Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (14): 2713-2723.doi: 10.3864/j.issn.0578-1752.2023.14.007

• PLANT PROTECTION • Previous Articles     Next Articles

Resistance Mechanism of Barnyard Grass (Echinochloa crus-galli) to Penoxsulam and Screening Herbicides for Its Control in Rice Fields

ZHANG LiYa1(), LI Qi1(), SHI ShanShan1, MA YuMeng1, LIU YaQi1, ZHAO ChaoWei1, WANG HeRu2, CAO HaiQun1, LIAO Min1, ZHAO Ning1()   

  1. 1 School of Plant Protection, Anhui Agricultural University/Anhui Province Key Laboratory of Crop Integrated Pest Management, Hefei 230036
    2 Tianchang Agricultural Science and Technology Center Plant Protection Station, Tianchang 239300, Anhui
  • Received:2023-04-11 Accepted:2023-05-14 Online:2023-07-16 Published:2023-07-21
  • Contact: ZHAO Ning

Abstract:

【Objective】Barnyard grass (Echinochloa crus-galli) is one of the main malignant weeds in rice fields in China. Acetolactate synthase (ALS) inhibitors, such as penoxsulam, are the main herbicides for controlling E. crus-galli in rice fields. Previously, our research team identified a suspected penoxsulam-resistant E. crus-galli population, AHTC-01, in the main rice production area of Tianchang City, Anhui Province, China. The objective of this study is to clarify its resistance levels to major herbicides, investigate the possible resistance molecular mechanisms, and to provide a theoretical basis for the effective control of resistant E. crus-galli and the delay of further development of herbicide resistance.【Method】Using the greenhouse potting method, the resistance levels of AHTC-01 to penoxsulam and its resistance patterns to different herbicides were determined at the whole-plant level. The target resistance molecular mechanism was explored through target gene sequencing and real-time quantitative PCR (RT-qPCR) analysis.【Result】Compared with the susceptible E. crus-galli population AHFY-01, the suspected resistant population AHTC-01 had developed high-level resistance to penoxsulam, with a resistance index (RI) of 620. Analysis of the target-site based resistance mechanisms showed that the ALS2 gene copy in the AHTC-01 population had a mutation from tryptophan (Trp) to leucine (Leu) at codon position 574, with a population mutation frequency of 100%. At 12 h after penoxsulam treatment, the relative expression level of ALS in the resistant E. crus-galli population AHTC-01 was 2.26 times of that in the susceptible E. crus-galli population AHFY-01. AHTC-01 also exhibited varying levels of cross-resistance to three other ALS inhibitors, bispyribac sodium, pyribenzoxim, and imazamox, with RIs of 8.24, 13.36, and 20.36, respectively. However, it remained susceptible to other herbicides with different modes of action (MOAs), including the acetyl-CoA carboxylase (ACCase) inhibitors cyhalofop-butyl, fenoxaprop-P-ethyl, and clethodim, the 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor tripyrasulfone, and the synthetic auxin mimic florpyrauxifen-benzyl.【Conclusion】Mutation of the ALS2 at amino acid position 574 and ALS overexpression are one of the main reasons for the resistance of E. crus-galli population AHTC-01 to penoxsulam, which also confers cross-resistance to different ALS inhibitors. In actual agricultural production, effective control of this type of resistant E. crus-galli can still be achieved by rotating the use of other herbicides with different MOAs.

Key words: Echinochloa crus-galli, penoxsulam, acetolactate synthase (ALS), gene mutation, gene overexpression

Table 1

Detailed information of the herbicide treatments applied in the whole-plant dose-response experiments"

除草剂
Herbicide
系列剂量 Series of doses (g a.i.·hm-2)
抗性种群AHTC-01
Resistant population AHTC-01
敏感种群AHFY-01
Susceptible population AHFY-01
五氟磺草胺Penoxsulam 0, 60, 120, 240, 480, 960, 1920 0, 0.04, 0.12, 0.37, 1.11, 3.33, 10
双草醚Bispyribac-sodium 0, 45, 90, 180, 360, 720, 1440 0, 5.60, 11.30, 22.50, 45, 90, 180
嘧啶肟草醚Pyribenzoxim 0, 37.50, 75, 150, 300, 600, 1200 0, 4.70, 9.40, 18.80, 37.50, 75, 150
甲氧咪草烟Imazamox 0, 24, 48, 96, 192, 384, 768 0, 3, 6, 12, 24, 48, 96
氰氟草酯Cyhalofop-butyl 0, 0.49, 1.48, 4.44, 13.33, 40, 120 0, 0.49, 1.48, 4.44, 13.33, 40, 120
精噁唑禾草灵Fenoxaprop-P-ethyl 0, 0.10, 0.50, 2.50, 12.40, 62.10, 310.50 0, 0.02, 0.10, 0.50, 2.50, 12.40, 62.10
烯草酮Clethodim 0, 0.03, 0.17, 0.86, 4.32, 21.60, 108 0, 0.03, 0.17, 0.86, 4.32, 21.60, 108
三唑磺草酮Tripyrasulfone 0, 0.04, 0.22, 1.08, 5.40, 27, 135 0, 0.04, 0.22, 1.08, 5.40, 27, 135
氯氟吡啶酯Florpyrauxifen-benzyl 0, 0.15, 0.44, 1.33, 4, 12, 36 0, 0.15, 0.44, 1.33, 4, 12, 36

Table 2

Resistance level of different E. crus-galli populations to penoxsulam"

种群
Population
整株剂量响应曲线参数 Parameters for whole-plant dose-response curves GR50
(g a.i.·hm-2)
抗性倍数
Resistance index
C D b R2
AHTC-01 26.90 (9.20) 93.25 (16.53) 5.72 (6.23) 0.91 155.00 (53.80) 620
AHFY-01 32.89 (3.82) 102.17 (7.65) 1.89 (0.67) 0.99 0.25 (0.06) -

Fig. 1

Trp574 codons of susceptible (AHFY-01, left) and resistant (AHTC-01, right) populations of E. crus-galli ALS2"

Table 3

Alignment of ALS2 copies cloned from the susceptible and resistant populations of E. crus-galli"

物种/种群
Species/Population
各氨基酸的位置和碱基及相应氨基酸序列
The amino acid position, relative sequence of nucleotide and derived amino acid
122 197 205 376 377 574 653 654
拟南芥
A. thaliana
GCA CCT GCT GAT CGT TGG AGT GGT
Ala Pro Ala Asp Arg Trp Ser Gly
AHFY-01 GCC CCC GCC GAT CGT TGG AGC GGT
Ala Pro Ala Asp Arg Trp Ser Gly
AHTC-01 GCC CCC GCC GAT CGT TTG AGC GGT
Ala Pro Ala Asp Arg Leu Ser Gly

Fig. 2

Relative expression ratio of ALS in the resistant relative to susceptible population of E. crus-galli before and after penoxsulam treatment"

Fig. 3

Dose-response curves for relative fresh weights of the resistant (AHTC-01) and susceptible (AHFY-01) plants of E. crus-galli treated with different herbicides"

Table 4

Resistance levels of the resistant E. crus-galli population AHTC-01 to other herbicides"

除草剂
Herbicide
GR50 (g a.i.·hm-2) 抗性倍数
Resistance index
AHTC-01 AHFY-01
双草醚Bispyribac-sodium 190.09 (8.30) 23.07 (2.56) 8.24
嘧啶肟草醚Pyribenzoxim 207.05 (45.02) 15.50 (6.68) 13.36
甲氧咪草烟Imazamox 197.32 (55.85) 9.69 (2.18) 20.36
氰氟草酯Cyhalofop-butyl 7.79 (0.45) 5.74 (0.35) 1.37
精噁唑禾草灵Fenoxaprop-P-ethyl 3.44 (0.27) 2.06 (0.30) 1.67
烯草酮Clethodim 4.75 (2.20) 3.27 (1.55) 1.45
三唑磺草酮Tripyrasulfone 5.27 (1.80) 5.04 (2.58) 1.05
氯氟吡啶酯Florpyrauxifen-benzyl 1.04 (0.12) 1.31 (0.49) 0.80
[1]
GUO L, QIU J, YE C. JIN G, MAO L, ZHANG H, YANG X, PENG Q, WANG Y, JIA L, et al. Echinochloa crus-galli genome analysis provides insight into its adaptation and invasiveness as a weed. Nature Communications, 2017, 8(1): 1031.

doi: 10.1038/s41467-017-01067-5
[2]
MAUN M A, BARRETT S C H. The biology of Canadian weeds. 77. Echinochloa crus-galli (L.) Beauv. Canadian Journal of Plant Science, 1986, 66(3): 739-759.

doi: 10.4141/cjps86-093
[3]
BAJWA A A, JABRAN K, SHAHID M, ALI H H, CHAUHAN B S. Eco-biology and management of Echinochloa crus-galli. Crop Protection, 2015, 75: 151-162.

doi: 10.1016/j.cropro.2015.06.001
[4]
CHAUHAN B S, JOHNSON D E. Implications of narrow crop row spacing and delayed Echinochloa colona and Echinochloa crus-galli emergence for weed growth and crop yield loss in aerobic rice. Field Crops Research, 2010, 117(2/3): 177-182.

doi: 10.1016/j.fcr.2010.02.014
[5]
LONHIENNE T, CHENG Y, GARCIA M D, HU S H, LOW Y S, SCHENK G, WILLIAMS C M, GUDDAT L W. Structural basis of resistance to herbicides that target acetohydroxyacid synthase. Nature Communications, 2022, 13(1): 3368.

doi: 10.1038/s41467-022-31023-x pmid: 35690625
[6]
MCCOURT J A, PANG S S, KING-SCOTT J, GUDDAT L W, DUGGLEBY R G. Herbicide-binding sites revealed in the structure of plant acetohydroxyacid synthase. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(3): 569-573.
[7]
JABUSCH T W, TJEERDEMA R S. Partitioning of penoxsulam, a new sulfonamide herbicide. Journal of Agricultural and Food Chemistry, 2005, 53(18): 7179-7183.

pmid: 16131127
[8]
NORSWORTHY J K, WARD S M, SHAW D R, LLEWELLYN R S, NICHOLS R L, WEBSTER T M, BRADLEY K W, FRISVOLD G, POWLES S B, BURGOS N R, WITT W W, BARRETT M. Reducing the risks of herbicide resistance: Best management practices and recommendations. Weed Science, 2012, 60(SP1): 31-62.

doi: 10.1614/WS-D-11-00155.1
[9]
王琼, 陈国奇, 姜英, 王庆亚, 姚振威, 董立尧. 水稻田稗属 (Echinochloa spp.)杂草对稻田常用除草剂的敏感性. 南京农业大学学报, 2015, 38(5): 804-809.
WANG Q, CHEN G Q, JIANG Y, WANG Q Y, YAO Z W, DONG L Y. Sensitivity of Echinochloa species to frequently used herbicides in paddy rice field. Journal of Nanjing Agricultural University, 2015, 38(5): 804-809. (in Chinese)
[10]
王晓琳, 牛利川, 蒋翊宸, 张卓亚, 李贵. 不同稗草种群对五氟磺草胺的敏感性差异. 杂草学报, 2017, 35(1): 8-14.
WANG X L, NIU L C, JIANG Y C, ZHANG Z Y, LI G. The sensitivity of different Echinochloa crus-galli populations to penoxsulam. Journal of Weed Science, 2017, 35(1): 8-14. (in Chinese)
[11]
仵奎. 硬稃稗 (Echinochloa glabrescens)对五氟磺草胺的抗药性机理研究[D]. 南京: 南京农业大学, 2017.
WU K. Study on resistance of Echinochloa glabrescens to penoxsulam[D]. Nanjing: Nanjing Agricultural University, 2017. (in Chinese)
[12]
FANG J P, YANG D C, ZHAO Z R, CHEN J Y, DONG L Y. A novel Phe-206-Leu mutation in acetolactate synthase confers resistance to penoxsulam in barnyardgrass (Echinochloa crus-galli (L.) P. Beauv). Pest Management Science, 2022, 78(6): 2560-2570.

doi: 10.1002/ps.v78.6
[13]
CHEN G Q, WANG Q, YAO Z W, ZHU L F, DONG L Y. Penoxsulam-resistant barnyardgrass (Echinochloa crus-galli) in rice fields in China. Weed Biology and Management, 2016, 16(1): 16-23.

doi: 10.1111/wbm.2016.16.issue-1
[14]
CHEN G Q, ZHANG W, FANG J P, DONG L Y. Identification of massive molecular markers in Echinochloa phyllopogon using a restriction-site associated DNA approach. Plant Diversity, 2017, 39(5): 287-293.

doi: 10.1016/j.pld.2017.08.004
[15]
FENG T Q, PENG Q, WANG L, XIE Y, OUYANG K, LI F, ZHOU H Z, MA H J. Multiple resistance mechanisms to penoxsulam in Echinochloa crus-galli from China. Pesticide Biochemistry and Physiology, 2022, 187: 105211.

doi: 10.1016/j.pestbp.2022.105211
[16]
马国兰, 刘都才, 张帅, 李新文, 刘雪源, 彭亚军, 李巳夫, 柏连阳. 稻田稗属杂草田间种群对五氟磺草胺的抗性监测. 农药学学报, 2021, 23(5): 905-914.
MA G L, LIU D C, ZHANG S, LI X W, LIU X Y, PENG Y J, LI S F, BAI L Y. Resistance detection of field populations of Echinochloa spp. to penoxsulam. Chinese Journal of Pesticide Science, 2021, 23(5): 905-914. (in Chinese)
[17]
刘庆虎, 陈国奇, 张玉华, 孙仲华, 董立尧. 不同叶龄千金子、稗和马唐对氰氟草酯和五氟磺草胺的敏感性. 南京农业大学学报, 2016, 39(5): 771-776.
LIU Q H, CHEN G Q, ZHANG Y H, SUN Z H, DONG L Y. Sensitivities of Leptochloa chinensis, Echinochloa crusgalli and Digitaria sanguinalis at different leaf stages to cyhalofop-butyl and penoxsulam. Journal of Nanjing Agricultural University, 2016, 39(5): 771-776. (in Chinese)
[18]
GAINES T A, DUKE S O, MORRAN S, RIGON C A, TRANEL P J, KÜPPER A, DAYAN F E. Mechanisms of evolved herbicide resistance. Journal of Biological Chemistry, 2020, 295(30): 10307-10330.

doi: 10.1074/jbc.REV120.013572 pmid: 32430396
[19]
POWLES S B, YU Q. Evolution in action: Plants resistant to herbicides. Annual Review of Plant Biology, 2010, 61: 317-347.

doi: 10.1146/annurev-arplant-042809-112119 pmid: 20192743
[20]
HEAP I. The International Herbicide-Resistant Weed Database. http://www.weedscience.org.
[21]
TRANEL P J, WRIGHT T R. Resistance of weeds to ALS-inhibiting herbicides: What have we learned?. Weed Science, 2002, 50(6): 700-712.

doi: 10.1614/0043-1745(2002)050[0700:RROWTA]2.0.CO;2
[22]
SEN M K, HAMOUZOVÁ K, MIKULKA J, BHARATI R, KOŠNAROVÁ P, HAMOUZ P, ROY A, SOUKUP J. Enhanced metabolism and target gene overexpression confer resistance against acetolactate synthase-inhibiting herbicides in Bromus sterilis. Pest Management Science, 2021, 77(4): 2122-2128.

doi: 10.1002/ps.v77.4
[23]
ZHAO N, YAN Y Y, WANG H Z, BAI S, WANG Q, LIU W T, WANG J X. Acetolactate synthase overexpression in mesosulfuron- methyl-resistant shortawn foxtail (Alopecurus aequalis Sobol.):Reference gene selection and herbicide target gene expression analysis. Journal of Agricultural and Food Chemistry, 2018, 66(37): 9624-9634.

doi: 10.1021/acs.jafc.8b03054
[24]
黄启超, 顾琼楠, 褚世海, 陈安安, 李林, 李儒海, 孙正祥. 稗18-WJJ-Ec种群对五氟磺草胺的靶标抗性机制. 江苏农业科学, 2022, 50(19): 104-110.
HUANG Q C, GU Q N, CHU S H, CHEN A A, LI L, LI R H, SUN Z X. Target-site resistance mechanism of barnyardgrass (Echinochloa crus-galli) population 18-WJJ-Ec to penoxsulam. Jiangsu Agricultural Sciences, 2022, 50(19): 104-110. (in Chinese)
[25]
RIGON C A, GAINES T A, KÜPPER A, DAYAN F E. Metabolism- based herbicide resistance, the major threat among the non-target site resistance mechanisms. Outlooks on Pest Management, 2020, 31(4): 162-168.

doi: 10.1564/v31_aug_04
[26]
DIMAANO N G, IWAKAMI S. Cytochrome P450-mediated herbicide metabolism in plants: Current understanding and prospects. Pest Management Science, 2021, 77(1): 22-32.

doi: 10.1002/ps.v77.1
[27]
PAN L, GUO Q S, WANG J Z, SHI L, YANG X, ZHOU Y Y, YU Q, BAI L Y. CYP81A 68 confers metabolic resistance to ALS and ACCase-inhibiting herbicides and its epigenetic regulation in Echinochloa crus-galli. Journal of Hazardous Materials, 2022, 428: 128225.

doi: 10.1016/j.jhazmat.2022.128225
[28]
YAN B, ZHANG Y H, LI J, FANG J P, LIU T T, DONG L Y. Transcriptome profiling to identify cytochrome P450 genes involved in penoxsulam resistance in Echinochloa glabrescens. Pesticide Biochemistry and Physiology, 2019, 158: 112-120.

doi: 10.1016/j.pestbp.2019.04.017
[29]
FANG J P, ZHANG Y H, LIU T T, YAN B J, LI J, DONG L Y. Target-site and metabolic resistance mechanisms to penoxsulam in barnyardgrass (Echinochloa crus-galli (L.) P. Beauv). Journal of Agricultural and Food Chemistry, 2019, 67(29): 8085-8095.

doi: 10.1021/acs.jafc.9b01641
[30]
LI Q, ZHAO N, JIANG M H, WANG M L, ZHANG J X, CAO H Q, LIAO M. Metamifop resistance in Echinochloa glabrescens via glutathione S-transferases-involved enhanced metabolism. Pest Management Science, 2023, doi: 10.1002/ps.7453.

doi: 10.1002/ps.7453
[31]
JIANG M H, WANG Y F, LI W, LI Q, ZHANG J X, LIAO M, ZHAO N, CAO H Q. Investigating resistance levels to cyhalofop-butyl and mechanisms involved in Chinese sprangletop (Leptochloa chinensis L.) from Anhui Province, China. Pesticide Biochemistry and Physiology, 2022, 186: 105165.

doi: 10.1016/j.pestbp.2022.105165
[32]
IWAKAMI S, HASHIMOTO M, MATSUSHIMA K I, WATANABE H, HAMAMURA K, UCHINO A. Multiple-herbicide resistance in Echinochloa crus-galli var.formosensis, an allohexaploid weed species, in dry-seeded rice. Pesticide Biochemistry and Physiology, 2015, 119: 1-8.

doi: 10.1016/j.pestbp.2015.02.007
[33]
BECKIE H J, TARDIF F J. Herbicide cross resistance in weeds. Crop Protection, 2012, 35: 15-28.

doi: 10.1016/j.cropro.2011.12.018
[34]
郭文磊, 冯莉, 张纯, 张泰劼, 吴丹丹, 田兴山. 广东省水稻田稗对五氟磺草胺的抗性分析. 植物保护学报, 2020, 47(5): 1131-1138.
GUO W L, FENG L, ZHANG C, ZHANG T J, WU D D, TIAN X S. Resistance of barnyard grass Echinochloa crus-galli to penoxsulam in rice fields in Guangdong Province. Journal of Plant Protection, 2020, 47(5): 1131-1138. (in Chinese)
[35]
LIU J, FANG J P, HE Z Z, LI J, DONG L Y. Target site-based resistance to penoxsulam in late watergrass (Echinochloa phyllopogon) from China. Weed Science, 2019, 67(4): 380-388.

doi: 10.1017/wsc.2019.14
[36]
NTOANIDOU S, MADESIS P, DIAMANTIDIS G, ELEFTHEROHORINOS I. Trp574 substitution in the acetolactate synthase of Sinapis arvensis confers cross-resistance to tribenuron and imazamox. Pesticide Biochemistry and Physiology, 2017, 142: 9-14.

doi: 10.1016/j.pestbp.2016.12.008
[37]
YU Q, HAN H, POWLES S B. Mutations of the ALS gene endowing resistance to ALS-inhibiting herbicides in Lolium rigidum populations. Pest Management Science, 2008, 64(12): 1229-1236.

doi: 10.1002/ps.v64:12
[38]
张乐乐, 郭文磊, 李伟, 赵宁, 刘伟堂, 王金信. 荠菜对乙酰乳酸合成酶抑制剂类除草剂的抗性水平及其分子机制. 农药学学报, 2016, 18(6): 717-723.
ZHANG L L, GUO W L, LI W, ZHAO N, LIU W T, WANG J X. Resistance to acetolactate synthase-inhibiting herbicides in Capsella bursa-pastoris and its molecular resistance mechanism. Chinese Journal of Pesticide Science, 2016, 18(6): 717-723. (in Chinese)
[39]
HUANG Z F, HUANG H J, CHEN J Y, CHEN J C, WEI S H, ZHANG C X. Nicosulfuron-resistant Amaranthus retroflexus L. in Northeast China. Crop Protection, 2019, 122: 79-83.

doi: 10.1016/j.cropro.2019.04.024
[40]
SALAS R A, DAYAN F E, PAN Z Q, WATSON S B, DICKSON J W, SCOTT R C, BURGOS N R. EPSPS gene amplification in glyphosate-resistant Italian ryegrass (Lolium perenne ssp.multiflorum) from Arkansas. Pest Management Science, 2012, 68(9): 1223-1230.

doi: 10.1002/ps.v68.9
[41]
LORENTZ L, GAINES T A, NISSEN S J, WESTRA P, STREK H J, DEHNE H W, RUIZ-SANTAELLA J P, BEFFA R. Characterization of glyphosate resistance in Amaranthus tuberculatus populations. Journal of Agricultural and Food Chemistry, 2014, 62(32): 8134-8142.

doi: 10.1021/jf501040x
[42]
TRANEL P J. Herbicide-resistance mechanisms: Gene amplification is not just for glyphosate. Pest Management Science, 2017, 73(11): 2225-2226.

doi: 10.1002/ps.4679 pmid: 28755431
[43]
WANG Q, GE L A, ZHAO N, ZHANG L L, YOU L D, WANG D D, LIU W T, WANG J X. A Trp-574-Leu mutation in the acetolactate synthase (ALS) gene of Lithospermum arvense L. confers broad-spectrum resistance to ALS inhibitors. Pesticide Biochemistry and Physiology, 2019, 158: 12-17.

doi: 10.1016/j.pestbp.2019.04.001
[44]
DENG W, YANG Q, ZHANG Y Z, JIAO H T, MEI Y, LI X F, ZHENG M Q. Cross-resistance patterns to acetolactate synthase (ALS)-inhibiting herbicides of flixweed (Descurainia sophia L.) conferred by different combinations of ALS isozymes with a Pro-197-Thr mutation or a novel Trp-574-Leu mutation. Pesticide Biochemistry and Physiology, 2017, 136: 41-45.

doi: 10.1016/j.pestbp.2016.08.006
[45]
ZHENG D, KRUGER G R, SINGH S, DAVIS V M, TRANEL P J, WELLER S C, JOHNSON W G. Cross-resistance of horseweed (Conyza canadensis) populations with three different ALS mutations. Pest Management Science, 2011, 67(12): 1486-1492.

doi: 10.1002/ps.v67.12
[46]
TANG Z, WANG Z L, WANG M L, YIN F, LIAO M, CAO H Q, ZHAO N. Molecular mechanism of resistance to mesosulfuron-methyl in shortawn foxtail (Alopecurus aequalis) from China. Weed Science, 2023, doi: 10.1017/wsc.2023.23.

doi: 10.1017/wsc.2023.23
[47]
COLBACH N, CHAUVEL B, DARMENCY H, DELYE C, LE CORRE V. Choosing the best cropping systems to target pleiotropic effects when managing single-gene herbicide resistance in grass weeds. A blackgrass simulation study. Pest Management Science, 2016, 72(10): 1910-1925.

doi: 10.1002/ps.4230 pmid: 26751723
[48]
OSIPITAN O A, DILLE J A, ASSEFA Y, RADICETTI E, AYENI A, KNEZEVIC S Z. Impact of cover crop management on level of weed suppression: A meta-analysis. Crop Science, 2019, 59(3): 833-842.

doi: 10.2135/cropsci2018.09.0589
[1] SUN Jian,WANG Jin-xin,ZHANG Hong-jun,LIU Jun-liang,BIAN Sheng-nan
. Study on Mutations in ALS of Resistance to Tribenuron-Methyl in Galium aparine L.
[J]. Scientia Agricultura Sinica, 2010, 43(5): 972-977 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!