Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (15): 2907-2918.doi: 10.3864/j.issn.0578-1752.2023.15.006

• PLANT PROTECTION • Previous Articles     Next Articles

Effect of Humidity on Sporulation and Release of Corynespora cassiicola and Control Technology

CHAI ALi1(), YANG HongMin1,2(), WANG ShaoHua1, ZHAO Kun1, GAO Wei3, SHI YanXia1, XIE XueWen1, LI Lei1, FAN TengFei1, LI BaoJu1()   

  1. 1 Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/State Key Laboratory of Vegetable Biobreeding, Beijing 100081
    2 College of Plant Protection, Shenyang Agricultural University, Shenyang 110866
    3 Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300381
  • Received:2023-04-26 Accepted:2023-06-06 Online:2023-08-01 Published:2023-08-05

Abstract:

【Objective】 Cucumber target leaf spot, caused by Corynespora cassiicola, has brought great economic losses to the cucumber industry. Sporulation and release of C. cassiicola spores play a significant role in the epidemiology of the disease. In this study, the regularity and the effect of humidity on sporulation and release of C. cassiicola, and the optimal application method and time for control of cucumber target leaf spot were evaluated.【Method】 The sporulation regularity of C. cassiicola was evaluated by quantifying the spore concentration on lesions of diseased cucumber leaves at 0: 00, 3: 00, 6: 00, 9: 00, 12: 00, 15: 00, 18: 00, and 21: 00, respectively. The release regularity of C. cassiicola was evaluated in different seasons of spring, summer, autumn and winter, air samples were collected from naturally infested cucumber greenhouse at 0: 00, 3: 00, 6: 00, 9: 00, 12: 00, 15: 00, 18: 00, and 21: 00, respectively, and the concentrations of C. cassiicola in the air were evaluated. The effect of relative humidity on sporulation and release of C. cassiicola was also assessed in artificial climate exposure chambers and plastic greenhouses at four different humidity conditions of continuous high humidity (RH>90%, 24 h), continuous low humidity (RH<60%, 24 h), high humidity for 12 h followed by low humidity for 12 h, and low humidity for 12 h followed by high humidity for 12 h. The control efficiency of 60% carbendazim·diethofencarb wettable powder (WP) and 500 million spores/g Pseudomonas fluorescens WP on cucumber target leaf spot disease was compared, by using powder spraying and water spraying at different application times in the field.【Result】 The study on the daily variation regularity of sporulation and release of C. cassiicola showed significant differences in the quantity of spores on diseased leaves and in the greenhouse air at different times of the day. There was a complementary relationship between the number of spores on diseased leaves and in the greenhouse air at the same time. After 18: 00, as the duration of high humidity (RH>90%) prolonged, the number of spores on diseased leaves increased, reaching a peak of 1 344 spores/cm2 at 6: 00 the next day. Then, the humidity decreased gradually to RH<60% after opening the air vent of the greenhouse, and spores were released into the greenhouse space. At 12: 00, the spore concentrations in the greenhouse air reached a peak of 12 445-110 697 spores/m3. In different seasons of spring, summer, autumn, and winter, the daily variation regularity of sporulation and release is consistent, showing that C. cassiicola produced a large amount of spores under high humidity (RH>90%) at night, and released to greenhouses under low humidity (RH<60%) during the day. In artificial climate exposure chambers and plastic greenhouses, the highest quantity of C. cassiicola spores was detected under alternating wet and dry conditions, which was significantly higher than that under continuous high humidity or continuous low humidity condition. By powder spraying at 19: 00, 60% carbendazim·diethofencarb WP and 500 million spores/g P. fluorescens WP gave the best control efficiency of 80.60% and 75.08%, respectively, and the spore inhibition efficiency was higher than 84%.【Conclusion】 Humidity is a key environmental factor affecting the spore reproduction and release of C. cassiicola. The alternating day-dry and night-wet environment in the greenhouse promotes the reproduction and diffusion of C. cassiicola, and accelerates the spread of cucumber target leaf spot. Powder spraying method is better than water spraying method for disease control, and the best application time is the evening before spore reproduction. The results of this study will contribute to the development of new strategies for the effective alleviation and control of cucumber target leaf spot.

Key words: cucumber target leaf spot, Corynespora cassiicola, humidity, sporulation, release, powder spraying, application time

Fig. 1

Sporulation regularity of C. cassiicola and temperature and relative humidity change in sporulation cabinet"

Fig. 2

Regularity of spore release of C. cassiicola in different seasons and temperature and relative humidity change in greenhouses The experiment was conducted in spring (May 2021), summer (August 2021), autumn (November 2021) and winter (February 2022) in a greenhouse where cucumber target leaf spot naturally occurred. A1-A4: Daily changes of the concentration of C. cassiicola in cucumber greenhouse in different seasons; B1-B4: Temperature and relative humidity change in cucumber greenhouse in different seasons"

Table 1

Regularity of spore release of C. cassiicola in different seasons and disease index in greenhouses"

时间
Time
孢子浓度Spore concentration (spores/m3) 病情指数
Disease index
0:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00
春(2021年5月)
Spring (2021-05)
823±44 971±171 3309±531 12943±763 23368±159 11016±2 3335±213 1723±579 43.20
夏(2021年8月)
Summer (2021-08)
779±46 1001±201 55629±853 72313±823 110697±685 82148±172 69252±150 33653±135 59.82
秋(2021年11月)
Autumn (2021-11)
823±48 1201±180 16880 ±994 46883±910 64882±990 31170±991 4755±908 2378±780 53.85
冬(2022年2月)
Winter (2022-02)
780±50 960±45 1683±835 5600±667 12445±774 1804±541 861±29 31±5 39.46

Fig. 3

Effect of relative humidity on spore production and release of C. cassiicola under artificial conditions"

Fig. 4

Effect of relative humidity on spore production and release of C. cassiicola in plastic greenhouses"

Table 2

Control efficiency on cucumber target leaf spot under different application methods and times"

药剂
Fungicide
施药方式
Application method
施药时间
Application time
病情指数
Disease index
防治效果
Control efficiency (%)
孢子浓度
Spore concentration (spores/m3)
孢子灭杀效果
Spore killing efficiency (%)
60%多菌灵·乙霉威可湿性粉剂
Carbendazim + Diethofencarb 60% WP
弥粉法施药
Powder spraying
8:00 25.08 63.45±5.28c 4727±529 71.81c
16:00 17.40 74.64±8.78b 4111±110 75.48b
19:00 13.31 80.60±4.22a 2662±268 84.12a
喷雾法施药
Water spraying
8:00 40.08 41.58±4.61d 7023±435 58.12d
16:00 39.62 42.26±3.58d 7485±336 55.36de
19:00 38.80 43.45±4.24d 7961±1068 52.52e
5亿孢子/g荧光假单胞杆菌可湿性粉剂
Pseudomonas fluorescens 500 million spores/g WP
弥粉法施药
Powder spraying
8:00 28.04 59.13±1.99c 4648±60 72.28c
16:00 23.23 66.14±2.50b 3575±160 78.68b
19:00 17.10 75.08±2.74a 2382±670 85.80a
喷雾法施药
Water spraying
8:00 42.06 38.69±9.54d 5900±448 64.81d
16:00 40.71 40.67±8.50d 5602±477 66.59d
19:00 40.10 41.55±5.05d 4941±272 70.53cd
不施药对照Control 68.61 16768±2640
[1]
王泉城, 武军, 李磊, 石延霞, 谢学文, 李宝聚, 柴阿丽. 多主棒孢菌CcTLS1对黄瓜的致病机理分析. 园艺学报, 2023, 50(3): 569-582.

doi: 10.16420/j.issn.0513-353x.2021-1056
WANG Q C, WU J, LI L, SHI Y X, XIE X W, LI B J, CHAI A L. Exploration on the function of pathogenicity-related gene CcTLS1 in Corynespora cassiicola from cucumber. Acta Horticulturae Sinica, 2023, 50(3): 569-582. (in Chinese)
[2]
SANCHEZ CASTRO M A. Leaf blight caused by Corynespora: A new disease on cucumber (Cucumis sativus) in the Valley of Culiacan, Sinaloa, Mexico, and its chemical control. Plant Disease Reporter, 1979, 63(7): 599-601.
[3]
DIXON L J, SCHLUB R L, PERNEZNY K, DATNOFF L E. Host specialization and phylogenetic diversity of Corynespora cassiicola. Phytopathology, 2009, 99(9): 1015-1027.

doi: 10.1094/PHYTO-99-9-1015
[4]
BOOSALIS M G, HAMILTON R I. Root and stem rot of soybean caused by Corynespora cassiicola (Berk.& Curt.). Wei. Plant Disease, 1957, 41: 696-698.
[5]
BOWEN K L, HAGAN A K, PEGUES M, JONES J, MILLER H B. Epidemics and yield losses due to Corynespora cassiicola on cotton. Plant Disease, 2018, 102(12): 2494-2499.

doi: 10.1094/PDIS-03-18-0382-RE
[6]
CHEE K H. Studies on sporulation, pathogenicity and epidemiology of Corynespora cassiicola on Hevea rubber. Natural Rubber Research, 1988, 3: 21-29.
[7]
CHUNG S R, LEE H S, YOU I C. Fungal keratitis caused by Corynespora cassiicola, a plant pathogen. Journal of Mycology and Infection, 2018, 23: 24-26.

doi: 10.17966/jmi
[8]
MIYAMOTO T, ISHII H, SEKO T, KOBORI S, TOMITA Y. Occurrence of Corynespora cassiicola isolates resistant to boscalid on cucumber in Ibaraki Prefecture, Japan. Plant Pathology, 2009, 58(6): 1144-1151.

doi: 10.1111/ppa.2009.58.issue-6
[9]
李宝聚, 高苇, 石延霞, 谢学文. 多主棒孢和棒孢叶斑病的研究进展. 植物保护学报, 2012, 39(2): 171-176.
LI B J, GAO W, SHI Y X, XIE X W. Progress in researches on Corynespora leaf spot. Acta Phytophylacica Sinica, 2012, 39(2): 171-176. (in Chinese)
[10]
陈璐, 石延霞, 谢学文, 柴阿丽, 李宝聚. 黄瓜棒孢叶斑病菌PCR检测方法的建立. 园艺学报, 2014, 41(3): 585-592.
CHEN L, SHI Y X, XIE X W, CHAI A L, LI B J. PCR assay for detection of Corynespora cassiicola, the causal agent of Corynespora leaf spot of cucumber. Acta Horticulturae Sinica, 2014, 41(3): 585-592. (in Chinese)
[11]
SUN B, ZHU G, XIE X, CHAI A, LI L, SHI Y, LI B. Double mutations in succinate dehydrogenase are involved in SDHI resistance in Corynespora cassiicola. Microorganisms, 2022, 10(1): 132.

doi: 10.3390/microorganisms10010132
[12]
ZHAO Q, SHI Y X, WANG Y H, XIE X W, LI L, GUO L Y, CHAI A L, LI B J. Quantifying airborne dispersal route of Corynespora cassiicola in greenhouses. Frontiers in Microbiology, 2021, 12(12): 716758.

doi: 10.3389/fmicb.2021.716758
[13]
李宝聚, 陈立芹, 孟伟军, 王福建. 湿度调控对番茄灰霉病菌侵染的影响. 植物病理学报, 2003, 33(2): 167-169.
LI B J, CHEN L Q, MENG W J, WANG F J. Effects of humidity regulation on the infection of Botrytis cinerea to tomato. Acta Phytopathologica Sinica, 2003, 33(2): 167-169. (in Chinese)
[14]
石延霞, 李宝聚, 刘学敏. 黄瓜霜霉病菌侵染若干因子的研究. 应用生态学报, 2005, 16(2): 257-261.
SHI Y X, LI B J, LIU X M. Several infection factors of Pseudoperonospora cubensis. Chinese Journal of Applied Ecology, 2005, 16(2): 257-261. (in Chinese)
[15]
SUN S L, LIAN S, FENG S L, DONG X L, WANG C X, LI B H, LIANG W X. Effects of temperature and moisture on sporulation and infection by Pseudoperonospora cubensis. Plant Disease, 2017, 101(4): 562-567.

doi: 10.1094/PDIS-09-16-1232-RE
[16]
TRAIL F, XU H X, LORANGER R, GADOURY D. Physiological and environmental aspects of ascospore discharge in Gibberella zeae (anamorph Fusarium graminearum). Mycologia, 2002, 94(2): 181-189.

doi: 10.1080/15572536.2003.11833223
[17]
JOHANSSON V, LONNELL N, RANNIK Ü, SUNDBERG S, HYLANDER K. Air humidity thresholds trigger active moss spore release to extend dispersal in space and time. Functional Ecology, 2016, 30(7): 1196-1204.

doi: 10.1111/fec.2016.30.issue-7
[18]
XIN X F, NOMURA K, AUNG K, VELASQUEZ A C, YAO J, BOUTROT F, CHANG J H, ZIPFEL C, HE S Y. Bacteria establish an aqueous living space in plants crucial for virulence. Nature, 2016, 539(7630): 524-529.

doi: 10.1038/nature20166
[19]
LIU F, LI B H, LIAN S, DONG X L, WANG C X, ZHANG Z F, LIANG W X. Effects of temperature and moisture on the infection and development of apple fruit rot caused by Phytophthora cactorum. Plant Disease, 2018, 102(9): 1811-1819.

doi: 10.1094/PDIS-07-17-1028-RE
[20]
ZHAO Q, SHI Y X, WANG Y K, XIE X W, LI L, FAN T F, GUO L Y, CHAI A L, LI B J. Temperature and humidity regulate sporulation of Corynespora cassiicola that is associated with pathogenicity in cucumber (Cucumis sativus L.). Biology, 2022, 11(11): 1675.

doi: 10.3390/biology11111675
[21]
CHAI A L, YUAN L F, LI L, SHI Y X, XIE X W, WANG Q, LI B J. Aerosol transmission of Pseudomonas amygdali pv. lachrymans in greenhouses. Science of the Total Environment, 2020, 748: 141433.

doi: 10.1016/j.scitotenv.2020.141433
[22]
ABDEL-HAMEED A A, KHODER M I, IBRAHIM Y H, SAEED Y, OSMAN M E, GHANEM S. Study on some factors affecting survivability of airborne fungi. Science of the Total Environment, 2012, 414: 696-700.

doi: 10.1016/j.scitotenv.2011.10.042
[23]
BROWN J K, HOVMOLLER M S. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science, 2002, 297(5581): 537-541.

doi: 10.1126/science.1072678 pmid: 12142520
[24]
MEYER M, COX J A, HITCHINGS M D T, BURGIN L, HORT M C, HODSON D P, GILLIGAN C A. Quantifying airborne dispersal routes of pathogens over continents to safeguard global wheat supply. Nature Plants, 2017, 3(10): 780-786.

doi: 10.1038/s41477-017-0017-5 pmid: 28947769
[25]
NELSON R R, TUNG G. Influence of some climatic factors on sporulation by an isolate of race T of Helminthosporium maydis on a susceptible malesterile corn hybrid. Plant Disease Reporter, 1973, 57: 304-307.
[26]
ARTHURS S, THOMAS M B. Effects of temperature and relative humidity on sporulation of Metarhizium anisopliae var. acridum in Mycosed Cadavers of Schistocerca gregaria. Journal of Invertebrate Pathology, 2001, 78(2): 59-65.

doi: 10.1006/jipa.2001.5050
[27]
LAWRENCE E G, ZEHR E I. Environmental effects on the development and dissemination of Cladosporium carpophilum on peach. Phytopathology, 1982, 72(7): 773-776.

doi: 10.1094/Phyto-72-773
[28]
LALANCETTE N, FOSTER K A, ROBISON D M. Quantitative models for describing temperature and moisture effects on sporulation of Phomopsis amygdali on peach. Phytopathology, 2003, 93(9): 1165-1172.

doi: 10.1094/PHYTO.2003.93.9.1165
[29]
LALANCETTE N, MCFARLAND K A, BURNETT A L. Modeling sporulation of Fusicladium carpophilum on nectarine twig lesions: Relative humidity and temperature effects. Phytopathology, 2012, 102(4): 421-428.

doi: 10.1094/PHYTO-08-10-0222
[30]
WARD S V, MANNERS J G. Environmental effects on the quantity and viability of conidia produced by Erysiphe graminis. Transactions of the British Mycological Society, 1974, 62(1): 119-128.

doi: 10.1016/S0007-1536(74)80013-6
[31]
REUVENI R, ROTEM J. Effect of humidity on epidemiological patterns of the powdery mildew (Sphaerotheca fuliginea) on squash. Phytoparasitica, 1974, 2(1): 25-33.

doi: 10.1007/BF02981068
[32]
LI X, LI B H, LIAN S, DONG X L, WANG C X, LIANG W X. Effects of temperature, moisture and nutrition on conidial germination, survival, colonization and sporulation of Trichothecium roseum. European Journal of Plant Pathology, 2019, 153(2): 557-570.

doi: 10.1007/s10658-018-1583-8
[33]
JAT M K, AHIR R R. Effect of temperature, relative humidity and pH on mycelial growth and sporulation of Fusarium solani causing root rot of Indian Aloe (Aloe barbadensis Mill.). Journal of Pineal Research, 2013, 29: 181-183.
[34]
INGOLD C T. A gas phase in viable fungal spores. Nature, 1956, 177(4522): 1242-1243.

doi: 10.1038/1771242a0
[35]
揣红运, 石延霞, 柴阿丽, 杨杰, 谢学文, 李宝聚. 10%乙霉威·腐霉利微粉剂的研制及其对黄瓜棒孢叶斑病的防治效果. 中国农业科学, 2019, 52(6): 1009-1020. doi: 10.3864/j.issn.0578-1752.2019.06.005.

doi: 10.3864/j.issn.0578-1752.2019.06.005
CHUAI H Y, SHI Y X, CHAI A L, YANG J, XIE X W, LI B J. Development of 10% diethofencarb·procymidone micropowder and its control efficacy to cucumber Corynespora leaf spot. Scientia Agricultura Sinica, 2019, 52(6): 1009-1020. doi: 10.3864/j.issn.0578-1752.2019.06.005. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2019.06.005
[36]
揣红运, 谢学文, 石延霞, 柴阿丽, 李宝聚. 枯草芽胞杆菌微粉剂的研制及其对黄瓜白粉病的防治效果. 植物病理学报, 2019, 49(5): 660-669.
CHUAI H Y, XIE X W, SHI Y X, CHAI A L, LI B J. Preparation of micropowder of Bacillus subtilis and its control effect on cucumber powdery mildew. Acta Phytopathologica Sinica, 2019, 49(5): 660-669. (in Chinese)
[37]
谢学文, 揣红运, 李磊, 柴阿丽, 石延霞, 李宝聚. 10%乙霉威·腐霉利微粉剂在设施黄瓜上的沉积分布及残留消解动态. 农药学学报, 2020, 22(2): 378-387.
XIE X W, CHUAI H Y, LI L, CHAI A L, SHI Y X, LI B J. Deposition distribution and dissipation dynamics of 10% diethofencarb + procymidone micropowder in facility cucumber. Chinese Journal of Pesticide Science, 2020, 22(2): 378-387. (in Chinese)
[38]
苑宝洁, 李磊, 李新宇, 杨文, 石延霞, 柴阿丽, 张红杰, 谢学文, 李宝聚. 解淀粉芽胞杆菌ZF57微粉剂的研制及对黄瓜棒孢叶斑病的防治效果. 植物病理学报, 2022, 52(2): 235-246.
YUAN B J, LI L, LI X Y, YANG W, SHI Y X, CHAI A L, ZHANG H J, XIE X W, LI B J. Preparation of Bacillus amyloliquefaciens ZF57 micropowder and its control effect on cucumber coryneform leaf spot. Acta Phytopathologica Sinica, 2022, 52(2): 235-246. (in Chinese)
[1] LIU MingHui, TIAN HongYu, LIU ZhiGuang, GONG Biao. Effects of Urea Slow-Release Functional Fertilizer Containing Melatonin on Growth, Yield and Phosphorus Use Efficiency of Tomato Under Reduced Phosphorus Application Conditions [J]. Scientia Agricultura Sinica, 2023, 56(3): 519-528.
[2] LI Ran, XU MingGang, SUN Nan, WANG JinFeng, WANG Fei, LI JianHua. Dynamics Characteristic of Straw Decomposition and Nutrient Release Under Different C/N Ratio [J]. Scientia Agricultura Sinica, 2023, 56(11): 2118-2128.
[3] LI GuiXiang,LI XiuHuan,HAO XinChang,LI ZhiWen,LIU Feng,LIU XiLi. Sensitivity of Corynespora cassiicola to Three Common Fungicides and Its Resistance to Fluopyram from Shandong Province [J]. Scientia Agricultura Sinica, 2022, 55(7): 1359-1370.
[4] LIU ZhenRong,ZHAO WuQi,HU XinZhong,HE LiuCheng,CHEN YueYuan. Optimization of Drying Process in Oat Noodle Production [J]. Scientia Agricultura Sinica, 2022, 55(24): 4927-4942.
[5] CHEN ChunYu,CHEN SongLing,HAN YanYu,REN LiJun,ZOU HongTao,ZHANG YunLong. Preparation and Properties of Bionic Modified Water-Based Polymer Coated Urea [J]. Scientia Agricultura Sinica, 2022, 55(20): 3970-3982.
[6] LI YangMei,LIU Xin,JIA MengHan,TONG YuXin. Tipburn Injury and Nutritional Quality of Lettuce Plants as Affected by Humidity Control During the Light Period in A Plant Factory [J]. Scientia Agricultura Sinica, 2022, 55(20): 4011-4019.
[7] XU FangLei,ZHANG Jie,LI Yang,ZHANG WeiWei,BO QiFei,LI ShiQing,YUE ShanChao. Effects of Fertilization Methods on Ammonia Volatilization of Spring Maize in Dry Farming on the Loess Plateau [J]. Scientia Agricultura Sinica, 2022, 55(12): 2360-2371.
[8] JIANG WeiQin,HU Qun,YU Hang,MA HuiZhen,REN GaoLei,MA ZhongTao,ZHU Ying,WEI HaiYan,ZHANG HongCheng,LIU GuoDong,HU YaJie,GUO BaoWei. Effect of One-Time Basal Application of the Mixed Controlled-Release Nitrogen Fertilizer in Japonica Rice with Good Taste Quality [J]. Scientia Agricultura Sinica, 2021, 54(7): 1382-1396.
[9] CAO XiaoChuang,WU LongLong,ZHU ChunQuan,ZHU LianFeng,KONG YaLi,LU RuoHui,KONG HaiMin,HU ZhaoPing,DAI Feng,ZHANG JunHua,JIN QianYu. Effects of Different Irrigation and Nitrogen Application Regimes on the Yield, Nitrogen Utilization of Rice and Nitrogen Transformation in Paddy Soil [J]. Scientia Agricultura Sinica, 2021, 54(7): 1482-1498.
[10] YuYan YANG,YaoWen LI,Shuang XING,MinHong ZHANG,JingHai FENG. The Temperature-Humidity Index Estimated by the Changes of Surface Temperature of Broilers at Different Ages [J]. Scientia Agricultura Sinica, 2021, 54(6): 1270-1279.
[11] CHEN Ge,CAO LiDong,XU ChunLi,ZHAO PengYue,CAO Chong,LI FengMin,HUANG QiLiang. Performance Study of Prothioconazole Microcapsules Prepared by Solvent Evaporation Method [J]. Scientia Agricultura Sinica, 2021, 54(4): 754-767.
[12] WANG Xu,ZHANG DeQuan,ZHAO YingXin,BAI YuQiang,LI Xin,HOU ChengLi,ZHENG XiaoChun,CHEN Li. Water-Holding Capacity and Water Migration of Lamb Gigot During Dry Aging [J]. Scientia Agricultura Sinica, 2021, 54(1): 179-189.
[13] DING XiangPeng,LI GuangHao,ZHANG JiWang,LIU Peng,REN BaiZhao,ZHAO Bin. Effects of Base Application Depths of Controlled Release Urea on Yield and Nitrogen Utilization of Summer Maize [J]. Scientia Agricultura Sinica, 2020, 53(21): 4342-4354.
[14] DONG ZhiDan,SONG ShangWei,SONG ChunHui,ZHENG XianBo,JIAO Jian,WANG MiaoMiao,YAN ZhenLi,ZHANG RuiPing,BAI TuanHui. Pedigree Analysis and Breeding Inspiration of Apple Cultivars in China [J]. Scientia Agricultura Sinica, 2020, 53(21): 4485-4496.
[15] ZHANG YaFei,PENG FuTian,XIAO YuanSong,LUO JingJing,DU AnQi. Effects of Potassium Fertilizers Being Bag-Controlled Released on Fruit Yield and Quality of Peach Trees and Soil Chloride Content [J]. Scientia Agricultura Sinica, 2020, 53(19): 4035-4044.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!