] YI Min,LÜ Qing,LIU KeKe,WANG LiJun,WU YuJiao,ZHOU ZeYang,LONG MengXian. Expression, Purification and Localization Analysis of Polar Tube Protein 2 (NbPTP2) from Nosema bombycis [J]. Scientia Agricultura Sinica, 2019, 52(10): 1830-1838.
[13] ZHANG Kui,LI ChongYang,SU JingJing,TAN Juan,XU Man,CUI HongJuan. Expression, Purification and Immunologic Function of Integrin β2 in the Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2019, 52(1): 181-190.
[14] ZHAO Jie, REN SuWei, LIU Ning, AI XinYu, MA Ji, LIU XiaoNing. Cloning and Expression of Phosphatidylethanolamine Binding Protein in Helicoverpa armigera [J]. Scientia Agricultura Sinica, 2018, 51(8): 1493-1503.
[15] ZHI Shuang, REN YanHong, TANG Xing, XU FengXiang, WANG ChuanHong, ZHAO AiChun, WANG XiLing. Molecular Cloning and Expression Analysis of Genes MaGDHs Encoding Glutamate Dehydrogenase in Mulberry [J]. Scientia Agricultura Sinica, 2018, 51(4): 758-769.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!