[1] |
GUO L, QIU J, YE C. JIN G, MAO L, ZHANG H, YANG X, PENG Q, WANG Y, JIA L, et al. Echinochloa crus-galli genome analysis provides insight into its adaptation and invasiveness as a weed. Nature Communications, 2017, 8(1): 1031.
doi: 10.1038/s41467-017-01067-5
|
[2] |
MAUN M A, BARRETT S C H. The biology of Canadian weeds. 77. Echinochloa crus-galli (L.) Beauv. Canadian Journal of Plant Science, 1986, 66(3): 739-759.
doi: 10.4141/cjps86-093
|
[3] |
BAJWA A A, JABRAN K, SHAHID M, ALI H H, CHAUHAN B S. Eco-biology and management of Echinochloa crus-galli. Crop Protection, 2015, 75: 151-162.
doi: 10.1016/j.cropro.2015.06.001
|
[4] |
CHAUHAN B S, JOHNSON D E. Implications of narrow crop row spacing and delayed Echinochloa colona and Echinochloa crus-galli emergence for weed growth and crop yield loss in aerobic rice. Field Crops Research, 2010, 117(2/3): 177-182.
doi: 10.1016/j.fcr.2010.02.014
|
[5] |
LONHIENNE T, CHENG Y, GARCIA M D, HU S H, LOW Y S, SCHENK G, WILLIAMS C M, GUDDAT L W. Structural basis of resistance to herbicides that target acetohydroxyacid synthase. Nature Communications, 2022, 13(1): 3368.
doi: 10.1038/s41467-022-31023-x
pmid: 35690625
|
[6] |
MCCOURT J A, PANG S S, KING-SCOTT J, GUDDAT L W, DUGGLEBY R G. Herbicide-binding sites revealed in the structure of plant acetohydroxyacid synthase. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(3): 569-573.
|
[7] |
JABUSCH T W, TJEERDEMA R S. Partitioning of penoxsulam, a new sulfonamide herbicide. Journal of Agricultural and Food Chemistry, 2005, 53(18): 7179-7183.
pmid: 16131127
|
[8] |
NORSWORTHY J K, WARD S M, SHAW D R, LLEWELLYN R S, NICHOLS R L, WEBSTER T M, BRADLEY K W, FRISVOLD G, POWLES S B, BURGOS N R, WITT W W, BARRETT M. Reducing the risks of herbicide resistance: Best management practices and recommendations. Weed Science, 2012, 60(SP1): 31-62.
doi: 10.1614/WS-D-11-00155.1
|
[9] |
王琼, 陈国奇, 姜英, 王庆亚, 姚振威, 董立尧. 水稻田稗属 (Echinochloa spp.)杂草对稻田常用除草剂的敏感性. 南京农业大学学报, 2015, 38(5): 804-809.
|
|
WANG Q, CHEN G Q, JIANG Y, WANG Q Y, YAO Z W, DONG L Y. Sensitivity of Echinochloa species to frequently used herbicides in paddy rice field. Journal of Nanjing Agricultural University, 2015, 38(5): 804-809. (in Chinese)
|
[10] |
王晓琳, 牛利川, 蒋翊宸, 张卓亚, 李贵. 不同稗草种群对五氟磺草胺的敏感性差异. 杂草学报, 2017, 35(1): 8-14.
|
|
WANG X L, NIU L C, JIANG Y C, ZHANG Z Y, LI G. The sensitivity of different Echinochloa crus-galli populations to penoxsulam. Journal of Weed Science, 2017, 35(1): 8-14. (in Chinese)
|
[11] |
仵奎. 硬稃稗 (Echinochloa glabrescens)对五氟磺草胺的抗药性机理研究[D]. 南京: 南京农业大学, 2017.
|
|
WU K. Study on resistance of Echinochloa glabrescens to penoxsulam[D]. Nanjing: Nanjing Agricultural University, 2017. (in Chinese)
|
[12] |
FANG J P, YANG D C, ZHAO Z R, CHEN J Y, DONG L Y. A novel Phe-206-Leu mutation in acetolactate synthase confers resistance to penoxsulam in barnyardgrass (Echinochloa crus-galli (L.) P. Beauv). Pest Management Science, 2022, 78(6): 2560-2570.
doi: 10.1002/ps.v78.6
|
[13] |
CHEN G Q, WANG Q, YAO Z W, ZHU L F, DONG L Y. Penoxsulam-resistant barnyardgrass (Echinochloa crus-galli) in rice fields in China. Weed Biology and Management, 2016, 16(1): 16-23.
doi: 10.1111/wbm.2016.16.issue-1
|
[14] |
CHEN G Q, ZHANG W, FANG J P, DONG L Y. Identification of massive molecular markers in Echinochloa phyllopogon using a restriction-site associated DNA approach. Plant Diversity, 2017, 39(5): 287-293.
doi: 10.1016/j.pld.2017.08.004
|
[15] |
FENG T Q, PENG Q, WANG L, XIE Y, OUYANG K, LI F, ZHOU H Z, MA H J. Multiple resistance mechanisms to penoxsulam in Echinochloa crus-galli from China. Pesticide Biochemistry and Physiology, 2022, 187: 105211.
doi: 10.1016/j.pestbp.2022.105211
|
[16] |
马国兰, 刘都才, 张帅, 李新文, 刘雪源, 彭亚军, 李巳夫, 柏连阳. 稻田稗属杂草田间种群对五氟磺草胺的抗性监测. 农药学学报, 2021, 23(5): 905-914.
|
|
MA G L, LIU D C, ZHANG S, LI X W, LIU X Y, PENG Y J, LI S F, BAI L Y. Resistance detection of field populations of Echinochloa spp. to penoxsulam. Chinese Journal of Pesticide Science, 2021, 23(5): 905-914. (in Chinese)
|
[17] |
刘庆虎, 陈国奇, 张玉华, 孙仲华, 董立尧. 不同叶龄千金子、稗和马唐对氰氟草酯和五氟磺草胺的敏感性. 南京农业大学学报, 2016, 39(5): 771-776.
|
|
LIU Q H, CHEN G Q, ZHANG Y H, SUN Z H, DONG L Y. Sensitivities of Leptochloa chinensis, Echinochloa crusgalli and Digitaria sanguinalis at different leaf stages to cyhalofop-butyl and penoxsulam. Journal of Nanjing Agricultural University, 2016, 39(5): 771-776. (in Chinese)
|
[18] |
GAINES T A, DUKE S O, MORRAN S, RIGON C A, TRANEL P J, KÜPPER A, DAYAN F E. Mechanisms of evolved herbicide resistance. Journal of Biological Chemistry, 2020, 295(30): 10307-10330.
doi: 10.1074/jbc.REV120.013572
pmid: 32430396
|
[19] |
POWLES S B, YU Q. Evolution in action: Plants resistant to herbicides. Annual Review of Plant Biology, 2010, 61: 317-347.
doi: 10.1146/annurev-arplant-042809-112119
pmid: 20192743
|
[20] |
HEAP I. The International Herbicide-Resistant Weed Database. http://www.weedscience.org.
|
[21] |
TRANEL P J, WRIGHT T R. Resistance of weeds to ALS-inhibiting herbicides: What have we learned?. Weed Science, 2002, 50(6): 700-712.
doi: 10.1614/0043-1745(2002)050[0700:RROWTA]2.0.CO;2
|
[22] |
SEN M K, HAMOUZOVÁ K, MIKULKA J, BHARATI R, KOŠNAROVÁ P, HAMOUZ P, ROY A, SOUKUP J. Enhanced metabolism and target gene overexpression confer resistance against acetolactate synthase-inhibiting herbicides in Bromus sterilis. Pest Management Science, 2021, 77(4): 2122-2128.
doi: 10.1002/ps.v77.4
|
[23] |
ZHAO N, YAN Y Y, WANG H Z, BAI S, WANG Q, LIU W T, WANG J X. Acetolactate synthase overexpression in mesosulfuron- methyl-resistant shortawn foxtail (Alopecurus aequalis Sobol.):Reference gene selection and herbicide target gene expression analysis. Journal of Agricultural and Food Chemistry, 2018, 66(37): 9624-9634.
doi: 10.1021/acs.jafc.8b03054
|
[24] |
黄启超, 顾琼楠, 褚世海, 陈安安, 李林, 李儒海, 孙正祥. 稗18-WJJ-Ec种群对五氟磺草胺的靶标抗性机制. 江苏农业科学, 2022, 50(19): 104-110.
|
|
HUANG Q C, GU Q N, CHU S H, CHEN A A, LI L, LI R H, SUN Z X. Target-site resistance mechanism of barnyardgrass (Echinochloa crus-galli) population 18-WJJ-Ec to penoxsulam. Jiangsu Agricultural Sciences, 2022, 50(19): 104-110. (in Chinese)
|
[25] |
RIGON C A, GAINES T A, KÜPPER A, DAYAN F E. Metabolism- based herbicide resistance, the major threat among the non-target site resistance mechanisms. Outlooks on Pest Management, 2020, 31(4): 162-168.
doi: 10.1564/v31_aug_04
|
[26] |
DIMAANO N G, IWAKAMI S. Cytochrome P450-mediated herbicide metabolism in plants: Current understanding and prospects. Pest Management Science, 2021, 77(1): 22-32.
doi: 10.1002/ps.v77.1
|
[27] |
PAN L, GUO Q S, WANG J Z, SHI L, YANG X, ZHOU Y Y, YU Q, BAI L Y. CYP81A 68 confers metabolic resistance to ALS and ACCase-inhibiting herbicides and its epigenetic regulation in Echinochloa crus-galli. Journal of Hazardous Materials, 2022, 428: 128225.
doi: 10.1016/j.jhazmat.2022.128225
|
[28] |
YAN B, ZHANG Y H, LI J, FANG J P, LIU T T, DONG L Y. Transcriptome profiling to identify cytochrome P450 genes involved in penoxsulam resistance in Echinochloa glabrescens. Pesticide Biochemistry and Physiology, 2019, 158: 112-120.
doi: 10.1016/j.pestbp.2019.04.017
|
[29] |
FANG J P, ZHANG Y H, LIU T T, YAN B J, LI J, DONG L Y. Target-site and metabolic resistance mechanisms to penoxsulam in barnyardgrass (Echinochloa crus-galli (L.) P. Beauv). Journal of Agricultural and Food Chemistry, 2019, 67(29): 8085-8095.
doi: 10.1021/acs.jafc.9b01641
|
[30] |
LI Q, ZHAO N, JIANG M H, WANG M L, ZHANG J X, CAO H Q, LIAO M. Metamifop resistance in Echinochloa glabrescens via glutathione S-transferases-involved enhanced metabolism. Pest Management Science, 2023, doi: 10.1002/ps.7453.
doi: 10.1002/ps.7453
|
[31] |
JIANG M H, WANG Y F, LI W, LI Q, ZHANG J X, LIAO M, ZHAO N, CAO H Q. Investigating resistance levels to cyhalofop-butyl and mechanisms involved in Chinese sprangletop (Leptochloa chinensis L.) from Anhui Province, China. Pesticide Biochemistry and Physiology, 2022, 186: 105165.
doi: 10.1016/j.pestbp.2022.105165
|
[32] |
IWAKAMI S, HASHIMOTO M, MATSUSHIMA K I, WATANABE H, HAMAMURA K, UCHINO A. Multiple-herbicide resistance in Echinochloa crus-galli var.formosensis, an allohexaploid weed species, in dry-seeded rice. Pesticide Biochemistry and Physiology, 2015, 119: 1-8.
doi: 10.1016/j.pestbp.2015.02.007
|
[33] |
BECKIE H J, TARDIF F J. Herbicide cross resistance in weeds. Crop Protection, 2012, 35: 15-28.
doi: 10.1016/j.cropro.2011.12.018
|
[34] |
郭文磊, 冯莉, 张纯, 张泰劼, 吴丹丹, 田兴山. 广东省水稻田稗对五氟磺草胺的抗性分析. 植物保护学报, 2020, 47(5): 1131-1138.
|
|
GUO W L, FENG L, ZHANG C, ZHANG T J, WU D D, TIAN X S. Resistance of barnyard grass Echinochloa crus-galli to penoxsulam in rice fields in Guangdong Province. Journal of Plant Protection, 2020, 47(5): 1131-1138. (in Chinese)
|
[35] |
LIU J, FANG J P, HE Z Z, LI J, DONG L Y. Target site-based resistance to penoxsulam in late watergrass (Echinochloa phyllopogon) from China. Weed Science, 2019, 67(4): 380-388.
doi: 10.1017/wsc.2019.14
|
[36] |
NTOANIDOU S, MADESIS P, DIAMANTIDIS G, ELEFTHEROHORINOS I. Trp574 substitution in the acetolactate synthase of Sinapis arvensis confers cross-resistance to tribenuron and imazamox. Pesticide Biochemistry and Physiology, 2017, 142: 9-14.
doi: 10.1016/j.pestbp.2016.12.008
|
[37] |
YU Q, HAN H, POWLES S B. Mutations of the ALS gene endowing resistance to ALS-inhibiting herbicides in Lolium rigidum populations. Pest Management Science, 2008, 64(12): 1229-1236.
doi: 10.1002/ps.v64:12
|
[38] |
张乐乐, 郭文磊, 李伟, 赵宁, 刘伟堂, 王金信. 荠菜对乙酰乳酸合成酶抑制剂类除草剂的抗性水平及其分子机制. 农药学学报, 2016, 18(6): 717-723.
|
|
ZHANG L L, GUO W L, LI W, ZHAO N, LIU W T, WANG J X. Resistance to acetolactate synthase-inhibiting herbicides in Capsella bursa-pastoris and its molecular resistance mechanism. Chinese Journal of Pesticide Science, 2016, 18(6): 717-723. (in Chinese)
|
[39] |
HUANG Z F, HUANG H J, CHEN J Y, CHEN J C, WEI S H, ZHANG C X. Nicosulfuron-resistant Amaranthus retroflexus L. in Northeast China. Crop Protection, 2019, 122: 79-83.
doi: 10.1016/j.cropro.2019.04.024
|
[40] |
SALAS R A, DAYAN F E, PAN Z Q, WATSON S B, DICKSON J W, SCOTT R C, BURGOS N R. EPSPS gene amplification in glyphosate-resistant Italian ryegrass (Lolium perenne ssp.multiflorum) from Arkansas. Pest Management Science, 2012, 68(9): 1223-1230.
doi: 10.1002/ps.v68.9
|
[41] |
LORENTZ L, GAINES T A, NISSEN S J, WESTRA P, STREK H J, DEHNE H W, RUIZ-SANTAELLA J P, BEFFA R. Characterization of glyphosate resistance in Amaranthus tuberculatus populations. Journal of Agricultural and Food Chemistry, 2014, 62(32): 8134-8142.
doi: 10.1021/jf501040x
|
[42] |
TRANEL P J. Herbicide-resistance mechanisms: Gene amplification is not just for glyphosate. Pest Management Science, 2017, 73(11): 2225-2226.
doi: 10.1002/ps.4679
pmid: 28755431
|
[43] |
WANG Q, GE L A, ZHAO N, ZHANG L L, YOU L D, WANG D D, LIU W T, WANG J X. A Trp-574-Leu mutation in the acetolactate synthase (ALS) gene of Lithospermum arvense L. confers broad-spectrum resistance to ALS inhibitors. Pesticide Biochemistry and Physiology, 2019, 158: 12-17.
doi: 10.1016/j.pestbp.2019.04.001
|
[44] |
DENG W, YANG Q, ZHANG Y Z, JIAO H T, MEI Y, LI X F, ZHENG M Q. Cross-resistance patterns to acetolactate synthase (ALS)-inhibiting herbicides of flixweed (Descurainia sophia L.) conferred by different combinations of ALS isozymes with a Pro-197-Thr mutation or a novel Trp-574-Leu mutation. Pesticide Biochemistry and Physiology, 2017, 136: 41-45.
doi: 10.1016/j.pestbp.2016.08.006
|
[45] |
ZHENG D, KRUGER G R, SINGH S, DAVIS V M, TRANEL P J, WELLER S C, JOHNSON W G. Cross-resistance of horseweed (Conyza canadensis) populations with three different ALS mutations. Pest Management Science, 2011, 67(12): 1486-1492.
doi: 10.1002/ps.v67.12
|
[46] |
TANG Z, WANG Z L, WANG M L, YIN F, LIAO M, CAO H Q, ZHAO N. Molecular mechanism of resistance to mesosulfuron-methyl in shortawn foxtail ( Alopecurus aequalis) from China. Weed Science, 2023, doi: 10.1017/wsc.2023.23.
doi: 10.1017/wsc.2023.23
|
[47] |
COLBACH N, CHAUVEL B, DARMENCY H, DELYE C, LE CORRE V. Choosing the best cropping systems to target pleiotropic effects when managing single-gene herbicide resistance in grass weeds. A blackgrass simulation study. Pest Management Science, 2016, 72(10): 1910-1925.
doi: 10.1002/ps.4230
pmid: 26751723
|
[48] |
OSIPITAN O A, DILLE J A, ASSEFA Y, RADICETTI E, AYENI A, KNEZEVIC S Z. Impact of cover crop management on level of weed suppression: A meta-analysis. Crop Science, 2019, 59(3): 833-842.
doi: 10.2135/cropsci2018.09.0589
|