Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (9): 1670-1685.doi: 10.3864/j.issn.0578-1752.2023.09.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Monitoring Wheat Lodging Based on UAV Multi-Spectral Image Feature Fusion

WEI YongKang(), YANG TianCong, ZANG ShaoLong, HE Li, DUAN JianZhao(), XIE YingXin, WANG ChenYang, FENG Wei()   

  1. College of Agronomy, Henan Agricultural University, Zhengzhou 450000
  • Received:2022-08-11 Accepted:2022-12-06 Online:2023-05-01 Published:2023-05-10

Abstract:

【Objective】The wheat lodging seriously affected the process of photosynthesis and maturity, which led to the reduction of yield and quality. In order to obtain lodging information quickly and accurately, UAV ability of remotely monitoring wheat lodging was evaluated, and a wheat lodging monitoring model was built, so as to provide a technical support for disaster assessment, insurance claims and post-disaster remediation.【Method】Five original multispectral band images, including red, green, blue, red-edge and near-infrared, were acquired by near-ground UAV. The wheat canopy image with flying height of 50 m was preprocessed to obtain digital orthophoto map (DOM) and digital surface model (DSM) with a resolution of 1.85 (cm/pixel), three types of feature information were extracted, namely spectral features, height features, and texture features. Support Vector Machine (SVM) and Random Forest (RF) were used to compare the lodging classification of six different feature set combinations, and accuracy (Acc), precision (Pre), recall (Re) and harmonic mean (F1) were used to determine the best feature combination and classifier. At the same time, three different feature set screening methods (Lasso algorithm, random forest recursive algorithm RF-RFE and Boruta algorithm) were used to comprehensively evaluate the optimized feature subset, and to establish an appropriate evaluation method for lodging classification.【Result】The results showed that the single feature spectrum and texture as well as their combinations had poor classification and evaluation results for wheat lodging, and the “salt and pepper phenomenon” was serious. On this basis, the classification accuracy of DSM information fusion was significantly improved. The random forest classifier was used to combine spectral features, texture features and height features, and the classification accuracy of wheat lodging identification reached 91.48%. In order to reduce the number of feature set variables, three feature optimization methods were adopted. Compared with the full feature set, Lasso algorithm and the RF-RFE algorithm, the optimized feature subset based on the Boruta algorithm had higher classification accuracy and better overall stability. From the perspective of the mean value of the three feature combinations containing DSM, the overall classification accuracy and Kappa coefficient were improved by 0.17% and 0.01 (full feature set), 2.45% and 0.05 (Lasso), 2.87% and 0.05 (RF-RFE), respectively. Among them, spectrum-texture-DSM was the best, with the overall classification accuracy of 92.82% and Kappa coefficient of 0.86.【Conclusion】The study showed that the Boruta algorithm could effectively optimize the number of feature subsets of the spectrum-texture-DSM combination, allow fewer feature parameters to participate in the classification, and obtain higher classification accuracy. Meanwhile, a multi-feature combination-Boruta-RFC technology model was established for accurately monitoring wheat lodging, which provided a reference for wheat disaster assessment and the formulation of remediation measures.

Key words: winter wheat, UAV, multispectral, feature fusion, lodging

Fig. 1

Location of study area"

Fig. 2

Schematic diagram of study area division"

Fig. 3

Technical flowchart"

Table 1

Vegetation indices used in this study"

植被指数 Vegetation index 公式 Formula 参考文献 Reference
差值植被指数 DVI Difference vegetation index Rred.edge-Rred [21]
归一化植被指数 NDVI Normalized difference vegetation index (Rnir-Rred)/(Rnir-Rred) [22]
比值植被指数 RVI Ratio vegetation index Rnir/Rred [21]
优化型土壤调节植被指数 OSAVI Optimized soil adjust vegetation index (1+0.6)(Rnir-Rred)/(Rnir+Rred+0.16) [23]
绿度叶绿素植被指数GCI Green chlorophyll vegetation index (Rnir/Rgreen)-1 [24]
绿度宽波段植被指数GWDRVI Green wide band vegetation index 0.9/1.1+(0.1×Rnir- Rgreen)/(0.1×Rnir+Rgreen) [25]
非线性植被指数NLI Nonlinear vegetation index (Rnir2- Rred)/(Rnir2+Rred) [26]
红边归一化植被指数RENDVI Normalized vegetation index with red edge (Rred.edge-Rred)/(Rred.edge+Rred) [16,27]

Fig. 4

Comparison of ground features elevation range between lodging and no-lodging areas of wheat"

Table 2

Statistical analysis of spectral features"

光谱特征
Spectral feature
倒伏小麦Lodging wheat 正常小麦 Normal wheat
均值
Mean (MN)
标准差
Standard deviation (SD)
均值
Mean (MN)
标准差
Standard deviation (SD)
蓝光 Blue 0.0292 0.0055 0.0173 0.0037
绿光 Green 0.1315 0.0253 0.0733 0.0184
红光 Red 0.2134 0.0366 0.1632 0.0200
红边Red edge 0.2191 0.0344 0.1404 0.0241
近红外 Near infrared 0.4635 0.0620 0.4278 0.0378
归一化植被指数 NDVI 0.8449 0.0780 0.9107 0.0367
比值植被指数 RVI 14.1055 4.2096 25.7437 7.8395
差值植被指数 DVI 0.4256 0.0659 0.4079 0.0402
绿度叶绿素植被指数 CIgreen 5.5450 1.2144 9.6541 2.0189
非线性植被指数 NLI 0.0004 0.1576 0.0517 0.1144
绿度宽动态植被指数 GWDRVI 0.3520 0.0770 0.5789 0.1068
土壤调节植被指数 OSAVI 0.7397 0.0761 0.7750 0.0396
红边归一化植被指数 RENDVI 0.7053 0.1049 0.7505 0.0381

Fig. 5

Texture feature density curve"

Table 3

Classification accuracy statistics"

特征组合
Feature combination
支持向量机SVM 随机森林 RF
准确率
Accuracy (%)
精准率
Precision (%)
召回率
Recall
(%)
F1
(%)
准确率
Accuracy (%)
精准率
Precision (%)
召回率
Recall
(%)
F1
(%)
光谱特征 Spectral feature 75.17 64.81 97.27 77.79 77.43 67.51 95.95 79.56
纹理特征 Texture feature 75.84 65.29 98.11 78.40 75.97 65.48 97.34 78.29
光谱-纹理 Spectrum-Texture 75.82 65.13 98.33 78.36 75.70 65.10 97.86 79.16
光谱-DSM Spectrum-DSM 84.83 75.69 97.31 85.15 91.48 91.59 89.11 90.33
纹理-DSM Texture-DSM 78.58 68.03 98.33 80.42 91.43 87.74 93.97 89.78
光谱-纹理-DSM Spectrum-Texture-DSM 78.52 67.95 9835 80.37 91.46 87.18 94.84 90.85

Fig. 6

Comparison of classification results of different feature combinations based on SVM and RF classification"

Fig. 7

Feature selection based on the Boruta algorithm in (a) (b) (c)、RF-RFE(d) (e) (f)、AIC (g) (h) (i); Among them, (a) (d) (g)is based on texture-DSM feature combination, (b) (e) (h) is based on spectral-DSM feature combination, and (c) (f) (i) is based on spectral-texture-DSM feature combination"

Table 4

Comparison of results of feature screening methods"

特征子集优化方法
Feature subset optimization method
纹理-DSM
Texture-DSM
光谱-DSM
Spectrum-DSM
光谱-纹理-DSM
Spectrum-Texture-DSM
平均值
Mean
Kappa系数
Kappa
总体精度
OA (%)
Kappa系数
Kappa
总体精度
OA (%)
Kappa系数
Kappa
总体精度
OA (%)
Kappa系数
Kappa
总体精度
OA (%)
全特征Full-feature 0.82 92.21 0.82 91.26 0.82 91.24 0.82 91.57
Lasso algorithm 0.75 87.54 0.77 88.80 0.83 91.54 0.78 89.29
RF-RFE algorithm 0.80 90.26 0.70 84.91 0.83 91.45 0.78 88.87
Boruta algorithm 0.82 91.15 0.82 91.26 0.86 92.82 0.83 91.74
平均值 Mean 0.80 90.29 0.78 89.06 0.84 91.76

Fig. 8

Classification results of different feature selection algorithms"

[1]
刘良云, 王纪华, 宋晓宇, 李存军, 黄文江, 赵春江. 小麦倒伏的光谱特征及遥感监测. 遥感学报, 2005(3): 323-327.
LIU L Y, WANG J H, SONG X Y, LI C J, HUANG W J, ZHAO C J. The canopy spectral features and remote sensing of wheat lodging. National Remote Sensing Bulletin, 2005(3): 323-327. (in Chinese)
[2]
杨浩, 杨贵军, 顾晓鹤, 李增元, 陈尔学, 冯琦, 杨小冬. 小麦倒伏的雷达极化特征及其遥感监测. 农业工程学报, 2014, 30(7): 1-8.
YANG H, YANG G J, GU X H, LI Z Y, CHEG E X, FENG Q, YANG X D. Radar polarimetric response features and remote sensing monitoring of wheat lodging. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(7): 1-8. (in Chinese)
[3]
姚金保, 马鸿翔, 姚国才, 杨学明, 周淼平, 张平平, 张鹏. 小麦抗倒性研究进展. 植物遗传资源学报, 2013, 14(2): 208-213.
YAO J B, MA H X, YAO G C, YANG X M, ZHOU M P, ZHANG P P, ZHANG P. Research progress on lodging resistance in wheat(Triticum aestivum L.). Journal of Plant Genetic Resources, 2013, 14(2): 208-213. (in Chinese)
[4]
王丹, 丁位华, 冯素伟, 胡铁柱, 李淦, 李笑慧, 杨艳艳, 茹振钢. 不同小麦品种茎秆特性及其与抗倒性的关系. 应用生态学报, 2016, 27(5): 1496-1502.

doi: 10.13287/j.1001-9332.201605.039
WANG D, DING W H, FENG S W, HU T Z, LI G, LI X H, YANG Y Y, RU Z G. Stem characteristics of different wheat varieties and its relationship with lodging-resistance. Chinese Journal of Applied Ecology, 2016, 27(5): 1496-1502. (in Chinese)
[5]
董荷荷, 骆永丽, 李文倩, 王元元, 张秋霞, 陈金, 金敏, 李勇, 王振林. 不同春季追氮模式对小麦茎秆抗倒性能及木质素积累的影响. 中国农业科学, 2020, 53(21): 4399-4414.

doi: 10.3864/j.issn.0578-1752.2020.21.009
DONG H H, LUO Y L, LI W Q, WANG Y Y, ZHANG Q X, CHEN J, JIN M, LI Y, WANG Z L. Effects of different spring nitrogen topdressing modes on lodging resistance and lignin accumulation of winter wheat. Scientia Agricultura Sinica, 2020, 53(21): 4399-4414. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2020.21.009
[6]
陆洲, 徐飞飞, 罗明, 梁爽, 赵晨, 冯险峰. 倒伏水稻特征分析及其多光谱遥感提取方法研究. 中国生态农业学报(中英文), 2021, 29(4): 751-761.
LU Z, XU F F, LUO M, LIANG S, ZHAO C, FENG X F. Characteristic analysis of lodging rice and study of the multi- spectral remote sensing extraction method. Chinese Journal of Eco-Agriculture, 2021, 29(4): 751-761. (in Chinese)
[7]
陈仲新, 任建强, 唐华俊, 史云, 冷佩, 刘佳, 王利民, 吴文斌, 姚艳敏, 哈斯图亚. 农业遥感研究应用进展与展望. 遥感学报, 2016, 20(5): 748-767.
CHEN Z X, REN J Q, TANG H J, SHI Y, LENG P, LIU J, WANG L M, WU W B, YAO Y M, HA S T Y. Progress and perspectives on agricultural remote sensing research and applications in China. National Remote Sensing Bulletin, 2016, 20(5): 748-767. (in Chinese)
[8]
CHU T X, STAREK M, BREWER M, MURRAY S, PRUTER L. Assessing lodging severity over an experimental maize (Zea mays L.) field using UAS images. Remote Sensing, 2017, 9(9): 923.

doi: 10.3390/rs9090923
[9]
HONKAVAARA E, SAARI H, KAIVOSOJA J, PÖLÖNEN I, HAKALA T, LITKEY P, MÄKYNEN J, PESONEN L. Processing and assessment of spectrometric, stereoscopic imagery collected using a lightweight UAV spectral camera for precision agriculture. Remote Sensing, 2013, 5(10): 5006-5039.

doi: 10.3390/rs5105006
[10]
JAY S, MAUPAS F, BENDOULA R, GORRETTA N. Retrieving LAI, chlorophyll and nitrogen contents in sugar beet crops from multi- angular optical remote sensing: Comparison of vegetation indices and PROSAIL inversion for field phenotyping. Field Crops Research, 2017, 210: 33-46.

doi: 10.1016/j.fcr.2017.05.005
[11]
CHAUHAN S, DARVISHZADEH R, LU Y, BOSCHETTI M, NELSON A. Understanding wheat lodging using multi-temporal Sentinel-1 and Sentinel-2 data. Remote Sensing of Environment, 2020, 243: 111804.

doi: 10.1016/j.rse.2020.111804
[12]
胡健波, 张健. 无人机遥感在生态学中的应用进展. 生态学报, 2018, 38(1): 20-30.
HU J B, ZHANG J. Unmanned aerial vehicle remote sensing in ecology: Advances and prospects. Acta Ecologica Sinica, 2018, 38(1): 20-30. (in Chinese)
[13]
SALAMÍ E, BARRADO C, PASTOR E. UAV flight experiments applied to the remote sensing of vegetated areas. Remote Sensing, 2014, 6(11): 11051-11081.

doi: 10.3390/rs61111051
[14]
黄艳伟, 朱红雷, 郭宁戈, 殷姝溦, 彭星玥, 王雨蝶. 基于无人机多光谱影像的冬小麦倒伏提取适宜空间分辨率研究. 麦类作物学报, 2021, 41(2): 254-261.
HUANG Y W, ZHU H L, GUO N G, YIN S W, PENG X Y, WANG Y D. Study on the suitable resolution of winter wheat lodging extraction based on UAV multispectral image. Journal of Triticeae Crops, 2021, 41(2): 254-261. (in Chinese)
[15]
BROVKINA O, CIENCIALA E, SUROVÝ P, JANATA P. Unmanned aerial vehicles (UAV) for assessment of qualitative classification of Norway spruce in temperate forest stands. Geo-Spatial Information Science, 2018, 21(1): 12-20.

doi: 10.1080/10095020.2017.1416994
[16]
张新乐, 官海翔, 刘焕军, 孟祥添, 杨昊轩, 叶强, 于微, 张汉松. 基于无人机多光谱影像的完熟期玉米倒伏面积提取. 农业工程学报, 2019, 35(19): 98-106.
ZHANG X L, GUAN H X, LIU H J, MENG X T, YANG H X, YE Q, YU W, ZHANG H S. Extraction of maize lodging area in mature period based on UAV multispectral image. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(19): 98-106. (in Chinese)
[17]
SUN Q, SUN L, SHU M Y, GU X H, YANG G J, ZHOU L F. Monitoring maize lodging grades via unmanned aerial vehicle multispectral image. Plant Phenomics, 2019, 2019: 5704154.
[18]
赵静, 潘方江, 兰玉彬, 鲁力群, 曹佃龙, 杨东建, 温昱婷. 无人机可见光遥感和特征融合的小麦倒伏面积提取. 农业工程学报, 2021, 37(3): 73-80.
ZHAO J, PAN F J, LAN Y B, LU L Q, CAO D L, YANG D J, WEN Y T. Wheat lodging area extraction using UAV visible light remote sensing and feature fusion. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(3): 73-80. (in Chinese)
[19]
王娜, 李强子, 杜鑫, 张源, 赵龙才, 王红岩. 单变量特征选择的苏北地区主要农作物遥感识别. 遥感学报, 2017, 21(4): 519-530.
WANG N, LI Q Z, DU X, ZHANG Y, ZHAO L C, WANG H Y. Identification of main crops based on the univariate feature selection in Subei. National Remote Sensing Bulletin, 2017, 21(4): 519-530. (in Chinese)
[20]
周小成, 郑磊, 黄洪宇. 基于多特征优选的无人机可见光遥感林分类型分类. 林业科学, 2021, 57(6): 24-36.
ZHOU X C, ZHENG L, HUANG H Y. Classification of forest stand based on multi-feature optimization of UAV visible light remote sensing. Scientia Silvae Sinicae, 2021, 57(6): 24-36. (in Chinese)
[21]
TIAN M L, BAN S T, YUAN T, JI Y B, MA C, LI L Y. Assessing rice lodging using UAV visible and multispectral image. International Journal of Remote Sensing, 2021, 42(23): 8840-8857.

doi: 10.1080/01431161.2021.1942575
[22]
HAN L, YANG G J, FENG H K, ZHOU C Q, YANG H, XU B, LI Z H, YANG X D. Quantitative identification of maize lodging-causing feature factors using unmanned aerial vehicle images and a nomogram computation. Remote Sensing, 2018, 10(10): 1528.

doi: 10.3390/rs10101528
[23]
HUNT E R Jr, DAUGHTRY C S T, EITEL J U H, LONG D S. Remote sensing leaf chlorophyll content using a visible band index. Agronomy Journal, 2011, 103(4): 1090-1099.

doi: 10.2134/agronj2010.0395
[24]
AHAMED T, TIAN L, ZHANG Y, TING K C. A review of remote sensing methods for biomass feedstock production. Biomass & Bioenergy, 2011, 35(7): 2455-2469.
[25]
GITELSON A A. Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. Journal of Plant Physiology, 2004, 161(2): 165-173.

doi: 10.1078/0176-1617-01176 pmid: 15022830
[26]
GOEL N S, QIN W H. Influences of canopy architecture on relationships between various vegetation indices and LAI and Fpar: A computer simulation. Remote Sensing Reviews, 1994, 10(4): 309-347.

doi: 10.1080/02757259409532252
[27]
GUAN H X, LIU H J, MENG X T, LUO C, BAO Y L, MA Y Y, YU Z Y, ZHANG X L. A quantitative monitoring method for determining maize lodging in different growth stages. Remote Sens, 2020, 12(19): 3149.

doi: 10.3390/rs12193149
[28]
李红, 张凯, 陈超, 张志洋, 刘振鹏. 基于高光谱成像技术的生菜冠层含水率检测. 农业机械学报, 2021, 52(2): 211-217, 274.
LI H, ZHANG K, CHEN C, ZHANG Z Y, LIU Z P. Detection of moisture content in lettuce canopy based on hyperspectral imaging technique. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(2): 211-217, 274. (in Chinese)
[29]
LI X H, LI X Z, LIU W, WEI B H, XU X L. A UAV-based framework for crop lodging assessment. European Journal of Agronomy, 2021, 123: 126201.

doi: 10.1016/j.eja.2020.126201
[30]
慕涛阳, 赵伟, 胡晓宇, 李丹. 基于改进的DeepLabV3+模型结合无人机遥感的水稻倒伏识别方法. 中国农业大学学报, 2022, 27(2): 143-154.
MU T Y, ZHAO W, HU X Y, LI D. Rice lodging recognition method based on UAV remote sensing combined with the improved DeepLabV3+ model. Journal of China Agricultural University, 2022, 27(2): 143-154. (in Chinese)
[31]
支俊俊, 董娅, 鲁李灿, 施金辉, 骆文慧, 周悦, 耿涛, 夏敬霞, 贾蔡. 基于无人机RGB影像的玉米种植信息高精度提取方法. 农业工程学报, 2021, 37(18): 48-54.
ZHI J J, DONG Y, LU L C, SHI J H, LUO W H, ZHOU Y, GENG T, XIA J X, JIA C. High-precision extraction method for maize planting information based on UAV RGB images. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(18): 48-54. (in Chinese)
[32]
SHAH A N, TANVEER M, REHMAN A U, AHMAD ANJUM S, IQBAL J, AHMAD R. Lodging stress in cereal-effects and management: an overview. Environmental Science and Pollution Research, 2017, 24(6): 5222-5237.

doi: 10.1007/s11356-016-8237-1
[33]
戴建国, 张国顺, 郭鹏, 曾窕俊, 崔美娜, 薛金利. 基于无人机遥感多光谱影像的棉花倒伏信息提取. 农业工程学报, 2019, 35(2): 63-70.
DAI J G, ZHANG G S, GUO P, ZENG T J, CUI M N, XUE J L. Information extraction of cotton lodging based on multi-spectral image from UAV remote sensing. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(2): 63-70. (in Chinese)
[34]
MOLAEI B, CHANDEL A, PETERS R T, KHOT L R, QUIROS VARGAS J. Investigating lodging in spearmint with overhead sprinklers compared to drag hoses using entropy values from low altitude RGB-imagery. Information Processing in Agriculture, 2022, 9(2): 335-341.

doi: 10.1016/j.inpa.2021.02.003
[35]
王立志, 顾晓鹤, 胡圣武, 杨贵军, 王磊, 范友波, 王艳杰. 基于多时相HJ-1B CCD影像的玉米倒伏灾情遥感监测. 中国农业科学, 2016, 49(21): 4120-4129.

doi: 10.3864/j.issn.0578-1752.2016.21.006
WANG L Z, GU X H, HU S W, YANG G J, WANG L, FAN Y B, WANG Y J. Remote sensing monitoring of maize lodging disaster with multi-temporal HJ-1B CCD Image. Scientia Agricultura Sinica, 2016, 49(21): 4120-4129. (in Chinese)
[36]
廖鸿燕, 周小成, 黄洪宇. 基于无人机遥感技术的台风灾害倒伏绿化树木检测. 遥感技术与应用, 2021, 36(3): 533-543.
LIAO H Y, ZHOU X C, HUANG H Y. Detection of lodging landscape trees in typhoon disaster based on unmanned aerial vehicle remote sensing. Remote Sensing Technology and Application, 2021, 36(3): 533-543. (in Chinese)
[37]
ZHOU L F, GU X H, CHENG S, YANG G J, SHU M Y, SUN Q. Analysis of plant height changes of lodged maize using UAV-LiDAR data. Agriculture, 2020, 10(5): 146.

doi: 10.3390/agriculture10050146
[38]
WILKE N, SIEGMANN B, KLINGBEIL L, BURKART A, KRASKA T, MULLER O, VAN DOORN A, HEINEMANN S, RASCHER U. Quantifying lodging percentage and lodging severity using a UAV-based canopy height model combined with an objective threshold approach. Remote Sensing, 2019, 11(5): 515.

doi: 10.3390/rs11050515
[39]
DER YANG M, HUANG K S, KUO Y H, TSAI H P, LIN L M. Spatial and spectral hybrid image classification for rice lodging assessment through UAV imagery. Remote Sensing, 2017, 9(6): 583.

doi: 10.3390/rs9060583
[40]
WANG Z, NIE C, WANG H, AO Y, JIN X. Detection and analysis of degree of maize lodging using UAV-RGB image multi-feature factors and various classification methods. ISPRS International Journal of Geo-Information, 2021, 10(5): 309.

doi: 10.3390/ijgi10050309
[41]
ISABELLE G, ANDRÉ E. An introduction to variable and feature selection. Journal of Machine Learning Research, 2003, 3(3): 1157-1182.
[42]
郭鹏, 武法东, 戴建国, 王海江, 徐丽萍, 张国顺. 基于无人机可见光影像的农田作物分类方法比较. 农业工程学报, 2017, 33(13): 112-119.
GUO P, WU F D, DAI J G, WANG H J, XU L P, ZHANG G S. Comparison of farmland crop classification methods based on visible light images of unmanned aerial vehicles. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(13): 112-119. (in Chinese)
[43]
王恺怡, 杨盛, 郭彩云, 卞希慧. 基于LASSO算法的光谱变量选择方法研究. 分析测试学报, 2022, 41(3): 398-402, 408.
WANG K Y, YANG S, GUO C Y, BIAN X H. Spectral variable selection methods based on LASSO algorithm. Journal of Instrumental Analysis, 2022, 41(3): 398-402, 408. (in Chinese)
[44]
赵静, 李志铭, 鲁力群, 贾鹏, 杨焕波, 兰玉彬. 基于无人机多光谱遥感图像的玉米田间杂草识别. 中国农业科学, 2020, 53(8): 1545-1555.

doi: 10.3864/j.issn.0578-1752.2020.08.005
ZHAO J, LI Z M, LU L Q, JIA P, YANG H B, LAN Y B. Weed identification in maize field based on multi-spectral remote sensing of unmanned aerial vehicle. Scientia Agricultura Sinica, 2020, 53(8): 1545-1555. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2020.08.005
[45]
熊皓丽, 周小成, 汪小钦, 崔雅君. 基于GEE云平台的福建省10 m分辨率茶园专题空间分布制图. 地球信息科学学报, 2021, 23(7): 1325-1337.
XIONG H L, ZHOU X C, WANG X Q, CUI Y J. Mapping the spatial distribution of tea plantations with 10 m resolution in Fujian Province using google earth engine. Journal of Geo-Information Science, 2021, 23(7): 1325-1337. (in Chinese)
[1] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[2] CHANG ChunYi, CAO Yuan, GHULAM Mustafa, LIU HongYan, ZHANG Yu, TANG Liang, LIU Bing, ZHU Yan, YAO Xia, CAO WeiXing, LIU LeiLei. Effects of Powdery Mildew on Photosynthetic Characteristics and Quantitative Simulation of Disease Severity in Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1061-1073.
[3] WANG XiaoXuan, ZHANG Min, ZHANG XinYao, WEI Peng, CHAI RuShan, ZHANG ChaoChun, ZHANG LiangLiang, LUO LaiChao, GAO HongJian. Effects of Different Varieties of Phosphate Fertilizer Application on Soil Phosphorus Transformation and Phosphorus Uptake and Utilization of Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1113-1126.
[4] GUO Yan, JING YuHang, WANG LaiGang, HUANG JingYi, HE Jia, FENG Wei, ZHENG GuoQing. UAV Multispectral Image-Based Nitrogen Content Prediction and the Transferability Analysis of the Models in Winter Wheat Plant [J]. Scientia Agricultura Sinica, 2023, 56(5): 850-865.
[5] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[6] LIN JiangYun, YIN BenSu, WANG XingShu, LIU ChenRui, SUN Qing, XIE XingXing, CHENG LingLing, SUN LiWei, SHI Mei, WANG ZhaoHui. The Accumulation of Iron and Manganese in Wheat and Its Relationship with Soil Nutrients Under Long-Term Application of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(17): 3372-3382.
[7] MU HaiMeng, SUN LiFang, WANG ZhuangZhuang, WANG Yu, SONG YiFan, ZHANG Rong, DUAN JianZhao, XIE YingXin, KANG GuoZhang, WANG YongHua, GUO TianCai. Effect of Nitrogen Application Rate and Planting Density on the Lodging Resistance and Grain Yield of Two Winter Wheat Varieties [J]. Scientia Agricultura Sinica, 2023, 56(15): 2863-2879.
[8] DONG YiFan, REN Yi, CHENG YuKun, WANG Rui, ZHANG ZhiHui, SHI XiaoLei, GENG HongWei. Genome-Wide Association Study of Grain Main Quality Related Traits in Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(11): 2047-2063.
[9] LÜ LiHua, HAN JiangWei, ZHANG JingTing, DONG ZhiQiang, MENG Jian, JIA XiuLing. Analysis of Common Characteristics of Widely Adaptation Wheat Cultivars [J]. Scientia Agricultura Sinica, 2023, 56(11): 2064-2077.
[10] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[11] FENG ZiHeng,SONG Li,ZHANG ShaoHua,JING YuHang,DUAN JianZhao,HE Li,YIN Fei,FENG Wei. Wheat Powdery Mildew Monitoring Based on Information Fusion of Multi-Spectral and Thermal Infrared Images Acquired with an Unmanned Aerial Vehicle [J]. Scientia Agricultura Sinica, 2022, 55(5): 890-906.
[12] WANG ShuTing,KONG YuGuang,ZHANG Zan,CHEN HongYan,LIU Peng. SPAD Value Inversion of Cotton Leaves Based on Satellite-UAV Spectral Fusion [J]. Scientia Agricultura Sinica, 2022, 55(24): 4823-4839.
[13] YI YingJie,HAN Kun,ZHAO Bin,LIU GuoLi,LIN DianXu,CHEN GuoQiang,REN Hao,ZHANG JiWang,REN BaiZhao,LIU Peng. The Comparison of Ammonia Volatilization Loss in Winter Wheat- Summer Maize Rotation System with Long-Term Different Fertilization Measures [J]. Scientia Agricultura Sinica, 2022, 55(23): 4600-4613.
[14] MA Xiao,CHEN PengFei. Improvement of Row Detection Method Before Wheat Canopy Closure Using Multispectral Images of UAV Image [J]. Scientia Agricultura Sinica, 2022, 55(20): 3926-3938.
[15] GENG WenJie,LI Bin,REN BaiZhao,ZHAO Bin,LIU Peng,ZHANG JiWang. Regulation Mechanism of Planting Density and Spraying Ethephon on Lignin Metabolism and Lodging Resistance of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(2): 307-319.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!