Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (16): 3237-3246.doi: 10.3864/j.issn.0578-1752.2023.16.015

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles    

Development and Application of a Mab-Based iELISA for the Detection of Antibodies Against African Horse Fever Virus

GUO Kui(), ZHANG ZeNan, WANG YaoXin, LI ShuaiJie, CHU XiaoYu, GUO Wei, HU Zhe(), WANG XiaoJun()   

  1. State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069
  • Received:2022-05-25 Accepted:2022-10-23 Online:2023-08-16 Published:2023-08-18

Abstract:

【Objective】In order to effectively address the risk of introduction of African horse fever into China, this study aimed to develop an indirect ELISA (iELISA) antibody test specific for African horse fever virus (AHSV) based on monoclonal antibodies, so as to monitor the antibody status of African horse fever in horses in China.【Method】Firstly, Mabs against VP7 antigen were prepared by immunizing mice with the VP7 antigen. Secondly, the ELISA method was developed by optimizing the amount of coating Mab, antigen and secondary antibody concentrations. Negative sera (n=1 000) were used to establish the baseline for a negative population, and then the specificity and sensitivity of it was estimated. The stability of the method was determined by an accelerated test using AHSV-positive reference sera by three independent operators. 10 known positive sera and 400 negative sera for African horse fever were tested using the established method and compared with the results of foreign commercial kits. Finally, the method was tested on 947 clinical samples from 18 provinces or regions in China in 2021 to assess the risk of African horse fever in horses in China.【Result】 Five Mabs were obtained against the VP7 antigen of AHSV, and the 3G9 Mab had the best antigen capture performance. Using the 3G9 Mab as the capture antibody, an ELISA method for the detection of AHSV was established by optimizing different reaction conditions. A cut-off value of 0.25 was selected in AHSV iELISA. The sensitivity of ELISA method was comparable with that of commercial kits and the sensitivity of both methods was consistent. The intra-group coefficients of variation from 3 operators ranged from 3.19% to 7.02%, 0% to 3.11%, and 0.27% to 5.76%, respectively, and the inter-group coefficients of variation for the three operators ranged from 1.17 to 5.03%. The accelerated test at 37 °C demonstrated that the components of the testing kit had good stability over 7 days, thus demonstrating the stability of the method. The results showed that the agreement between the AHSV iELISA and commercial AHSV C ELISA kits were 100%. In this study, a serological survey on AHSV was performed by using 947 serum samples collected from 18 provinces of China in 2021, and the results showed that the positive rates were 0%. 【Conclusion】 A Mab-based AHSV iELISA method was established for the detection of AHSV antibodies, which had the good specificity and sensitivity, and could be a promising candidate tools for use serological surveillance for AHS.

Key words: African horse fever virus, monoclonal antibody, indirect ELISA, application

Fig. 1

SDS-PAGE analysis of recombinant VP7 protein M: Protein marker; 1: Supernatant of VP7 protein after IPTG induction; 2: Sediment of VP7 protein after IPTG induction"

Fig. 2

Western blot analysis of recombinant VP7 protein M: Protein marker; 1: pET32a vector; 2: Purified VP7 protein"

Fig. 3

Sensitivity of AHSV iELISA and commercial cELISA"

Table 1

Results of intergroup and intro-group repeatability of AHSV iELISA"

血清稀释度
Serum dilution
组内变异系数 Intra-group coefficient of variation (%) 组间变异系数
Coefficient of variation between groups (%)
操作者1 Member 1 操作者2 Member 2 操作者3 Member 3
5.74 2.45 5.76 3.99
7.02 2.03 0.83 5.03
6.44 0.00 0.27 1.17
3.19 0.50 0.67 4.47
16× 4.09 3.11 0.82 1.34
32× 5.41 0.11 1.58 4.22

Fig. 4

Results of S/P values on different day"

Table 2

Comparison of AHSV iELISA with commercial cELISA"

商品化竞争ELISA
Commercial cELISA
+ -
非洲马瘟病毒间接ELISA
AHSV iELISA
+ 10 0
- 0 400
[1]
TOH X, WANG Y F, RAJAPAKSE M P, LEE B, SONGKASUPA T, SUWANKITWAT N, KAMLANGDEE A, JUDITH FERNANDEZ C, HUANGFU T Q. Use of nanopore sequencing to characterize African horse sickness virus (AHSV) from the African horse sickness outbreak in Thailand in 2020. Transboundary and Emerging Diseases, 2022, 69(3): 1010-1019.

doi: 10.1111/tbed.v69.3
[2]
KARAMALLA S T, GUBRAN A I, ADAM I A, ABDALLA T M, SINADA R O, HAROUN E M, ARADAIB I E. Sero-epidemioloical survey on African horse sickness virus among horses in Khartoum State, Central Sudan. BMC Veterinary Research, 2018, 14(1): 230.

doi: 10.1186/s12917-018-1554-5 pmid: 30068335
[3]
GORDON S J G, BOLWELL C, ROGERS C W, MUSUKA G, KELLY P, GUTHRIE A, MELLOR P S, HAMBLIN C. The sero-prevalence and sero-incidence of African horse sickness and equine encephalosis in selected horse and donkey populations in Zimbabwe. The Onderstepoort Journal of Veterinary Research, 2017, 84(1): e1-e5.
[4]
ZIENTARA S, LECOLLINET S. African horse sickness. Revue Scientifique et Technique De L’OIE, 2015, 34(2): 315-327.
[5]
BURRAGE T G, LAEGREID W W. African horsesickness: pathogenesis and immunity. Comparative Immunology, Microbiology and Infectious Diseases, 1994, 17(3/4): 275-285.

doi: 10.1016/0147-9571(94)90047-7
[6]
VON TEICHMAN B F, DUNGU B, SMIT T K. In vivo cross- protection to African horse sickness Serotypes 5 and 9 after vaccination with Serotypes 8 and 6. Vaccine, 2010, 28(39): 6505-6517.

doi: 10.1016/j.vaccine.2010.06.105
[7]
ROY P, MERTENS P P C, CASAL I. African horse sickness virus structure. Comparative Immunology, Microbiology and Infectious Diseases, 1994, 17(3/4): 243-273.

doi: 10.1016/0147-9571(94)90046-9
[8]
MARTÍNEZ-TORRECUADRADA J L, LANGEVELD J P M, MELOEN R H, CASAL J I. Definition of neutralizing sites on African horse sickness virus serotype 4 VP2 at the level of peptides. Journal of General Virology, 2001, 82(10): 2415-2424.

doi: 10.1099/0022-1317-82-10-2415
[9]
AGÜERO M, GÓMEZ-TEJEDOR C, ANGELES CUBILLO M, RUBIO C, ROMERO E, JIMÉNEZ-CLAVERO A. Real-time fluorogenic reverse transcription polymerase chain reaction assay for detection of African horse sickness virus. Journal of Veterinary Diagnostic Investigation, 2008, 20(3): 325-328.

pmid: 18460619
[10]
FERNÁNDEZ-PINERO J, FERNÁNDEZ-PACHECO P, RODRÍGUEZ B, SOTELO E, ROBLES A, ARIAS M, SÁNCHEZ-VIZCAÍNO J M. Rapid and sensitive detection of African horse sickness virus by real-time PCR. Research in Veterinary Science, 2009, 86(2): 353-358.

doi: 10.1016/j.rvsc.2008.07.015
[11]
QUAN M, LOURENS C W, MACLACHLAN N J, GARDNER I A, GUTHRIE A J. Development and optimisation of a duplex real-time reverse transcription quantitative PCR assay targeting the VP7 and NS2 genes of African horse sickness virus. Journal of Virological Methods, 2010, 167(1): 45-52.

doi: 10.1016/j.jviromet.2010.03.009
[12]
WEYER C T, JOONE C, LOURENS C W, MONYAI M S, KOEKEMOER O, GREWAR J D, VAN SCHALKWYK A, MAJIWA P O A, MACLACHLAN N J, GUTHRIE A J. Development of three triplex real-time reverse transcription PCR assays for the qualitative molecular typing of the nine serotypes of African horse sickness virus. Journal of Virological Methods, 2015, 223: 69-74.

doi: 10.1016/j.jviromet.2015.07.015 pmid: 26232526
[13]
ZIENTARA S, SAILLEAU C, MOULAY S, PLATEAU E, CRUCIÈRE C. Diagnosis and molecular epidemiology of the African horse sickness virus by the polymerase chain reaction and restriction patterns. Veterinary Research, 1993, 24(5): 385-395.

pmid: 8260960
[14]
ZIENTARA S, SAILLEAU C, MOULAY S, WADE-EVANS A, CRUCIERE C. Application of the polymerase chain reaction to the detection of African horse sickness viruses. Journal of Virological Methods, 1995, 53(1): 47-54.

pmid: 7543488
[15]
HAMBLIN C, GRAHAM S D, ANDERSON E C, CROWTHER J R. A competitive ELISA for the detection of group-specific antibodies to African horse sickness virus. Epidemiology and Infection, 1990, 104(2): 303-312.

pmid: 2108871
[16]
WADE-EVANS A M, WOOLHOUSE T, O'HARA R, HAMBLIN C. The use of African horse sickness virus VP7 antigen, synthesised in bacteria, and anti-VP7 monoclonal antibodies in a competitive ELISA. Journal of Virological Methods, 1993, 45(2): 179-188.

doi: 10.1016/0166-0934(93)90102-W
[17]
KWEON C H, KWON B J, KO Y J, KENICHI S. Development of competitive ELISA for serodiagnosis on African horsesickness virus using baculovirus expressed VP7 and monoclonal antibody. Journal of Virological Methods, 2003, 113(1): 13-18.

pmid: 14500122
[18]
DURÁN-FERRER M, AGÜERO M, ZIENTARA S, BECK C, LECOLLINET S, SAILLEAU C, SMITH S, POTGIETER C, RUEDA P, SASTRE P, MONACO F, VILLALBA R, TENA-TOMÁS C, BATTEN C, FROST L, FLANNERY J, GUBBINS S, LUBISI B A, SÁNCHEZ-VIZCAÍNO J M, EMERY M, STURGILL T, OSTLUND E, CASTILLO-OLIVARES J. Assessment of reproducibility of a VP7 Blocking ELISA diagnostic test for African horse sickness. Transboundary and Emerging Diseases, 2019, 66(1): 83-90.

doi: 10.1111/tbed.2019.66.issue-1
[19]
CHUMA T, LE BLOIS H, SÁNCHEZ-VIZCAÍNO J M, DIAZ- LAVIADA M, ROY P. Expression of the major core antigen VP7 of African horsesickness virus by a recombinant baculovirus and its use as a group-specific diagnostic reagent. The Journal of General Virology, 1992, 73 (Pt 4): 925-931.

doi: 10.1099/0022-1317-73-4-925
[20]
MAREE S, PAWESKA J T. Preparation of recombinant African horse sickness virus VP7 antigen via a simple method and validation of a VP7-based indirect ELISA for the detection of group-specific IgG antibodies in horse sera. Journal of Virological Methods, 2005, 125(1): 55-65.

pmid: 15737417
[21]
曹琛福, 叶奕优, 宗卉, 张彩虹, 吕建强, 杨俊兴, 花群义. 非洲马瘟间接ELISA方法的建立及初步应用. 动物医学进展, 2012, 33(3): 6-9.
CAO C F, YE Y Y, ZONG H, ZHANG C H, J Q, YANG J X, HUA Q Y. Development and application of indirect enzyme-linked immunoadsorbent assay for detecting African horse sickness. Progress in Veterinary Medicine, 2012, 33(3): 6-9. (in Chinese)
[22]
李富祥, 杨仕标, 艾军, 周晓黎, 赵文华, 王金萍. 非洲马瘟病毒VP7基因的克隆及其在昆虫细胞中的表达. 中国畜牧兽医, 2012, 39(1): 28-31.
LI F X, YANG S B, AI J, ZHOU X L, ZHAO W H, WANG J P. Cloning and expression of VP7 gene of African horse sickness virus in baculovirus infected insect cells. China Animal Husbandry & Veterinary Medicine, 2012, 39(1): 28-31. (in Chinese)
[23]
潘佳亮, 高利, 相文华, 戚亭, 郭巍. 非洲马瘟病毒VP7蛋白的原核表达及其间接ELISA方法的建立. 中国兽医科学, 2013, 43(3): 256-260.
PAN J L, GAO L, XIANG W H, QI T, GUO W. Development of an indirect ELISA based on the prokaryotic expression of VP7 gene of African sickness virus. Chinese Veterinary Science, 2013, 43(3): 256-260. (in Chinese)
[24]
郑小龙, 朱来华, 王群, 艾军, 邓明俊, 肖西志, 梁成珠, 姜帆, 于业锋. 非洲马瘟VP7蛋白多克隆抗体的制备及IgM捕获ELISA检测方法的建立. 中国动物检疫, 2014, 31(5): 70-73.
ZHENG X L, ZHU L H, WANG Q, AI J, DENG M J, XIAO X Z, LIANG C Z, JIANG F, YU Y F. Preparation of polyclonal antibody against protein VP7 of African horse sickness virus and development of IgM capture enzyme-linked immunosorbent assay for detecting African horse sickness. China Animal Health Inspection, 2014, 31(5): 70-73. (in Chinese)
[25]
杜方原, 冯春燕, 王彩霞, 仇松寅, 张永宁, 林祥梅, 吴绍强. 抗非洲马瘟VP7蛋白的小鼠单克隆抗体制备及其鉴定. 细胞与分子免疫学杂志, 2018, 34(12): 1125-1129.
DU F Y, FENG C Y, WANG C X, QIU S Y, ZHANG Y N, LIN X M, WU S Q. Preparation and identification of monoclonal antibodies against African horse sickness virus VP7. Chinese Journal of Cellular and Molecular Immunology, 2018, 34(12): 1125-1129. (in Chinese)
[26]
高志强, 张鹤晓, 赖平安, 谷强, 蒲静, 汪琳, 乔彩霞, 吴丹, 柏亚铎, 张伟. 非洲马瘟病毒VP7基因拼接、表达及重组ELISA方法的建立与初步应用. 畜牧兽医学报, 2008, 39(11): 1548-1553.
GAO Z Q, ZHANG H X, LAI P A, GU Q, PU J, WANG L, QIAO C X, WU D, BAI Y D, ZHANG W. Development and application of the recombinant ELISA based on the assembling and expression of VP7 gene of African sickness virus. Chinese Journal of Animal and Veterinary Sciences, 2008, 39(11): 1548-1553. (in Chinese)
[27]
张睿, 张学尧, 赵小明, 马恩波, 张建珍. 飞蝗表皮蛋白Lm Knk3-5’的抗体制备及组织定位. 中国农业科学, 2022, 55(2): 329-338.

doi: 10.3864/j.issn.0578-1752.2022.02.008
ZHANG R, ZHANG X Y, ZHAO X M, MA E B, ZHANG J Z. Antibody preparation and subcellular localization of lm Knk3-5’ in Locusta migratoria. Scientia Agricultura Sinica, 2022, 55(2): 329-338. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2022.02.008
[28]
李敏雪, 李剑男, 周红, 肖宁, 蔺辉星, 马喆, 范红结. 基于Sod C单克隆抗体的胞内劳森菌IPMA抗原检测方法的建立及应用. 中国农业科学, 2021, 54(20): 4478-4486.

doi: 10.3864/j.issn.0578-1752.2021.20.020
LI M X, LI J N, ZHOU H, XIAO N, LIN H X, MA Z, FAN H J. Establishment and preliminary application of Lawsonia intracellularis IPMA antigen detection method based on sod C monoclonal antibody. Scientia Agricultura Sinica, 2021, 54(20): 4478-4486. (in Chinese)
[29]
CRAFFORD J E, LOURENS C W, SMIT T K, GARDNER I A, MACLACHLAN N J, GUTHRIE A J. Serological response of foals to polyvalent and monovalent live-attenuated African horse sickness virus vaccines. Vaccine, 2014, 32(29): 3611-3616.

doi: 10.1016/j.vaccine.2014.04.087 pmid: 24814557
[30]
WEYER C T, GREWAR J D, BURGER P, ROSSOUW E, LOURENS C, JOONE C, LE GRANGE M, COETZEE P, VENTER E, MARTIN D P, MACLACHLAN N J, GUTHRIE A J. African horse sickness caused by genome reassortment and reversion to virulence of live, attenuated vaccine viruses, South Africa, 2004-2014. Emerging Infectious Diseases, 2016, 22(12): 2087-2096.

doi: 10.3201/eid2212.160718 pmid: 27442883
[31]
AKSULAR M, CALVO-PINILLA E, MARÍN-LÓPEZ A, ORTEGO J, CHAMBERS A C, KING L A, CASTILLO-OLIVARES J. A single dose of African horse sickness virus (AHSV) VP2 based vaccines provides complete clinical protection in a mouse model. Vaccine, 2018, 36(46): 7003-7010.

doi: S0264-410X(18)31341-0 pmid: 30309744
[1] ZHANG PengYun, CHEN Min, LIU MingXing, ZHOU Hong, LIN HuiXing, FAN HongJie. Development and Application of Indirect ELISA Kits for Antibody Detection of Haemophilus parasuis [J]. Scientia Agricultura Sinica, 2023, 56(8): 1606-1614.
[2] MU HaiMeng, SUN LiFang, WANG ZhuangZhuang, WANG Yu, SONG YiFan, ZHANG Rong, DUAN JianZhao, XIE YingXin, KANG GuoZhang, WANG YongHua, GUO TianCai. Effect of Nitrogen Application Rate and Planting Density on the Lodging Resistance and Grain Yield of Two Winter Wheat Varieties [J]. Scientia Agricultura Sinica, 2023, 56(15): 2863-2879.
[3] CHAI ALi, YANG HongMin, WANG ShaoHua, ZHAO Kun, GAO Wei, SHI YanXia, XIE XueWen, LI Lei, FAN TengFei, LI BaoJu. Effect of Humidity on Sporulation and Release of Corynespora cassiicola and Control Technology [J]. Scientia Agricultura Sinica, 2023, 56(15): 2907-2918.
[4] WANG Tao, LUO Rui, SUN Yuan, QIU HuaJi. Development Strategies and Application Prospects of African Swine Fever Vaccines: Feasibility and Probability [J]. Scientia Agricultura Sinica, 2023, 56(11): 2212-2222.
[5] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[6] JIANG Hui,FENG Yu,QIN YuMing,ZHU LiangQuan,FAN XueZheng,DING JiaBo. Method Improvement and Its Application of Micro Complement Fixation Test for Brucellosis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1676-1684.
[7] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[8] LI YaFei, SHI JiangLan, WU TianQi, WANG ShaoXia, LI YuNuo, QU ChunYan, LIU CongHui, NING Peng, TIAN XiaoHong. Effects of Combined Foliar Application of Zinc with Imidacloprid on Zinc Enrichment and Protein Components Content in Wheat Grain [J]. Scientia Agricultura Sinica, 2022, 55(3): 514-528.
[9] DU WenTing,LEI XiaoXiao,LU HuiYu,WANG YunFeng,XU JiaXing,LUO CaiXia,ZHANG ShuLan. Effects of Reducing Nitrogen Application Rate on the Yields of Three Major Cereals in China [J]. Scientia Agricultura Sinica, 2022, 55(24): 4863-4878.
[10] REN ZiQi,KANG YuJie,LI HaiZhen,WANG LianGang,MA HaoYun,LI Hui,WANG LiuYang,MEI XiangDong,NING Jun. Synthesis and Bioactivity of Sex Pheromone Analogues of Trachea atriplicis [J]. Scientia Agricultura Sinica, 2022, 55(23): 4640-4650.
[11] XU Ke,FAN ZhiLong,YIN Wen,ZHAO Cai,YU AiZhong,HU FaLong,CHAI Qiang. Coupling Effects of N-fertilizer Postponing Application and Intercropping on Maize Photosynthetic Physiological Characteristics [J]. Scientia Agricultura Sinica, 2022, 55(21): 4131-4143.
[12] MI GuoHua,HUO YueWen,ZENG AiJun,LI GangHua,WANG Xiu,ZHANG FuSuo. Integration of Agricultural Machinery and Agronomic Techniques for Crop Nutrient Management in China [J]. Scientia Agricultura Sinica, 2022, 55(21): 4211-4224.
[13] HOU HuiZhi,ZHANG XuCheng,YIN JiaDe,FANG YanJie,WANG HongLi,YU XianFeng,MA YiFan,ZHANG GuoPing,LEI KangNing. Effects of Deep and Layered Application of Reduced Chemical Nitrogen Fertilizer on Water, Nutrient Utilization and Yield of Spring Wheat in Rain-Fed Arid Area [J]. Scientia Agricultura Sinica, 2022, 55(17): 3289-3302.
[14] MA Yue,TIAN Yi,MU WenYan,ZHANG XueMei,ZHANG LuLu,YU Jie,LI YongHua,WANG HaoLin,HE Gang,SHI Mei,WANG ZhaoHui,QIU WeiHong. Response of Wheat Yield and Grain Nitrogen, Phosphorus and Potassium Concentrations to Test-Integrated Potassium Application and Soil Available Potassium in Northern Wheat Production Regions of China [J]. Scientia Agricultura Sinica, 2022, 55(16): 3155-3169.
[15] ZHANG FengXi,XIAO Qi,ZHU JiaPing,YIN LiHong,ZHAO XiaLing,YAN MingShuai,XU JinHua,WEN LiBin,NIU JiaQiang,HE KongWang. Preparation and Identification of Monoclonal Antibodies to P30 Protein and Establishment of Blocking ELISA to Detecting Antibodies Against African Swine Fever Virus [J]. Scientia Agricultura Sinica, 2022, 55(16): 3256-3266.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!