Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (11): 2212-2222.doi: 10.3864/j.issn.0578-1752.2023.11.014

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles     Next Articles

Development Strategies and Application Prospects of African Swine Fever Vaccines: Feasibility and Probability

WANG Tao1(), LUO Rui1,2, SUN Yuan1, QIU HuaJi1,2()   

  1. 1 State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069
    2 College of Life Science and Engineering, Foshan University, Foshan 528231, Guangdong
  • Received:2022-02-09 Accepted:2022-05-27 Online:2023-06-01 Published:2023-06-19

Abstract:

African swine fever (ASF) is a fatal hemorrhagic disease in domestic pigs caused by African swine fever virus (ASFV) and the mortality of acute ASF is as high as 100%. Since ASF was introduced to China in 2018, the global prevalence and impacts of ASF were increasing. After more than three years of the epidemic of the virulent genotype II ASFV, the low virulent genotypes II and I ASFV strains emerged, resulting in an extremely complicated situation for the control and eradication of ASF in China. As an effective tool for the prevention and control of infectious diseases, the research and development of ASF vaccines have received considerable attention from the government, pig industry, vaccine manufacturers, and the scientific community. With the continuous investment of ASF research funding in recent years, based on development strategies of inactivation, attenuation, subunit, viral vector, and DNA vaccines, the unprecedented progress has been made in the development of ASF vaccines, which increased our understanding of ASF vaccine development and evaluation. In addition, some promising ASF vaccine candidates have been evaluated in preclinical models and were currently in clinical trials, showing the good application prospects, but there were still some problems hindering its further development. With a focus on the latest advances in ASF vaccines, this review summarized the advantages and disadvantages of different vaccines development strategies, the comprehensive evaluation of current ASF vaccine candidates, the development direction in the future, the challenges in developing safe and efficacious ASF vaccines, and the application prospects of ASF vaccines, so as to provide some insights for industry insiders.

Key words: African swine fever, vaccines, development strategies, application prospects

Fig. 1

Development strategies of African swine fever vaccine candidates"

Table 1

Several types of African swine fever vaccines and their advantages and disadvantages"

策略 Strategy 优点 Advantage 缺点 Disadvantage
灭活疫苗 Inactivated virus vaccine 安全 Safety 不能提供保护 No protection
减毒活疫苗 Live attenuated vaccine 能提供完全同源保护 Complete homology protection 有残留毒力 Residual virulence
亚单位、DNA、活病毒载体疫苗
Subunit/DNA/Live virus-vectored vaccine
只能提供部分或无保护
Partial or no protection
无法阻止发病和排毒
Inability to prevent onset disease and virus shedding
基因缺失疫苗
Gene-deleted vaccine
能提供同源和部分交叉保护
Homology and partial cross-protection
有残留毒力
Residual virulence
[1]
PIKALO J, ZANI L, HÜHR J, BEER M, BLOME S. Pathogenesis of African swine fever in domestic pigs and European wild boar - Lessons learned from recent animal trials. Virus Research, 2019, 271: 197614.

doi: 10.1016/j.virusres.2019.04.001
[2]
陈腾, 张守峰, 周鑫韬, 李楠, 缪发明, 张静远, 刘晔, 吕宗吉, 张国军, 扈荣良. 我国首次非洲猪瘟疫情的发现和流行分析. 中国兽医学报, 2018, 38(9): 1831-1832.
CHEN T, ZHANG S F, ZHOU X T, LI N, MIAO F M, ZHANG J Y, LIU Y, Z J, ZHANG G J, HU R L. The discovery and epidemic analysis of the first African swine fever epidemic in China. Chinese Journal of Veterinary Science, 2018, 38(9): 1831-1832. (in Chinese)
[3]
ZHOU X T, LI N, LUO Y Z, LIU Y, MIAO F M, CHEN T, ZHANG S F, CAO P L, LI X D, TIAN K G, QIU H J, HU R L. Emergence of African swine fever in China, 2018. Transboundary and Emerging Diseases, 2018, 65(6): 1482-1484.

doi: 10.1111/tbed.2018.65.issue-6
[4]
YOU S B, LIU T Y, ZHANG M, ZHAO X, DONG Y Z, WU B, WANG Y Z, LI J, WEI X J, SHI B F. African swine fever outbreaks in China led to gross domestic product and economic losses. Nature Food, 2021, 2(10): 802-808.

doi: 10.1038/s43016-021-00362-1 pmid: 37117973
[5]
SUN E C, ZHANG Z J, WANG Z L, HE X J, ZHANG X F, WANG L L, WANG W Q, HUANG L Y, XI F, HUANGFU H Y, TSEGAY G, HUO H, SUN J H, TIAN Z J, XIA W, YU X W, LI F, LIU R Q, GUAN Y T, ZHAO D M, BU Z G. Emergence and prevalence of naturally occurring lower virulent African swine fever viruses in domestic pigs in China in 2020. Science China (Life Sciences), 2021, 64(5): 752-765.
[6]
张艳艳, 张静远, 杨金金, 杨金梅, 韩桪, 米立娟, 张菲, 齐宇, 张守峰, 王颖, 周鑫韬, 岳慧贤, 王述超, 陈腾, 扈荣良. 1株非洲猪瘟病毒自然变异毒株的鉴定. 中国兽医学报, 2021, 41(2): 199-207.
ZHANG Y Y, ZHANG J Y, YANG J J, YANG J M, HAN X, MI L J, ZHANG F, QI Y, ZHANG S F, WANG Y, ZHOU X T, YUE H X, WANG S C, CHEN T, HU R L. Identification of a natural variant of African swine fever virus in China. Chinese Journal of Veterinary Science, 2021, 41(2): 199-207. (in Chinese)
[7]
SUN E C, HUANG L Y, ZHANG X F, ZHANG J W, SHEN D D, ZHANG Z J, WANG Z L, HUO H, WANG W Q, HUANGFU H Y, WANG W, LI F, LIU R Q, SUN J H, TIAN Z J, XIA W, GUAN Y T, HE X J, ZHU Y M, ZHAO D M, BU Z G. Genotype I African swine fever viruses emerged in domestic pigs in China and caused chronic infection. Emerging Microbes & Infections, 2021, 10(1): 2183-2193.
[8]
LIU S, LUO Y Z, WANG Y J, LI S H, ZHAO Z N, BI Y H, SUN J Q, PENG R C, SONG H, ZHU D J, SUN Y, LI S, ZHANG L, WANG W, SUN Y P, QI J X, YAN J H, SHI Y, GAO G F. Cryo-EM structure of the African swine fever virus. Cell Host & Microbe, 2019, 26(6): 836-843.e3.
[9]
CACKETT G, MATELSKA D, SÝKORA M, PORTUGAL R, MALECKI M, BÄHLER J, DIXON L, WERNER F. The African swine fever virus transcriptome. Journal of Virology, 2020, 94(9): e00119-e00120.
[10]
DIXON L K, CHAPMAN D A G, NETHERTON C L, UPTON C. African swine fever virus replication and genomics. Virus Research, 2013, 173(1): 3-14.

doi: 10.1016/j.virusres.2012.10.020 pmid: 23142553
[11]
MALOGOLOVKIN A, KOLBASOV D. Genetic and antigenic diversity of African swine fever virus. Virus Research, 2019, 271: 197673.

doi: 10.1016/j.virusres.2019.197673
[12]
RATHAKRISHNAN A, CONNELL S, PETROVAN V, MOFFAT K, GOATLEY L C, JABBAR T, SÁNCHEZ-CORDÓN P J, REIS A L, DIXON L K. Differential effect of deleting members of African swine fever virus multigene families 360 and 505 from the genotype II Georgia 2007/1 isolate on virus replication, virulence, and induction of protection. Journal of Virology, 2022, 96(6): e0189921.

doi: 10.1128/jvi.01899-21
[13]
MORENS D M, FAUCI A S. Emerging pandemic diseases: how we got to COVID-19. Cell, 2020, 182(5): 1077-1092.

doi: S0092-8674(20)31012-6 pmid: 32846157
[14]
ARIAS M, DE LA TORRE A, DIXON L, GALLARDO C, JORI F, LADDOMADA A, MARTINS C, PARKHOUSE R M, REVILLA Y, RODRIGUEZ F A J M, SANCHEZ-VIZCAINO. Approaches and perspectives for development of African swine fever virus vaccines. Vaccines, 2017, 5(4): 35.

doi: 10.3390/vaccines5040035
[15]
BLOME S, GABRIEL C, BEER M. Modern adjuvants do not enhance the efficacy of an inactivated African swine fever virus vaccine preparation. Vaccine, 2014, 32(31): 3879-3882.

doi: 10.1016/j.vaccine.2014.05.051 pmid: 24877766
[16]
CADENAS-FERNÁNDEZ E, SÁNCHEZ-VIZCAÍNO J M, VAN DEN BORN E, KOSOWSKA A, VAN KILSDONK E, FERNÁNDEZ- PACHECO P, GALLARDO C, ARIAS M, BARASONA J A. High doses of inactivated African swine fever virus are safe, but do not confer protection against a virulent challenge. Vaccines, 2021, 9(3): 242.

doi: 10.3390/vaccines9030242
[17]
WANG T, LUO R, SUN Y, QIU H J. Current efforts towards safe and effective live attenuated vaccines against African swine fever: challenges and prospects. Infectious Diseases of Poverty, 2021, 10(1): 137.

doi: 10.1186/s40249-021-00920-6 pmid: 34949228
[18]
王涛, 孙元, 罗玉子, 仇华吉. 非洲猪瘟防控及疫苗研发: 挑战与对策. 生物工程学报, 2018, 34(12): 1931-1942.
WANG T, SUN Y, LUO Y Z, QIU H J. Prevention, control and vaccine development of African swine fever: Challenges and countermeasures. Chinese Journal of Biotechnology, 2018, 34(12): 1931-1942. (in Chinese)
[19]
LEITÃO A, CARTAXEIRO C, COELHO R, CRUZ B, PARKHOUSE R M E, PORTUGAL F C, VIGÁRIO J D, MARTINS C L V. The non-haemadsorbing African swine fever virus isolate ASFV/NH/P68 provides a model for defining the protective anti-virus immune response. Journal of GeRIAneral Virology, 2001, 82: 513-523.
[20]
BOINAS F S, HUTCHINGS G H, DIXON L K, WILKINSON P J. Characterization of pathogenic and non-pathogenic African swine fever virus isolates from Ornithodoros erraticus inhabiting pig premises in Portugal. The Journal of General Virology, 2004, 85(Pt 8): 2177-2187.

doi: 10.1099/vir.0.80058-0
[21]
GALLARDO C, SOLER A, RODZE I, NIETO R, CANO-GÓMEZ C, FERNANDEZ-PINERO J, AS M. Attenuated and non- haemadsorbing (non-HAD) genotype II African swine fever virus (ASFV) isolated in Europe, Latvia 2017. Transboundary and Emerging Diseases, 2019, 66(3): 1399-1404.

doi: 10.1111/tbed.2019.66.issue-3
[22]
KRUG P W, HOLINKA L G, O'DONNELL V, REESE B, SANFORD B, FERNANDEZ-SAINZ I, GLADUE D P, ARZT J, RODRIGUEZ L, RISATTI G R, BORCA M V. The progressive adaptation of a Georgian isolate of African swine fever virus to Vero cells leads to a gradual attenuation of virulence in swine corresponding to major modifications of the viral genome. Journal of Virology, 2015, 89(4): 2324-2332.

doi: 10.1128/JVI.03250-14 pmid: 25505073
[23]
WANG T, WANG L, HAN Y, PAN L, YANG J, SUN M W, ZHOU P P, SUN Y, BI Y H, QIU H J. Adaptation of African swine fever virus to HEK293T cells. Transboundary and Emerging Diseases, 2021, 68(5): 2853-2866.

doi: 10.1111/tbed.14242 pmid: 34314096
[24]
BORCA M V, RAMIREZ-MEDINA E, SILVA E, VUONO E, RAI A, PRUITT S, HOLINKA L G, VELAZQUEZ-SALINAS L, ZHU J, GLADUE D P. Development of a highly effective African swine fever virus vaccine by deletion of the I177L gene results in sterile immunity against the current epidemic Eurasia strain. Journal of Virology, 2020, 94(7): e02017-e02019.
[25]
MONTEAGUDO P L, LACASTA A, LÓPEZ E, BOSCH L, COLLADO J, PINA-PEDRERO S, CORREA-FIZ F, ACCENSI F, NAVAS M J, VIDAL E, BUSTOS M J, RODRÍGUEZ J M, GALLEI A, NIKOLIN V, SALAS M L, RODRÍGUEZ F. BA71ΔCD2: A new recombinant live attenuated African swine fever virus with cross- protective capabilities. Journal of Virology, 2017, 91(21): e01058-17.
[26]
TEKLUE T, WANG T, LUO Y Z, HU R L, SUN Y, QIU H J. Generation and evaluation of an African swine fever virus mutant with deletion of the CD2v and UK genes. Vaccines, 2020, 8(4): 763.

doi: 10.3390/vaccines8040763
[27]
CHEN W Y, ZHAO D M, HE X J, LIU R Q, WANG Z L, ZHANG X F, LI F, SHAN D, CHEN H F, ZHANG J W, WANG L L, WEN Z Y, WANG X J, GUAN Y T, LIU J X, BU Z G. A seven-gene-deleted African swine fever virus is safe and effective as a live attenuated vaccine in pigs. Science China (Life Sciences), 2020, 63(5): 623-634.
[28]
ZHANG Y Y, KE J N, ZHANG J Y, YANG J J, YUE H X, ZHOU X T, QI Y, ZHU R N, MIAO F M, LI Q, ZHANG F, WANG Y, HAN X, MI L J, YANG J M, ZHANG S F, CHEN T, HU R L. African swine fever virus bearing an I226R gene deletion elicits robust immunity in pigs to African swine fever. Journal of Virology, 2021, 95(23): e0119921.

doi: 10.1128/JVI.01199-21
[29]
GLADUE D P, RAMIREZ-MEDINA E, VUONO E, SILVA E, RAI A, PRUITT S, ESPINOZA N, VELAZQUEZ-SALINAS L, BORCA M V. Deletion of the A137R gene from the pandemic strain of African swine fever virus attenuates the strain and offers protection against the virulent pandemic virus. Journal of Virology, 2021, 95(21): e0113921.

doi: 10.1128/JVI.01139-21
[30]
LI J N, SONG J, KANG L, HUANG L, ZHOU S J, HU L, ZHENG J, LI C Y, ZHANG X F, HE X J, ZHAO D M, BU Z G, WENG C J. pMGF505-7 R determines pathogenicity of African swine fever virus infection by inhibiting IL-1β and type I IFN production. PLoS Pathogens, 2021, 17(7): e1009733.
[31]
LI D, ZHANG J, YANG W P, LI P, RU Y, KANG W F, LI L L, RAN Y, ZHENG H X. African swine fever virus protein MGF-505-7R promotes virulence and pathogenesis by inhibiting JAK1- and JAK2-mediated signaling. Journal of Biological Chemistry, 2021, 297(5): 101190.

doi: 10.1016/j.jbc.2021.101190
[32]
RAN Y, LI D, XIONG M G, LIU H N, FENG T, SHI Z W, LI Y H, WU H N, WANG S Y, ZHENG H X, WANG Y Y. African swine fever virus I267L acts as an important virulence factor by inhibiting RNA polymerase III-RIG-I-mediated innate immunity. PLoS Pathogens, 2022, 18(1): e1010270.

doi: 10.1371/journal.ppat.1010270
[33]
ZHANG K S, YANG B, SHEN C C, ZHANG T, HAO Y, ZHANG D J, LIU H N, SHI X J, LI G L, YANG J K, LI D, ZHU Z X, TIAN H, YANG F, RU Y, CAO W J, GUO J H, HE J J, ZHENG H X, LIU X T. MGF360-9 L is a major virulence factor associated with the African swine fever virus by antagonizing the JAK/STAT signaling pathway. mBio, 2022, 13(1): e0233021.
[34]
O'DONNELL V, HOLINKA L G, SANFORD B, KRUG P W, CARLSON J, PACHECO J M, REESE B, RISATTI G R, GLADUE D P, BORCA M V. African swine fever virus Georgia isolate harboring deletions of 9GL and MGF360/505 genes is highly attenuated in swine but does not confer protection against parental virus challenge. Virus Research, 2016, 221: 8-14.

doi: 10.1016/j.virusres.2016.05.014
[35]
GLADUE D P, O'DONNELL V, RAMIREZ-MEDINA E, RAI A, PRUITT S, VUONO E A, SILVA E, VELAZQUEZ-SALINAS L, BORCA M V. Deletion of CD2-like (CD2v) and C-type lectin-like (EP153R) genes from African swine fever virus Georgia-∆9GL abrogates its effectiveness as an experimental vaccine. Viruses, 2020, 12(10): 1185.

doi: 10.3390/v12101185
[36]
LOPEZ E, BOSCH-CAMÓS L, RAMIREZ-MEDINA E, VUONO E, NAVAS M J, MUÑOZ M, ACCENSI F, ZHANG J Y, ALONSO U, ARGILAGUET J, SALAS M L, ANACHKOV N, GLADUE D P, BORCA M V, PINA-PEDRERO S, RODRIGUEZ F. Deletion mutants of the attenuated recombinant ASF virus, BA71ΔCD2, show decreased vaccine efficacy. Viruses, 2021, 13(9): 1678.

doi: 10.3390/v13091678
[37]
GAUDREAULT N N, RICHT J A. Subunit vaccine approaches for African swine fever virus. Vaccines, 2019, 7(2): 56.

doi: 10.3390/vaccines7020056
[38]
GOATLEY L C, REIS A L, PORTUGAL R, GOLDSWAIN H, SHIMMON G L, HARGREAVES Z, HO C S, MONTOYA M, SÁNCHEZ-CORDÓN P J, TAYLOR G, DIXON L K, NETHERTON C L. A pool of eight virally vectored African swine fever antigens protect pigs against fatal disease. Vaccines, 2020, 8(2): 234.

doi: 10.3390/vaccines8020234
[39]
DAI L P, GAO G F. Viral targets for vaccines against COVID-19. Nature Reviews Immunology, 2021, 21(2): 73-82.

doi: 10.1038/s41577-020-00480-0 pmid: 33340022
[40]
GEBRE M S, BRITO L A, TOSTANOSKI L H, EDWARDS D K, CARFI A, BAROUCH D H. Novel approaches for vaccine development. Cell, 2021, 184(6): 1589-1603.

doi: 10.1016/j.cell.2021.02.030 pmid: 33740454
[41]
LACASTA A, BALLESTER M, MONTEAGUDO P L, RODRÍGUEZ J M, SALAS M L, ACCENSI F, PINA-PEDRERO S, BENSAID A, ARGILAGUET J, LÓPEZ-SORIA S, HUTET E, LE POTIER M F, RODRÍGUEZ F. Expression library immunization can confer protection against lethal challenge with African swine fever virus. Journal of Virology, 2014, 88(22): 13322-13332.

doi: 10.1128/JVI.01893-14 pmid: 25210179
[42]
SUNWOO S Y, PÉREZ-NÚÑEZ D, MOROZOV I, SÁNCHEZ E G, GAUDREAULT N N, TRUJILLO J D, MUR L, NOGAL M, MADDEN D, URBANIAK K, KIM I J, MA W, REVILLA Y, RICHT J A. DNA-protein vaccination strategy does not protect from challenge with African swine fever virus Armenia 2007 strain. Vaccines, 2019, 7(1): 12.

doi: 10.3390/vaccines7010012
[43]
WANG T, SUN Y, HUANG S J, QIU H J. Multifaceted immune responses to African swine fever virus: implications for vaccine development. Veterinary Microbiology, 2020, 249: 108832.

doi: 10.1016/j.vetmic.2020.108832
[44]
SCHÄFER A, ZANI L, PIKALO J, HÜHR J, SEHL J, METTENLEITER T C, BREITHAUPT A, BLOME S, BLOHM U. T-cell responses in domestic pigs and wild boar upon infection with the moderately virulent African swine fever virus strain ‘Estonia2014’. Transboundary and Emerging Diseases, 2021, 68(5): 2733-2749.

doi: 10.1111/tbed.v68.5
[45]
SÁNCHEZ-CORDÓN P J, JABBAR T, CHAPMAN D, DIXON L K, MONTOYA M. Absence of long-term protection in domestic pigs immunized with attenuated African swine fever virus isolate OURT88/3 or BeninΔMGF correlates with increased levels of regulatory T cells and interleukin-10. Journal of Virology, 2020, 94(14): e00350-e00320.
[46]
KING K, CHAPMAN D, ARGILAGUET J M, FISHBOURNE E, HUTET E, CARIOLET R, HUTCHINGS G, OURA C A L, NETHERTON C L, MOFFAT K, TAYLOR G, LE POTIER M F, DIXON L K, TAKAMATSU H H. Protection of European domestic pigs from virulent African isolates of African swine fever virus by experimental immunisation. Vaccine, 2011, 29(28): 4593-4600.

doi: 10.1016/j.vaccine.2011.04.052 pmid: 21549789
[47]
SÁNCHEZ-CORDÓN P J, JABBAR T, BERREZAIE M, CHAPMAN D, REIS A, SASTRE P, RUEDA P, GOATLEY L, DIXON L K. Evaluation of protection induced by immunisation of domestic pigs with deletion mutant African swine fever virus BeninΔMGF by different doses and routes. Vaccine, 2018, 36(5): 707-715.

doi: 10.1016/j.vaccine.2017.12.030
[48]
MINOUNGOU G L, DIOP M, DAKOUO M, OUATTARA A K, SETTYPALLI T B K, LO M M, SIDIBE S, KANYALA E, KONE Y S, DIALLO M S, OUEDRAOGO A, COULIBALY K, OUEDRAOGO V, SOW I, NIANG M, ACHENBACH J E, WADE A, UNGER H, DIALLO A, CATTOLI G, LAMIEN C E, SIMPORE J. Molecular characterization of African swine fever viruses in Burkina Faso, Mali, and Senegal 1989-2016: Genetic diversity of ASFV in West Africa. Transboundary and Emerging Diseases, 2021, 68(5): 2842-2852.

doi: 10.1111/tbed.v68.5
[49]
DIXON L K, STAHL K, JORI F, VIAL L, PFEIFFER D U. African swine fever epidemiology and control. Annual Review of Animal Biosciences, 2020, 8: 221-246.

doi: 10.1146/annurev-animal-021419-083741 pmid: 31743062
[50]
FORTH J H, FORTH L F, BLOME S, HÖPER D, BEER M. African swine fever whole-genome sequencing-Quantity wanted but quality needed. PLoS Pathogens, 2020, 16(8): e1008779.

doi: 10.1371/journal.ppat.1008779
[51]
CACKETT G, SÝKORA M, WERNER F. Transcriptome view of a killer: African swine fever virus. Biochemical Society Transactions, 2020, 48(4): 1569-1581.

doi: 10.1042/BST20191108 pmid: 32725217
[52]
SUN H L, NIU Q L, YANG J F, ZHAO Y R, TIAN Z C, FAN J, ZHANG Z H, WANG Y W, GENG S X, ZHANG Y L, GUAN G Q, WILLIAMS D T, LUO J X, YIN H, LIU Z J. Transcriptome profiling reveals features of immune response and metabolism of acutely infected, dead and asymptomatic infection of African swine fever virus in pigs. Frontiers in Immunology, 2021, 12: 808545.

doi: 10.3389/fimmu.2021.808545
[53]
XUE Q, LIU H S, ZHU Z X, YANG F, SONG Y Y, LI Z Q, XUE Z N, CAO W J, LIU X T, ZHENG H X. African swine fever virus regulates host energy and amino acid metabolism to promote viral replication. Journal of Virology, 2022, 96(4): e0191921.

doi: 10.1128/jvi.01919-21
[54]
ALEJO A, MATAMOROS T, GUERRA M, ANDRÉS G. A proteomic atlas of the African swine fever virus particle. Journal of Virology, 2018, 92(23): e01293-e01218.
[55]
BORCA M V, HOLINKA L G, BERGGREN K A, GLADUE D P. CRISPR-Cas9, a tool to efficiently increase the development of recombinant African swine fever viruses. Scientific Reports, 2018, 8: 3154.

doi: 10.1038/s41598-018-21575-8 pmid: 29453406
[56]
FREITAS F B, SIMÕES M, FROUCO G, MARTINS C, FERREIRA F. Towards the generation of an ASFV-pA104R DISC mutant and a complementary cell line-A potential methodology for the production of a vaccine candidate. Vaccines, 2019, 7(3): 68.

doi: 10.3390/vaccines7030068
[57]
COELHO J, LEITÃO A. The African swine fever virus (ASFV) topoisomerase II as a target for viral prevention and control. Vaccines, 2020, 8(2): 312.

doi: 10.3390/vaccines8020312
[58]
CACKETT G, PORTUGAL R, MATELSKA D, DIXON L, WERNER F. African swine fever virus and host response: Transcriptome profiling of the Georgia 2007/1 strain and porcine macrophages. Journal of Virology, 2022, 96(5): e0193921.

doi: 10.1128/jvi.01939-21
[59]
WANG Y, KANG W F, YANG W P, ZHANG J, LI D, ZHENG H X. Structure of African swine fever virus and associated molecular mechanisms underlying infection and immunosuppression: A review. Frontiers in Immunology, 2021, 12: 715582.

doi: 10.3389/fimmu.2021.715582
[60]
ZHANG G L, LIU W, GAO Z, CHANG Y Y, YANG S C, PENG Q, GE S D, KANG B J, SHAO J J, CHANG H Y. Antigenic and immunogenic properties of recombinant proteins consisting of two immunodominant African swine fever virus proteins fused with bacterial lipoprotein OprI. Virology Journal, 2022, 19(1): 16.

doi: 10.1186/s12985-022-01747-9 pmid: 35062983
[61]
LOPERA-MADRID J, MEDINA-MAGÜES L G, GLADUE D P, BORCA M V, OSORIO J E. Optimization in the expression of ASFV proteins for the development of subunit vaccines using poxviruses as delivery vectors. Scientific Reports, 2021, 11: 23476.

doi: 10.1038/s41598-021-02949-x
[62]
LIU Y J, ZHANG X H, QI W B, YANG Y Z, LIU Z X, AN T Q, WU X H, CHEN J X. Prevention and control strategies of African swine fever and progress on pig farm repopulation in China. Viruses, 2021, 13(12): 2552.

doi: 10.3390/v13122552
[63]
张丽, 罗玉子, 王涛, 孙元, 仇华吉. 非洲猪瘟诊断技术发展现状与需求分析. 中国农业科技导报, 2019, 21(9): 1-11.

doi: 10.13304/j.nykjdb.2019.0209
ZHANG L, LUO Y Z, WANG T, SUN Y, QIU H J. Current progress and demand analysis of diagnostic technologies for African swine fever. Journal of Agricultural Science and Technology, 2019, 21(9): 1-11. (in Chinese)

doi: 10.13304/j.nykjdb.2019.0209
[64]
TRAN X H, LE T, NGUYEN Q H, DO T T, NGUYEN V D, GAY C G, BORCA M V, GLADUE D P. African swine fever virus vaccine candidate ASFV-G-ΔI177L efficiently protects European and native pig breeds against circulating Vietnamese field strain. Transboundary and Emerging Diseases, 2022, 69(4): e497-e504.
[65]
SEREDA A D, BALYSHEV V M, KAZAKOVA A S, IMATDINOV A R, KOLBASOV D V. Protective properties of attenuated strains of African swine fever virus belonging to seroimmunotypes I-VIII. Pathogens (Basel, Switzerland), 2020, 9(4): 274.
[66]
ROCK D L. Thoughts on African swine fever vaccines. Viruses, 2021, 13(5): 943.

doi: 10.3390/v13050943
[67]
KARGER A, PÉREZ-NÚÑEZ D, URQUIZA J, HINOJAR P, ALONSO C, FREITAS F B, REVILLA Y, LE POTIER M F, MONTOYA M. An update on African swine fever virology. Viruses, 2019, 11(9): 864.

doi: 10.3390/v11090864
[68]
QU H L, GE S Q, ZHANG Y Q, WU X D, WANG Z L. A systematic review of genotypes and serogroups of African swine fever virus. Virus Genes, 2022, 58(2): 77-87.

doi: 10.1007/s11262-021-01879-0 pmid: 35061204
[69]
GAVIER-WIDÉN D, STÅHL K, DIXON L. No hasty solutions for African swine fever. Science, 2020, 367(6478): 622-624.

doi: 10.1126/science.aaz8590
[1] FAN Shuai, ZHONG Han, YANG ZhongYuan, HE WenRui, WAN Bo, WEI ZhanYong, HAN ShiChong, ZHANG GaiPing. African Swine Fever Virus MGF110-5L-6L Induces Host Cell Translation Arrest and Stress Granule Formation by Activating the PERK/PKR-eIF2α Pathway [J]. Scientia Agricultura Sinica, 2023, 56(7): 1401-1416.
[2] ZHANG FengXi,XIAO Qi,ZHU JiaPing,YIN LiHong,ZHAO XiaLing,YAN MingShuai,XU JinHua,WEN LiBin,NIU JiaQiang,HE KongWang. Preparation and Identification of Monoclonal Antibodies to P30 Protein and Establishment of Blocking ELISA to Detecting Antibodies Against African Swine Fever Virus [J]. Scientia Agricultura Sinica, 2022, 55(16): 3256-3266.
[3] WEI Tian,WANG ChengYu,WANG FengJie,LI ZhongPeng,ZHANG FangYu,ZHANG ShouFeng,HU RongLiang,LÜ LiLiang,WANG YongZhi. Preparation of Monoclonal Antibodies Against the p30 Protein of African Swine Fever Virus and Its Mapping of Linear Epitopes [J]. Scientia Agricultura Sinica, 2022, 55(15): 3062-3070.
[4] ZHANG JingYuan,MIAO FaMing,CHEN Teng,LI Min,HU RongLiang. Development and Application of a Real-Time Fluorescent RPA Diagnostic Assay for African Swine Fever [J]. Scientia Agricultura Sinica, 2022, 55(1): 197-207.
[5] Tao WANG,Yu HAN,Li PAN,Bing WANG,MaoWen SUN,Yi WANG,YuZi LUO,HuaJi QIU,Yuan SUN. Development of a TaqMan Real-Time PCR Targeting the MGF360-13L Gene of African Swine Fever Virus [J]. Scientia Agricultura Sinica, 2021, 54(5): 1073-1080.
[6] YuZi LUO,Yuan SUN,Tao WANG,HuaJi QIU. African Swine Fever: A Major Threat to the Chinese Swine Industry [J]. Scientia Agricultura Sinica, 2018, 51(21): 4177-4187.
[7] CAI Xue-hui. Review and Prospect of the Development and Application of Vaccines and Diagnostics for Porcine Reproductive and Respiratory Syndrome [J]. Scientia Agricultura Sinica, 2007, 40(增刊): 3336-3343.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!