Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (17): 3261-3276.doi: 10.3864/j.issn.0578-1752.2023.17.003

• SPECIAL FOCUS: HERBICIDE-TOLERANCE COTTON CREATION BY GENETIC TRANSFORMATION AND GENOME EDITING • Previous Articles     Next Articles

The Creation and Characteristics of Cotton Germplasm Lines Transgenic 1174AALdico-2+CTP Gene with Excellent Glyphosate Tolerance

WANG WanRu1(), CAO YueFen1, SHENG Kuang1, CHEN JinHong1,2, ZHAO TianLun1,2, ZHU ShuiJin1,2()   

  1. 1College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029
    2Hainan Institute, Zhejiang University, Sanya 572000, Hainan
  • Received:2022-12-29 Accepted:2023-03-02 Online:2023-09-01 Published:2023-09-08
  • Contact: ZHU ShuiJin

Abstract:

【Objective】 Weeds are one of the factors limiting cotton growth in cotton production, which not only competes with cotton for nutrition, water, and light, affecting the growth and development of cotton but also the yield and quality of cotton. The aim of this study is to develop excellent cotton germplasms with high glyphosate tolerance by genetic engineering and provide technical support for the commercialization of glyphosate-tolerant cotton to realize chemical weed control and enhance the economic benefits of cotton production. 【Method】 To construct the cotton transformation vector, the EPSPS gene 1174AALdico-2 from Deinococcus radiodurans was connected to the chloroplast transit peptide (CTP), 35S was used as the promoter, and the two target genes were linked in series. The target gene was transformed into the CCRI 49 by Agrobacterium tumefaciens in vivo transformation, and the positive transformants were obtained. The positive transgenic plants obtained were evaluated for glyphosate tolerance, molecular characterization, agronomic and economic traits, in order to obtain outstanding transgenic cotton germplasms with excellent glyphosate tolerance, using the recipient cultivar, CCRI 49, and the non-transgenic NON isolated from the transformants during selfing as the controls. 【Result】 138 positive transformants were obtained by Agrobacterium tumefaciens in vivo transformation. All the transformants were tested for target gene PCR, Southern blot, Western blot, and ELISA detection etc., and 17 positive transformants with clear molecular characteristics and high expression of foreign genes were identified. Southern blot and nucleotide sequencing results revealed that there was great variation in insertion site and copy numbers among the 17 transformants. Among them, ZD131, ZD185, and ZD207 had single-copy insertion sites, and the foreign genes were located on D7, D13, and A12, respectively. The results of glyphosate tolerance identification revealed that the glyphosate tolerance of the three transformants, ZD131, ZD185, and ZD207, was stably inherited across three generations, and the glyphosate tolerance of the transformants was strong, with the ability to tolerate four times the recommended dose of glyphosate in the field. The agronomic and economic features assessment findings revealed that the ZD131, ZD185, and ZD207 grew properly and had excellent agronomic traits such as large boll, high lint percentage, and high boll setting, as well as their lint yield was higher than that of the receptor cultivar control and their fiber quality reached to the high-quality cotton level. 【Conclusion】 The EPSPS gene 1174AALdico-2 from Deinococcus radiodurans connected with the chloroplast transit peptide, and the two gene tandem together was transferred into CCRI 49 by Agrobacterium tumefaciens in vivo transformation technology. After a series of screens, three outstanding transgenic glyphosate-tolerant germplasms, ZD131, ZD185, and ZD207, were obtained. This method not only improves cotton's glyphosate tolerance but also improves the agronomic and economic aspects of transgenic materials.

Key words: cotton, EPSPS, chloroplast transit peptide, glyphosate, lint yield, fiber quality

Table 1

FPNI-PCR primers"

引物
Primers
序列
Sequence (5-3)
退火温度
Annealing temperature (℃)
用途
Purpose
LB-SP1 TTTCTCCATAATAATGTGTGAGTAGTTCCC 68 特异性引物 Special primer
LB-SP2 CTCATGTGTTGAGCATATAAGAAACCCTTAG 68
LB-SP3 CTAAAACCAAAATCCAGTACTAAAATCC 68
Rb-0b CGTGACTGGGAAAACCCTGGCGTT 68
Rb-1b CCCAACTTAATCGCCTTGCAGCACATC 68
Rb-2b GAAGAGGCCCGCACCGATCGCCCTT 68
FP1 GTAATACGACTCACTATAGGGCACGCGTGGTNTCGASTWTSGWGTT 62 融合兼并引物
Fusion arbitrary degenerates primer
FP2 GTAATACGACTCACTATAGGGCACGCGTGGTNGTCGASWGANAWGAA 62
FP3 GTAATACGACTCACTATAGGGCACGCGTGGTWGTGNAGWANCANAGA 62
FP4 GTAATACGACTCACTATAGGGCACGCGTGGTAGWGNAGWANCAWAGG 62
FP5 GTAATACGACTCACTATAGGGCACGCGTGGTNGTAWAASGTNTSCAA 62
FP6 GTAATACGACTCACTATAGGGCACGCGTGGTNGACGASWGANAWGAC 62
FP7 GTAATACGACTCACTATAGGGCACGCGTGGTNGACGASWGANAWGAA 62
FP8 GTAATACGACTCACTATAGGGCACGCGTGGTGTNCGASWCANAWGTT 62
FP9 GTAATACGACTCACTATAGGGCACGCGTGGTNCAGCTWSCTNTSCTT 62
FSP1 GTAATACGACTCACTATAGGGC 62
FSP2 ACTATAGGGCACGCGTGGT 62

Fig. 1

Diagram of transformed plasmid"

Fig. 2

PCR identification of transgenic cotton T0 generation plants M: DL2000 DNA Marker; 1-46: 46 different transformants; 47-48: CCRI 49"

Fig. 3

FPNI-PCR results of cotton transformants M: DL2000 DNA Marker; 1-24: Different transformants; 12: CCRI 49"

Fig. 4

Identification results of ZD131 specific molecular marker M: DL2000 DNA Marker; 1-3: ZD131 plants of three generations; 4: NON; 5-6: Other transformants"

Fig. 5

Results of Southern blot M: DNA Marker for Southern blot; 1: Positive plasmid; 2: CCRI 49; 3-16: Different transformants, 10, 12, and 13 are ZD185, ZD131, and ZD207, respectively"

Fig. 6

Western blot of 1174AALdico-2 gene in transgenic cotton M: Protein marker (kDa); -: CCRI 49; +: Positive control of Escherichia coli containing transformed plasmid; 1-4: Leaves, stems, roots, and seeds of ZD131; 5-8: Leaves, stems, roots, and seeds of ZD185; 9-12: Leaves, stems, roots, and seeds of ZD207. The loading amount of leaves, stems, and roots have the same fresh weights. The loading amount of seeds is 50% dry weight"

Fig. 7

Standard curve of 1174AALdico-2 determined by ELISA"

Table 2

Expression of 1174AALdico-2 in different tissues of three transformants"

供试材料
Plant material
1174AALdico-2±SD (µg·g-1)
根Root 茎Stem 叶Leaf 种子Seed
ZD131 14.07±1.22 14.20±1.20 14.22±1.20 12.16±1.11
ZD185 13.87±1.32 13.88±1.40 14.12±1.21 11.26±1.21
ZD207 13.57±1.24 14.22±1.50 13.18±1.30 11.56±1.21
NON (CK1) 0 0 0 0
中棉所49 CCRI 49 (CK2) 0 0 0 0

Table 3

Glyphosate concentration at 50% reducing of fresh weight in cotton transformants"

供试材料
Plant material
IC50草甘膦浓度
IC50 glyphosate
concentration (mmol·L-1)
标准误
Standard error
ZD131 57.60 ±2.03a
ZD135 51.40 ±2.33ab
ZD157 45.50 ±2.34ab
ZD159 44.30 ±2.12b
ZD163 47.40 ±2.29ab
ZD169 46.60 ±2.29ab
ZD171 41.10 ±2.33b
ZD185 58.50 ±1.78a
ZD187 46.60 ±1.75ab
ZD197 39.30 ±1.67b
ZD199 38.30 ±1.77b
ZD207 58.80 ±1.98a
ZD237 45.50 ±2.28ab
ZD241 46.30 ±1.65ab
ZD243 45.50 ±2.56ab
ZD251 50.10 ±2.67ab
ZD255 55.30 ±2.67a
NON (CK1) 0.33 ±0.03c
中棉所49 CCRI 49 (CK2) 0.41 ±0.03c

Fig. 8

Plant growth status after treatment with 4 times recommended dose of glyphosate"

Table 4

Damage index of cotton transformants treated by different level of glyphosate"

材料
Plant material
推荐剂量(1﹕200稀释)
Recommended dose
(1﹕200 dilution)
2倍推荐剂量(1﹕100稀释)
2 times recommended dose
(1﹕100 dilution)
4倍推荐剂量(1﹕50稀释)
4 times recommended dose
(1﹕50 dilution)
平均Average 平均
Average
平均
Average
ZD131 1.20 0.20 1.00 0.20 0.65 0.10 1.20 1.40 1.20 0.98 4.80 4.80 8.40 4.80 5.70
ZD185 0.30 1.20 0.50 0.03 0.51 1.40 1.30 0.20 2.10 1.25 9.70 8.60 8.70 6.70 8.43
ZD207 0.00 0.40 0.00 0.20 0.15 1.00 0.60 1.20 0.93 0.93 5.70 3.70 8.30 7.80 6.38
17个转化体平均Average (17) 2.93 3.20 3.24 3.06 3.11 5.11 6.00 6.33 5.90 5.84 17.41 18.68 20.22 19.10 18.85
NON (CK1) / / / / / / / / / / / / / / /
中棉所49 CCRI 49 (CK2) / / / / / / / / / / / / / / /

Table 5

Survival rate of cotton transformats in three generations treated by 2 times recommended dose of glyphosate (%)"

材料
Plant meterial
T2 T3 T4
平均
Average
平均
Average
平均
Average
ZD131 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
ZD185 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
ZD207 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
17个转化体平均Average (17) 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
NON (CK1) / / / / / / / / / / / / / / /
中棉所49 CCRI 49 (CK2) / / / / / / / / / / / / / / /

Table 6

Damage index of the transformants in three generations treated by 2 times recommended dose of glyphosate"

供试材料
Plant material
平均值Average 标准差SD 变异系数CV (%)
T2 T3 T4 T2 T3 T4 T2 T3 T4
ZD131 1.01 0.99 0.98 0.02 0.03 0.02 1.98 3.03 2.04
ZD185 1.28 1.26 1.25 0.10 0.10 0.10 7.81 7.94 8.00
ZD207 1.02 1.12 0.93 0.12 0.11 0.09 11.76 9.82 9.68
17个转化体平均Average (17) 5.88 5.82 5.84 0.26 0.31 0.32 4.42 5.33 5.48
NON (CK1) / / / / / / / / /
中棉所49 CCRI 49 (CK2) / / / / / / / / /

Table 7

Results of agronomic characters in cotton transformants (2020-2021)"

供试材料
Plant material
生育期
Growth period (d)
株高
Plant height (cm)
果枝数
Fruit branches
单株铃数
Bolls per plant
铃重
Boll weight (g)
衣分
Lint percentage (%)
枯萎病指 Fusarium wilt index
发病率
Disease rate (%)
病指
Disease index
ZD131 120 119.7 16.2 26.4 5.8 42.5 24.3 7.8
ZD185 125 115.0 12.3 22.4 5.4 40.1 29.0 11.8
ZD207 129 98.6 12.7 25.6 5.2 40.5 29.3 11.2
17个转化体平均Average (17) 129 98.6 12.7 21.1 5.2 40.5 29.3 11.2
NON (CK1) 136 124.4 16.8 22.1 5.6 38.4 27.8 15.9
中棉所49 CCRI 49 (CK2) 126 126.1 17.7 21.7 5.5 39.0 34.8 20.5

Table 8

Yield of cotton transformants (2020-2021)"

供试材料
Plant material
籽棉Seed cotton 皮棉Lint
产量
Yield (kg·hm-2)
为CK1
as CK1 (%)
为CK2
as CK2 (%)
产量
Yield (kg·hm-2)
为CK1
as CK1 (%)
为CK2
as CK2 (%)
ZD131 6092.54 107.7 106.9 2589.55 119.2** 116.5**
ZD185 5865.67 103.7 102.9 2352.24 108.3* 105.8
ZD207 5617.91 99.3 98.6 2274.63 104.8 102.4
17个转化体平均Average (17) 5105.97 90.3 89.6 2068.66 95.2 93.0
NON (CK1) 5656.72 100.0 99.3 2171.64 100.0 97.7
中棉所49 CCRI 49 (CK2) 5698.51 100.7 100.0 2222.39 102.3 100.0

Table 9

Fiber quality of cotton transformants (2020-2021)"

供试材料
Plant material
上半部长度
Fiber length (mm)
整齐度指数
Uniformity (%)
断裂比强度
Strength (cN·tex-1)
马克隆值
Micronaire
伸长率
Elongation (%)
ZD131 32.7 85.7 32.1 4.9 6.8
ZD185 30.7 85.3 30.3 5.0 6.8
ZD207 31.3 85.4 34.6 4.5 6.7
17个转化体平均Average (17) 28.0 82.9 28.9 5.3 6.8
NON (CK1) 32.3 85.5 30.4 5.0 6.9
中棉所49 CCRI 49 (CK2) 33.1 82.3 31.2 4.2 6.6
[1]
CUI C J, MA Z F, WAN H, GAO J B, ZHOU B L. GhALKBH10 negatively regulates salt tolerance in cotton. Plant Physiology and Biochemistry, 2022, 192: 87-100.

doi: 10.1016/j.plaphy.2022.09.029
[2]
杜延滨, 周冬丽, 岳川, 张军, 安文涛. 棉籽仁壳分离系统改造实践. 中国油脂, 2022, 47(6): 130-132.
DU Y B, ZHOU D L, YUE C, ZHANG J, AN W T. Transformation practice of kernel and shell separation system for cottonseed. China Oils and Fats, 2022, 47(6): 130-132. (in Chinese)
[3]
朱玉永, 赵冰梅, 王林. 新疆棉田杂草发生与防除现状及对策. 中国棉花, 2021, 48(2): 1-7.
ZHU Y Y, ZHAO B M, WANG L. Current status of weed occurrence and control in cotton field of Xinjiang and its countermeasures. China Cotton, 2021, 48(2): 1-7. (in Chinese)
[4]
谭金妮, 李琦, 郭文磊, 刘伟堂, 王金信. 丙炔氟草胺除草活性及对棉花的安全性. 农药学学报, 2017, 19(2): 189-194.
TAN J N, LI Q, GUO W L, LIU W T, WANG J X. Evaluation of herbicidal activity and safety to cotton of flumioxazin. Chinese Journal of Pesticide Science, 2017, 19(2): 189-194. (in Chinese)
[5]
DUKE S O. Glyphosate: Uses other than in glyphosate-resistant crops, mode of action, degradation in plants, and effects on non-target plants and agricultural microbes. Reviews of Environmental Contamination and Toxicology, 2021, 255: 1-65.
[6]
芦宝琳. 抗草甘膦基因甜菜遗传转化的研究[D]. 哈尔滨: 黑龙江大学, 2012.
LU B L. Study on genetic transformation of glyphosate-resistant sugarbeet[D]. Harbin: Heilongjiang University, 2012. (in Chinese)
[7]
SCHÖNBRUNN E, ESCHENBURG S, SHUTTLEWORTH W A, SCHLOSS J V, AMRHEIN N, EVANS J N S, KABSCH W. Interaction of the herbicide glyphosate with its target enzyme 5-enolpyruvylshikimate 3-phosphate synthase in atomic detail. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(4): 1376-1380.
[8]
张荣, 信晓阳, 胡胜武. SSR标记辅助回交选育抗草甘膦油菜新品系的研究. 西北农业学报, 2016, 25(1): 64-71.
ZHANG R, XIN X Y, HU S W. SSR marker-assisted backcross breeding of new glyphosate-resistant rapeseed lines. Acta Agriculturae Boreali-occidentalis Sinica, 2016, 25(1): 64-71. (in Chinese)
[9]
DUN B Q, WANG X J, LU W, ZHAO Z L, HOU S N, ZHANG B M, LI G Y, EVANS T C Jr, XU M Q, LIN M. Reconstitution of glyphosate resistance from a split 5-enolpyruvyl shikimate-3- phosphate synthase gene in Escherichia coli and transgenic tobacco. Applied and Environmental Microbiology, 2007, 73(24): 7997-8000.

doi: 10.1128/AEM.00956-07
[10]
LIU Y J, ZHANG Y W, LIU Y, LU W, WANG G Y. Metabolic effects of glyphosate on transgenic maize expressing a G2-EPSPS gene from Pseudomonas fluorescens. Journal of Plant Biochemistry and Biotechnology, 2015, 24(2): 233-241.

doi: 10.1007/s13562-014-0263-9
[11]
GUO B F, GUO Y, HONG H L, JIN L G, ZHANG L J, CHANG R Z, LU W, LIN M, QIU L J. Co-expression of G2-EPSPS and glyphosate acetyltransferase GAT genes conferring high tolerance to glyphosate in soybean. Frontiers in Plant Science, 2015, 6: 847.
[12]
王俊梅, 叶胜海, 翟荣荣, 余鹏, 朱国富, 金庆生, 张小明. 耐草甘膦水稻种质资源的创制和鉴定. 核农学报, 2017, 31(3): 432-439.

doi: 10.11869/j.issn.100-8551.2017.03.0432
WANG J M, YE S H, ZHAI R R, YU P, ZHU G F, JIN Q S, ZHANG X M. Creation and identification of glyphosate-tolerant rice germplasm resources. Journal of Nuclear Agricultural Sciences, 2017, 31(3): 432-439. (in Chinese)

doi: 10.11869/j.issn.100-8551.2017.03.0432
[13]
HU T, METZ S, CHAY C, ZHOU H P, BIEST N, CHEN G, CHENG M, FENG X, RADIONENKO M, LU F, FRY J. Agrobacterium- mediated large-scale transformation of wheat (Triticum aestivum L.) using glyphosate selection. Plant Cell Reports, 2003, 21(10): 1010-1019.

doi: 10.1007/s00299-003-0617-6
[14]
国际农业生物技术应用服务组织. 2019年全球生物技术/转基因作物商业化发展态势. 中国生物工程杂志, 2021, 41(1): 114-119.
International Service for the Acquisition of Agri-biotech Applications. Global status of commercialized biotech/GM crops in 2019. China Biotechnology, 2021, 41(1): 114-119. (in Chinese)
[15]
NIDA D L, KOLACZ K H, BUEHLER R E, DEATON W R, SCHULER W R, ARMSTRONG T A, TAYLOR M L, EBERT C C, ROGAN G J, PADGETTE S R, FUCHS R L. Glyphosate-tolerant cotton: genetic characterization and protein expression. Journal of Agricultural and Food Chemistry, 1996, 44(7): 1960-1966.

doi: 10.1021/jf9505640
[16]
章郑专, 汤磊鹏, 王钰, 何军光, 蔡文珑, 戎均康, 李飞飞. 抗草甘膦基因aroA转化陆地棉胚性愈伤组织的研究. 棉花学报, 2014, 26(3): 237-243.
ZHANG Z Z, TANG L P, WANG Y, HE J G, CAI W L, RONG J K, LI F F. Study on transformation of glyphosate-resistant gene aroA into embryogenic calli of upland cotton via Agrobacterium tumefaciens. Cotton Science, 2014, 26(3): 237-243. (in Chinese)
[17]
陆国清, 王春玲, 郝宇琼, 郭惠明, 黄英金, 程红梅. 转G10eve基因棉花的获得及草甘膦抗性初探. 棉花学报, 2018, 30(1): 21-28.
LU G Q, WANG C L, HAO Y Q, GUO H M, HUANG Y J, CHENG H M. Generation and glyphosate resistance analysis of G10eve transgenic cotton. Cotton Science, 2018, 30(1): 21-28. (in Chinese)
[18]
LIANG C Z, SUN B, MENG Z G, MENG Z H, WANG Y, SUN G Q, ZHU T, LU W, ZHANG W, MALIK W, LIN M, ZHANG R, GUO S D. Co-expression of GR79 EPSPS and GAT yields herbicide-resistant cotton with low glyphosate residues. Plant Biotechnology Journal, 2017, 15(12): 1622-1629.

doi: 10.1111/pbi.2017.15.issue-12
[19]
SIDDIQUI H A, ASAD S, NAQVI R Z, ASIF M, LIU C C, LIU X, FAROOQ M, ABRO S, RIZWAN M, ARSHAD M, SARWAR M, AMIN I, MUKHTAR Z, MANSOOR S. Development and evaluation of triple gene transgenic cotton lines expressing three genes (Cry1Ac-Cry2Ab-EPSPS) for lepidopteran insect pests and herbicide tolerance. Scientific Reports, 2022, 12: 18422.

doi: 10.1038/s41598-022-22209-w pmid: 36319662
[20]
MOBEEN A, MANSOOR S, ASIF M, NAQVI R Z, ASIF M, MUKHTAR Z. P07- 45 Toxicity assessment of transgenic cotton containing double gene (Cry1Ac and Cry2Ab) and triple gene (Cry1Ac, Cry2Ab, and EPSPS) as plant incorporated protectants against insects and weed. Toxicology Letters, 2022, 368: S137.
[21]
牛建群, 朱家林, 张青文, 刘小侠. 转基因抗虫抗除草剂棉花对棉铃虫抗性及对草甘膦耐受性研究. 应用昆虫学报, 2012, 49(4): 889-894.
NIU J Q, ZHU J L, ZHANG Q W, LIU X X. Glyphosate tolerance and effects of cotton bollworms on transgenic herbicide and insect resistant cotton. Chinese Journal of Applied Entomology, 2012, 49(4): 889-894. (in Chinese)
[22]
WAITE J, THOMPSON C R, PETERSON D E, CURRIE R S, OLSON B L S, STAHLMAN P W, AL-KHATIB K. Differential Kochia (Kochia scoparia) populations response to glyphosate. Weed Science, 2013, 61(2): 193-200.

doi: 10.1614/WS-D-12-00101.1
[23]
BARROSO J, GOURLIE J A, LUTCHER L K, LIU M Y, MALLORY-SMITH C A. Identification of glyphosate resistance in Salsola tragus in north-eastern Oregon. Pest Management Science, 2018, 74(5): 1089-1093.

doi: 10.1002/ps.2018.74.issue-5
[24]
GAINES T A, SLAVOV G T, HUGHES D, KÜPPER A, SPARKS C D, OLIVA J, VILA-AIUB M M, GARCIA M A, MEROTTO A Jr, NEVE P. Investigating the origins and evolution of a glyphosate- resistant weed invasion in South America. Molecular Ecology, 2021, 30(21): 5360-5372.

doi: 10.1111/mec.v30.21
[25]
黄洁琼. 农杆菌活体转化技术的优化与高抗草甘膦棉种质的创制[D]. 杭州: 浙江大学, 2016.
HUANG J Q. Optimization of Agrobacterium-mediated transformation in vivo and its utilization in development of cotton germplasm resistance to glyphosate[D]. Hangzhou: Zhejiang University, 2016. (in Chinese)
[26]
WANG Z, YE S F, LI J J, ZHENG B, BAO M Z, NING G G. Fusion primer and nested integrated PCR (FPNI-PCR): A new high- efficiency strategy for rapid chromosome walking or flanking sequence cloning. BMC Biotechnology, 2011, 11: 109.

doi: 10.1186/1472-6750-11-109
[27]
李彦龙. 棉花T-DNA插入突变体侧翼序列分析与双T-DNA载体系统构建[D]. 武汉: 华中农业大学, 2016.
LI Y L. Analysis of T-DNA flanking sequences and structure twin T-DNA vector system in cotton (Gossypium hirsutum L.)[D]. Wuhan: Huazhong Agricultural University, 2016. (in Chinese)
[28]
黄译乐, 胡晓强, 叶敏玲, 徐建华, 李琳, 吴祖培, 陈宇宁, 何金勇, 梁玉瑶. 抗ANXA1自身抗体ELISA检测方法的建立及应用. 生物技术, 2022, 32(5): 565-568, 575.
HUANG Y L, HU X Q, YE M L, XU J H, LI L, WU Z P, CHEN Y N, HE J Y, LIANG Y Y. Establishment and application of ELISA methodology for the detection of anti ANXA1 autoantibody. Biotechnology, 2022, 32(5): 565-568, 575. (in Chinese)
[29]
蔡晓虎, 林萍, 史亚辉, 韩睿, 张玉栋, 吴娜, 王俊刚. 扁秆荆三棱种群密度对棉花营养物质吸收和积累的影响. 棉花学报, 2020, 32(2): 143-150.
CAI X H, LIN P, SHI Y H, HAN R, ZHANG Y D, WU N, WANG J G. Effects of population density of Bolboschoenus planiculmis on the absorption and accumulation of cotton nutrients. Cotton Science, 2020, 32(2): 143-150. (in Chinese)
[30]
RAHMAN M, JURAIMI A S, SURIA J, MAN A B, ANWAR P. Response of weed flora to different herbicides in aerobic rice system. Scientific Research and Essays, 2012, 7(1): 12-23.
[31]
陈世国, 强胜, 毛婵娟. 草甘膦作用机制和抗性研究进展. 植物保护, 2017, 43(2): 17-24.
CHEN S G, QIANG S, MAO C J. Mechanism of action of glyphosate and research advances in glyphosate resistance. Plant Protection, 2017, 43(2): 17-24. (in Chinese)
[32]
杨柳, 于翠梅, 刘铭, 赵明哲, 谢甫绨. 农杆菌介导大豆遗传转化影响因素研究进展. 大豆科学, 2018, 37(5): 803-808.
YANG L, YU C M, LIU M, ZHAO M Z, XIE F T. Research advances of Agrobacterium-mediated transformation affecting factors in soybean. Soybean Science, 2018, 37(5): 803-808. (in Chinese)
[33]
苏哲正, 邢子烟, 朱晨博, 曲迪, 上官艺馨, 滕卫丽. 大豆遗传转化方法的研究进展. 黑龙江农业科学, 2020(9): 112-116.
SU Z Z, XING Z Y, ZHU C B, QU D, SHANGGUAN Y X, TENG W L. Research progress of soybean genetic transformation methods. Heilongjiang Agricultural Sciences, 2020(9): 112-116. (in Chinese)
[34]
金晓霞, 李婉婷, 于丽杰. 番茄花粉管通道遗传转化方法. 分子植物育种, 2013, 11(4): 605-610.
JIN X X, LI W T, YU L J. Transgenic technology of pollen-tube pathway in tomato (Solanum lycopersicum M.). Molecular Plant Breeding, 2013, 11(4): 605-610. (in Chinese)
[35]
ADU-YEBOAH P, MALONE J M, FLEET B, GILL G, PRESTON C. EPSPS gene amplification confers resistance to glyphosate resistant populations of Hordeum glaucum Stued (northern barley grass) in South Australia. Pest Management Science, 2020, 76(4): 1214-1221.

doi: 10.1002/ps.v76.4
[36]
YANNICCARI M, PALMA-BAUTISTA C, VÁZQUEZ-GARCÍA J G, GIGÓN R, MALLORY-SMITH C A, DE PRADO R. Constitutive overexpression of EPSPS by gene duplication is involved in glyphosate resistance in Salsola tragus. Pest Management Science, 2023, 79(3): 1062-1068.

doi: 10.1002/ps.v79.3
[37]
YAKIMOWSKI S B, TEITEL Z, CARUSO C M. Defence by duplication: The relation between phenotypic glyphosate resistance and EPSPS gene copy number variation in Amaranthus palmeri. Molecular Ecology, 2021, 30(21): 5328-5342.

doi: 10.1111/mec.v30.21
[38]
JUGULAM M. Can non-Mendelian inheritance of extrachromosomal circular DNA-mediated EPSPS gene amplification provide an opportunity to reverse resistance to glyphosate? Weed Research, 2021, 61(2): 100-105.

doi: 10.1111/wre.v61.2
[39]
伏建国, 李井干, 吴晶, 刘晓宇, 许忠祥, 李洋, 郭静, 杨晓军, 强胜. 利用双重数字PCR检测进口美国大豆中长芒苋的EPSPS基因拷贝数. 植物检疫, 2022, 36(2): 29-33.
FU J G, LI J G, WU J, LIU X Y, XU Z X, LI Y, GUO J, YANG X J, QIANG S. Detection of EPSPS gene copy number of Amaranthus palmeri in imported U.S. soybean by duplex digital PCR. Plant Quarantine, 2022, 36(2): 29-33. (in Chinese)
[40]
赵海铭, 宋伟彬, 赖锦盛. 高粱5-烯醇式丙酮酰莽草酸-3-磷酸合酶基因(EPSPS)叶绿体转运肽(CTP)的克隆及其在转基因玉米中的功能验证. 农业生物技术学报, 2013, 21(9): 1009-1018.
ZHAO H M, SONG W B, LAI J S. Cloning of Sorghum bicolor chloroplast transit peptide (CTP) of 5-enolpyruvylshikimate-3- phosphate synthase (EPSPS) and its functional validation in transgenic maize (Zea mays). Chinese Journal of Agricultural Biotechnology, 2013, 21(9): 1009-1018. (in Chinese)
[41]
IYER L M, KUMPATLA S P, CHANDRASEKHARAN M B, HALL T C. Transgene silencing in monocots. Plant Molecular Biology, 2000, 43(2): 323-346.

doi: 10.1023/A:1006412318311
[42]
LECHTENBERG B, SCHUBERT D, FORSBACH A, GILS M, SCHMIDT R. Neither inverted repeat T-DNA configurations nor arrangements of tandemly repeated transgenes are sufficient to trigger transgene silencing. The Plant Journal, 2003, 34(4): 507-517.

doi: 10.1046/j.1365-313X.2003.01746.x
[43]
尹康, 马欢, 王秀芳, 谢英, 冯晶晶, 杨钦清, 吕占军. SV40PolyA片段串联拷贝数目影响GFP报告基因表达. 中国科学: 生命科学, 2011, 41(3): 187-194.
YIN K, MA H, WANG X F, XIE Y, FENG J J, YANG Q Q, Z J. The number of tandem copies of SV40PolyA fragment affects the expression of GFP reporter gene. Scientia Sinica (Vitae), 2011, 41(3): 187-194. (in Chinese)
[44]
SHEPARD A, CLARKE J, HERR W. Simian virus 40 revertant enhancers exhibit restricted host ranges for enhancer function. Journal of Virology, 1988, 62(9): 3364-3370.

pmid: 2841489
[45]
陈松, 张洁夫, 浦惠明, 申爱娟, 周小婴, 龙卫华, 胡茂龙, 戚存扣. 转基因高油酸油菜T-DNA插入拷贝数及整合位点分析. 分子植物育种, 2011, 9(1): 17-24.
CHEN S, ZHANG J F, PU H M, SHEN A J, ZHOU X Y, LONG W H, HU M L, QI C K. Analysis of transgene copy and integration site of T-DNA to genome of transgenic high oelic (Brassica napus L.). Molecular Plant Breeding, 2011, 9(1): 17-24. (in Chinese)
[46]
毕娟娟, 王丹, 刘生, 郭朝霞, 梅圆圆, 王宁宁. 大豆滞绿突变体的T-DNA插入位点分析. 南开大学学报(自然科学版), 2020, 53(4): 81-87.
BI J J, WANG D, LIU S, GUO Z X, MEI Y Y, WANG N N. The T-DNA insertion sites analysis of soybean stay-green mutant. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2020, 53(4): 81-87. (in Chinese)
[1] KAN JiaQiang, LIU Yu, ZHOU ZhiGuo, CHEN BingLin, ZHAO WenQing, HU Wei, HU ShaoHong, CHEN Yang, WANG YouHua. Effects of Squares and Bolls Abscission on Photosynthate Accumulation and Its Strength as an Auxiliary Source of Cotton Sympodial Leaves [J]. Scientia Agricultura Sinica, 2023, 56(9): 1658-1669.
[2] XING YuTong, TENG YongKang, WU TianFan, LIU YuanYuan, CHEN Yuan, CHEN Yuan, CHEN DeHua, ZHANG Xiang. Mepiquat Chloride Increases the Cry1Ac Protein Content Through Regulating Carbon and Amino Acid Metabolism of Bt Cotton Under High Temperature and Drought Stress [J]. Scientia Agricultura Sinica, 2023, 56(8): 1471-1483.
[3] WANG Ning, FENG KeYun, NAN HongYu, CONG AnQi, ZHANG TongHui. Effects of Combined Application of Organic Manure and Chemical Fertilizer Ratio on Water and Nitrogen Use Efficiency of Cotton Under Water Deficit [J]. Scientia Agricultura Sinica, 2023, 56(8): 1531-1546.
[4] JIA XiaoYun, WANG ShiJie, ZHU JiJie, ZHAO HongXia, LI Miao, WANG GuoYin. Construction of A High-Density Genetic Map and QTL Mapping for Yield Related Traits in Upland Cotton [J]. Scientia Agricultura Sinica, 2023, 56(4): 587-598.
[5] LIANG ChengZhen, ZANG YouYi, MENG ZhiGang, WANG Yuan, MUBASHIR Abbas, HE HaiYan, ZHOU Qi, WEI YunXiao, ZHANG Rui, GUO SanDui. Identification of Target Traits and Genetic Stability of Transgenic Cotton GGK2 [J]. Scientia Agricultura Sinica, 2023, 56(17): 3251-3260.
[6] MA YanBin, LI HuanLi, WEN Jin, ZHOU XianTing, QIN Xin, WANG Xia, WANG XinSheng, LI YanE. Identification of Molecular Characterizations for Transgenic Cotton R1-3 Line of Glyphosate Tolerance [J]. Scientia Agricultura Sinica, 2023, 56(17): 3277-3284.
[7] DANG WenWen, LIU Bing, CHU Dong, LU YanHui. Dominated Species and the Predation Assessment of Natural Enemies on Thrips in Cotton Fields in Xinjiang [J]. Scientia Agricultura Sinica, 2023, 56(17): 3347-3357.
[8] LOU ShanWei, TIAN LiWen, LUO HongHai, DU MingWei, LIN Tao, YANG Tao, ZHANG PengZhong. Analysis on Key Production Techniques of Cotton with Good Quality and High Yield in Xinjiang [J]. Scientia Agricultura Sinica, 2023, 56(14): 2673-2685.
[9] ZHAO WeiSong, GUO QingGang, LI SheZeng, LU XiuYun, GOU JianJun, MA Ping. Effect of Broccoli Residues on Enzyme Activity of Cotton Rhizosphere Soil and Relationships Between Enzyme Activity and Carbon Metabolism Characteristics [J]. Scientia Agricultura Sinica, 2023, 56(11): 2092-2105.
[10] SONG Ci, GU FengXu, XING ZhenZhen, ZHANG JunMing, HE WenXue, WANG TianBo, WANG YuLu, CHEN JunYing. Physiological Changes and Integrity of ATP Synthase Subunits mRNA in Naturally Aged Cotton Seeds [J]. Scientia Agricultura Sinica, 2023, 56(10): 1827-1837.
[11] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[12] WANG JunJuan, LU XuKe, WANG YanQin, WANG Shuai, YIN ZuJun, FU XiaoQiong, WANG DeLong, CHEN XiuGui, GUO LiXue, CHEN Chao, ZHAO LanJie, HAN YingChun, SUN LiangQing, HAN MingGe, ZHANG YueXin, FAN YaPeng, YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[13] LI ZhiLing,LI XiangJu,CUI HaiLan,YU HaiYan,CHEN JingChao. Development and Application of ELISA Kit for Detection of EPSPS in Eleusine indica [J]. Scientia Agricultura Sinica, 2022, 55(24): 4851-4862.
[14] YIN YanYu, XING YuTong, WU TianFan, WANG LiYan, ZHAO ZiXu, HU TianRan, CHEN Yuan, CHEN Yuan, CHEN DeHua, ZHANG Xiang. Cry1Ac Protein Content Responses to Alternating High Temperature Regime and Drought and Its Physiological Mechanism in Bt Cotton [J]. Scientia Agricultura Sinica, 2022, 55(23): 4614-4625.
[15] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!