Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (12): 2288-2301.doi: 10.3864/j.issn.0578-1752.2023.12.005

• PLANT PROTECTION • Previous Articles     Next Articles

Development of a Degenerate Primer RT-PCR Assay for Detection of Carmovirus

LIAO FuRong1(), CHEN HongYun1, SHEN JianGuo2, FANG ZhiPeng1, HUANG PengYing1, CHEN Qing1, LIN LingLing1, HONG Jun1   

  1. 1 Xiamen Customs Technology Center, Xiamen 361026, Fujian
    2 Technology Center of Fuzhou Customs District, Fuzhou 350001
  • Received:2023-03-30 Accepted:2023-04-18 Online:2023-06-16 Published:2023-06-27

Abstract:

【Objective】The objective of this study is to establish a rapid, sensitive, and broad-spectrum screening method for simultaneous detection and identification of the genera Alphacarmovirus, Betacarmovirus, and Gammacarmovirus using degenerate primer RT-PCR combined with sequence analysis.【Method】Multiplexed analysis of genome sequences was aligned to search for suitable conserved regions for the design of the degenerate primers. One pair of degenerate primer Carmo-F2/Carmo-R2 was designed based on the RNA-dependent RNA polymerase (RdRp) gene sequences, and another pair primer Carmo-F2a/Carmo-R2a was formed by adding the non-complementary AT-rich sequences (AATAAATCATAA) to the 5′ end of the degenerate primers. The broad-spectrum, specificity, and sensitivity of RT-PCR method were analyzed. The sequencing, BLASTn analysis and phylogenetic analysis of PCR products were performed. The method was used to screen and detect viruses on Chinese hibiscus (Hibiscus rosa-sinensis) samples from Xiamen, China.【Result】Degenerate primers Carmo-F2/Carmo-R2 and Carmo-F2a/Carmo-R2a were used to amplify partial RdRp gene of the members of genera Alphacarmovirus, Betacarmovirus, and Gammacarmovirus by RT-PCR. The fragment of approximately 500 and 550 bp was amplified, respectively. The developed RT-PCR assay was successfully used to detect angelonia flower break virus (AnFBV; Alphacarmovirus), calibrachoa mottle virus (CbMV; Alphacarmovirus), carnation mottle virus (CarMV; Alphacarmovirus), and pelargonium flower break virus (PFBV; Alphacarmovirus), hibiscus chlorotic ringspot virus (HCRSV; Betacarmovirus), melon necrotic spot virus (MNSV; Gammacarmovirus). The specificity test showed that no specific band could be obtained from maize chlorotic mottle virus (MCMV; Machlomovirus), pelargonium line pattern virus (PLPV; Pelarspovirus), carnation ringspot virus (CRSV; Dianthovirus), and healthy plants which including watermelon, melon, pumpkin, soybean, and pea. The sensitivity results showed that the primers Carmo-F2/Carmo-R2 could be detected up to 10-2 dilution and the primers Carmo-F2a/Carmo-R2a could be detected up to 10-3 dilution, which indicated that the non-complementary AT-rich sequences added at the 5′ end of the degenerate primers could increase the sensitivity of degenerate primer RT-PCR. BLAST analysis showed that the sequences determined had the highest sequence consistency with the corresponding virus species. Phylogenetic analysis based on partial amino acid sequences of the RdRp gene showed that it is consistent with the current classification of the subfamily Procedovirinae, and the viruses could be identified at the species level. HCRSV was detected in all 13 H. rosa-sinensis samples with suspected virus symptoms.【Conclusion】The RT-PCR method based on the degenerate primers Carmo-F2/Carmo-R2 and Carmo-F2a/Carmo-R2a can be used for the screening and detection of viruses of the genera Alphacarmovirus, Betacarmovirus, and Gammacarmovirus, and can be used for rapid identification of virus species in combination with sequence analysis and phylogenetic analysis, and may be used to discover the new virus. H. rosa-sinensis plants were infested with HCRSV in Xiamen, China.

Key words: Alphacarmovirus, Betacarmovirus, Gammacarmovirus, degenerate primer, RT-PCR, Hibiscus rosa-sinensis, hibiscus chlorotic ringspot virus (HCRSV)

Table 1

List of virus isolates used in this study"

病毒Virus 分离物Isolate 提供者Provider
甲型香石竹斑驳病毒属Alphacarmovirus
香彩雀花碎色病毒Angelonia flower break virus (AnFBV) LPC36600 美国Agdia, USA
小花矮牵牛斑驳病毒Calibrachoa mottle virus (CbMV) LPC83000 美国Agdia, USA
CbMV 07008PC 德国Loewe, Germany
香石竹斑驳病毒Carnation mottle virus (CarMV) LPC68000 美国Agdia, USA
CarMV 07057PC 德国Loewe, Germany
天竺葵花碎色病毒Pelargonium flower break virus (PFBV) LPC90000 美国Agdia, USA
PFBV 07073PC 德国Loewe, Germany
乙型香石竹斑驳病毒属Betacarmovirus
木槿褪绿环斑病毒Hibiscus chlorotic ringspot virus (HCRSV) LPC12300 美国Agdia, USA
丙型香石竹斑驳病毒属Gammacarmovirus
甜瓜坏死斑点病毒Melon necrotic spot virus (MNSV) LPC12402 美国Agdia, USA
MNSV 07097PC 德国Loewe, Germany
玉米褪绿斑驳病毒属Machlomovirus
玉米褪绿斑驳病毒Maize chlorotic mottle virus (MCMV) LPC17002 美国Agdia, USA
天竺葵环斑病毒属Pelarspovirus
天竺葵线纹病毒Pelargonium line pattern virus (PLPV) 07094PC 德国Loewe, Germany
石竹属病毒属Dianthovirus
香石竹环斑病毒Carnation ringspot virus (CRSV) P20-27 中国CAIQ, China*

Table 2

Virus species genome sequence used for primer design"

病毒Virus 登录号GenBank accession number
甲型香石竹斑驳病毒属Alphacarmovirus
侧金盏花属花叶病毒Adonis mosaic virus LC171345
香彩雀花碎色病毒Angelonia flower break virus NC_007733
小花矮牵牛斑驳病毒Calibrachoa mottle virus NC_021926
香石竹斑驳病毒Carnation mottle virus NC_001265, AF192772, AJ811998, FJ843021, HQ660513, KR002041
金银花环斑病毒Honeysuckle ringspot virus NC_014967, HQ677625
羽扇豆脉明病毒Nootka lupine vein-clearing virus NC_009017
天竺葵花碎色病毒Pelargonium flower break virus NC_005286, DQ256073
巨人柱仙人掌病毒Saguaro cactus virus NC_001780
乙型香石竹斑驳病毒属Betacarmovirus
碎米荠褪绿斑驳病毒Cardamine chlorotic fleck virus NC_001600
木槿褪绿环斑病毒Hibiscus chlorotic ringspot virus NC_003608
日本鸢尾坏死环斑病毒Japanese iris necrotic ring virus NC_002187
芜菁皱缩病毒Turnip crinkle virus NC_003821
丙型香石竹斑驳病毒属Gammacarmovirus
豇豆斑驳病毒Cowpea mottle virus NC_003535
甜瓜坏死斑点病毒Melon necrotic spot virus NC_001504, JX879088
豌豆茎坏死病毒Pea stem necrosis virus NC_004995
大豆黄斑驳花叶病毒Soybean yellow mottle mosaic virus NC_011643

Table 3

Degenerate primers based on the conserved region of Alphacarmovirus, Betacarmovirus, and Gammacarmovirus"

名称Name 序列Sequence (5′-3′) * 位置Position in AF192772
Carmo-F2 GAYCCDGCHSCNMGDRTNAT 1276-1295
Carmo-R2 ACRCARTCRTCNCCRTTRTTNA 1754-1775
Carmo-F2a AATAAATCATAAGAYCCDGCHSCNMGDRTNAT 1276-1295
Carmo-R2a AATAAATCATAAACRCARTCRTCNCCRTTRTTNA 1754-1775

Fig. 1

The conserved region of Carmovirus used for the design of degenerate primers"

Table 4

Degenerate primers of carmovirus-related viruses"

名称Name 序列Sequence (5′-3′) * 位置Position in AF192772 说明Note
Carmo-II AARGTCGACCCGWNCCNMGNGTNATHCAACC 1276-1301 原序列Original sequence[29]
Carmo-VI GMMCTGCAGNACRCARTCRTCNCCRTTRTT 1756-1776 原序列Original sequence[29]
Carmo-II2 AARGTCGAYCCDGCHSCNMGDRTNATHMRDCC 1276-1301 修订后序列Modified sequence
Carmo-VI2 GMMCTGCAVNACRCARTCRTCNCCRTTRTT 1756-1776 修订后序列Modified sequence

Fig. 2

Conventional RT-PCR (A, B) and one-step RT-PCR (C, D) products of the Carmovirus species obtained by primers Carmo-F2/R2 (A, C) and Carmo-F2a/R2a (B, D)"

Fig. 3

Specificity of the degenerate primers Carmo-F2/R2 and Carmo-F2a/R2a"

Fig. 4

Sensitivity detection of degenerate primer pairs Carmo-F2/R2 and Carmo-F2a/R2a by conventional RT-PCR"

Fig. 5

Sensitivity detection of degenerate primer pairs Carmo-F2/R2 and Carmo-F2a/R2a by one-step RT-PCR"

Fig. 6

RT-PCR detection of H. rosa-sinensis viruses by Carmo-F2/R2 and Carmo-F2a/R2a 1-3: XM1-XM3; 4-6: XM4-XM6; 7-9: XM7-XM9"

Table 5

BLASTn result of the sequence of RT-PCR products amplified by degenerate primer pairs"

病毒种类,分离物Virus species, isolate 长度Length (bp) 序列一致性Nucleotide sequence identity
甲型香石竹斑驳病毒属Alphacarmovirus
AnFBV, LPC36600 (Agdia) 461 94.36% to NC_007733.2, AnFBV
CbMV, LPC83000 (Agdia) 458 99.13% to OK181769.1, CbMV
CbMV, 07008PC (Loewe) 458 99.78% to OK181769.1, CbMV
CarMV, LPC68000 (Agdia) / /
CarMV, 07057PC (Loewe) 458 99.56% to MT682299.1, CarMV
PFBV, LPC90000 (Agdia) 461 97.61% to OP357950.1, PFBV
PFBV, 07073PC (Loewe) 461 97.83% to DQ256073.1, PFBV
乙型香石竹斑驳病毒属Betacarmovirus
HCRSV, LPC12300 (Agdia) 458 99.55% to MT512573.1, HCRSV
丙型香石竹斑驳病毒属Gammacarmovirus
MNSV, 07097PC (Loewe) 464 98.71% to OK558728.1, MNSV

Table 6

BLASTn result of the H. rosa-sinensis virus isolated from Xiamen, China"

分离物
Isolate
与HCRSV的序列一致性
Nucleotide sequence identity with HCRSV
XL3 90.39% (MN080500)-98.47% (MK279671)
XM1 88.86% (MN080500)-96.72% (KC876666)
XM2 91.48% (DQ392986)-97.60% (OP779319)
XM3 89.96% (MN080500)-96.29% (MK279671)
XM4 89.96% (MN080500)-96.51% (MK279671)
XM5 89.52% (MN080500)-96.29% (MK279671)
XM6 88.86% (MN080500)-96.28% (KC876666)
XM7 90.17% (MN080500)-99.34% (KY933060)
XM8 89.96% (MN080500)-98.69% (KY933060)
XM9 90.13% (MN080500)-96.05% (MK279671)
XM11 90.13% (MN080500)-96.05% (OK636421)
XM12 90.39% (MN080500)-97.60% (MK279671)
XM13 90.39% (MN080500)-97.82% (MK279671)

Fig. 7

Phylogenetic analyses of selected members of the subfamily Procedovirinae based on partial nucleotide sequence (A) and amino acid sequence (B) of RdRp gene Alignments were made using MAFFT, and trees were generated by the maximum-likelihood (ML) method. Numbers at branches show the percentage bootstrap for 1000 replicates. The scale bars correspond to substitutions per site. ▲: Virus isolates used in this study. ●: HCRSV detected in H. rosa-sinensis in Xiamen"

[1]
ROCHON D, RUBINO L, RUSSO M, MARTELLI G P, LOMMEL S. Tombusviridae//KING A M Q, ADAMS M J, CARSTENS E B, LEFKOWITZ E J. Virus Taxonomy:Ninth Report of the International Committee on Taxonomy of Viruses. San Diego: Elsevier, 2012: 1111-1136.
[2]
蔡红, 孔宝华, 吴建宇, 陈海如, 段永嘉. 昆明香石竹斑驳病毒鉴定. 云南农业大学学报, 2001, 16(4): 263-266.
CAI H, KONG B H, WU J Y, CHEN H R, DUAN Y J. Identification of carnation mottle virus on carnation in Kunming. Journal of Yunnan Agricultural University, 2001, 16(4): 263-266. (in Chinese)
[3]
杨世安, 李战彪, 秦碧霞, 谢慧婷, 崔丽贤, 苏琴, 邓铁军, 蔡健和. 广西三种甜瓜病毒分离物的分子检测与鉴定. 植物保护, 2017, 43(3): 83-89.
YANG S A, LI Z B, QIN B X, XIE H T, CUI L X, SU Q, DENG T J, CAI J H. Molecular detection and identification of three viruses isolated from melons in Guangxi. Plant Protection, 2017, 43(3): 83-89. (in Chinese)
[4]
ZHENG G H, LIAO F R, YE T, ZHANG W Z, MING Y L. First report of hibiscus chlorotic ringspot virus infecting Hibiscus in Fujian Province, China. Plant Disease, 2018, 102(10): 2046.
[5]
ICTV. Current ICTV Taxonomy Release. https://ictv.global/taxonomy.
[6]
洪健, 周雪平. ICTV第九次报告以来的植物病毒分类系统. 植物病理学报, 2014, 44(6): 561-572.
HONG J, ZHOU X P. The universal system of plant virus taxonomy since the 9th ICTV report. Acta Phytopathologica Sinica, 2014, 44(6): 561-572. (in Chinese)
[7]
ADAMS M J, KING A M Q, CARSTENS E B. Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2013). Archives of Virology, 2013, 158: 2023-2030.

doi: 10.1007/s00705-013-1688-5 pmid: 23580178
[8]
SCHEETS K, WHITE K A, RUBINO L, MARTELLI G, ROCHON D’A. Divide the genus Carmovirus into three new genera: Alphacarmovirus, Betacarmovirus, and Gammacarmovirus. http://www.ictvonline.org/proposals-15/2015.007a-rP.A.v1.split_Carmovirus.pdf.
[9]
SCHEETS K, JORDAN R, WHITE K A, HERNÁNDEZ C. Pelarspovirus, a proposed new genus in the family Tombusviridae. Archives of Virology, 2015, 160(9): 2385-2393.

doi: 10.1007/s00705-015-2500-5
[10]
洪健, 李德葆, 周雪平. 植物病毒分类图谱. 北京: 科学出版社, 2001: 130-132.
HONG J, LI D B, ZHOU X P. Taxonomic Atlas of Plant Viruses. Beijing: Science Press, 2001: 130-132. (in Chinese)
[11]
KOWALSKA A. Studies on the properties of carnation mottle virus and carnation ringspot virus isolated in Poland. Phytopathologische Zeitschrift, 1972, 74(4): 329-341.

doi: 10.1111/j.1439-0434.1972.tb02588.x
[12]
SANDRA N, TRIPATHI A, DIKSHIT H K, MANDAL B, JAIN R K. Seed transmission of a distinct soybean yellow mottle mosaic virus strain identified from India in natural and experimental hosts. Virus Research, 2020, 280: 197903.

doi: 10.1016/j.virusres.2020.197903
[13]
GILLASPIE JR A G, MITCHELL S E, STUART G W, BOZARTH R F. RT-PCR method for detecting cowpea mottle carmovirus in Vigna germplasm. Plant Disease, 1999, 83(7): 639-643.

doi: 10.1094/PDIS.1999.83.7.639
[14]
GONZALEZ-GARZA R, GUMPF D J, KISHABA A N, BOHN G W. Identification, seed transmission, and host range pathogenicity of a California isolate of melon necrotic spot virus. Phytopathology, 1979, 69(4): 340-345.

doi: 10.1094/Phyto-69-340
[15]
HERRERA-VÁSQUEZ J A, CÓRDOBA-SELLÉS M C, CEBRIÁN M C, ALFARO-FERNÁNDEZ A, JORDÁ C. Seed transmission of melon necrotic spot virus and efficacy of seed-disinfection treatments. Plant Pathology, 2009, 58(3): 436-442.

doi: 10.1111/ppa.2009.58.issue-3
[16]
COUDRIET D L, KISHABA A N, CARROLL J E. Transmission of muskmelon necrotic spot virus in muskmelons by cucumber beetles. Journal of Economic Entomology, 1979, 72(4): 560-561.

doi: 10.1093/jee/72.4.560
[17]
TOMLINSON J A, THOMAS B J. Studies on melon necrotic spot virus disease of cucumber and on the control of the fungus vector (Olpidium radicale). Annals of Applied Biology, 1986, 108(1): 71-80.

doi: 10.1111/aab.1986.108.issue-1
[18]
OHKI T, AKITA F, MOCHIZUKI T, KANDA A, SASAYA T, TSUDA S. The protruding domain of the coat protein of melon necrotic spot virus is involved in compatibility with and transmission by the fungal vector Olpidium bornovanus. Virology, 2010, 402(1): 129-134.

doi: 10.1016/j.virol.2010.03.020
[19]
SKOTNICKI M L, MO J Q. Detection of cardamine chlorotic fleck carmovirus in soil by the polymerase chain reaction. Australasian Plant Pathology, 1996, 25(1): 18-23.

doi: 10.1071/AP96004
[20]
ALEXANDRE M A V, DUARTE L M L, RAMOS A F, HARAKAVA R. Identification and molecular characterization of carnation mottle virus Brazilian isolates from carnation. Horticultura Brasileira, 2015, 33(2): 257-260.

doi: 10.1590/S0102-053620150000200019
[21]
RAIKHY G, HALLAN V, KULSHRESTHA S, RAM R, ZAIDI A A. Multiplex PCR and genome analysis of carnation mottle virus Indian isolate. Current Science, 2006, 90(1): 74-82.
[22]
TANG J, ELLIOTT D R, QUINN B D, CLOVER G R G, ALEXANDER B J R. Occurrence of hibiscus chlorotic ringspot virus in Hibiscus spp. in New Zealand. Plant Disease, 2008, 92(9): 1367.
[23]
WYLIE S J, LI H, JONES M G K. First report of an isolate of Japanese iris necrotic ring virus from Australia. Australasian Plant Disease Notes, 2012, 7(1): 107-110.
[24]
GOSALVEZ B, NAVARRO J A, LORCA A, BOTELLA F, SANCHEZ-PINA M A, PALLAS V. Detection of melon necrotic spot virus in water samples and melon plants by molecular methods. Journal of Virological Methods, 2003, 113(2): 87-93.

pmid: 14553894
[25]
FRANCK A, LOEBENSTEIN G, GERA A. Use of the reverse transcription-polymerase chain reaction for the detection of pelargonium flower break carmovirus. Journal of Phytopathology, 1997, 145(5/6): 235-238.

doi: 10.1111/j.1439-0434.1997.tb00392.x
[26]
DENG D, MCGRATH P F, ROBINSON D J, HARRISON B D. Detection and differentiation of whitefly-transmitted geminiviruses in plants and vector insects by the polymerase chain reaction with degenerate primers. Annals of Applied Biology, 1994, 125(2): 327-336.

doi: 10.1111/aab.1994.125.issue-2
[27]
CHEN J, ADAMS M J. A universal PCR primer to detect members of the Potyviridae and its use to examine the taxonomic status of several members of the family. Archives of Virology, 2001, 146(4): 757-766.

doi: 10.1007/s007050170144
[28]
VAN DER VLUGT R A A, BERENDSEN M. Development of a general potexvirus detection method. European Journal of Plant Pathology, 2002, 108: 367-371.

doi: 10.1023/A:1015644409484
[29]
MOROZOV S Y, RYABOV E V, LEISER R M, ZAVRIEV S K. Use of highly conserved motifs in plant virus RNA polymerases as the tags for specific detection of carmovirus-related RNA-dependent RNA polymerase genes. Virology, 1995, 207(1): 312-315.

doi: 10.1006/viro.1995.1084 pmid: 7871745
[30]
杨雷亮, 陈定虎, 李明福, 陈洪俊. 香石竹斑驳病毒属和潜隐病毒属的PCR检测方法研究. 检验检疫学刊, 2009, 19(2): 1-3.
YANG L L, CHEN D H, LI M F, CHEN H J. Detection of Carmavirus and Carlavirus with PCR method. Journal of Inspection and Quarantine, 2009, 19(2): 1-3. (in Chinese)
[31]
Agdia. PCR Primer for Carmovirus-Pelarspovirus. https://orders.agdia.com/agdia-pcr-primer-for-carmo-pcr-94000.
[32]
THOMPSON J D, HIGGINS D G, GIBSON T J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 1994, 22(22): 4673-4680.

doi: 10.1093/nar/22.22.4673 pmid: 7984417
[33]
HALL T A. BioEdit:A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 1999, 41: 95-98.
[34]
BLAST. Basic Local Alignment Search Tool. https://blast.ncbi.nlm.nih.gov/Blast.cgi.
[35]
KUMAR S, STECHER G, LI M, KNYAZ C, TAMURA K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 2018, 35(6): 1547-1549.

doi: 10.1093/molbev/msy096 pmid: 29722887
[36]
ZHANG D, GAO F, JAKOVLIĆ I, ZOU H, ZHANG J, LI W X, WANG G T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resources, 2020, 20(1): 348-355.

doi: 10.1111/1755-0998.13096 pmid: 31599058
[37]
KATOH K, STANDLEY D M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 2013, 30(4): 772-780.

doi: 10.1093/molbev/mst010 pmid: 23329690
[38]
LE S Q, GASCUEL O. An improved general amino acid replacement matrix. Molecular Biology and Evolution, 2008, 25(7): 1307-1320.

doi: 10.1093/molbev/msn067 pmid: 18367465
[39]
PÉREZ-CAÑAMÁS M, HERNÁNDEZ C. Carmo-like viruses (Tombusviridae)//BAMFORD D H, ZUCKERMAN M. Encyclopedia of Virology, 4th ed, Vol. 3. Academic Press, 2021: 285-292.
[40]
AFONINA I, ANKOUDINOVA I, MILLS A, LOKHOV S, HUYNH P, MAHONEY W. Primers with 5′ flaps improve real-time PCR. Biotechniques, 2007, 43(6): 770, 772, 774.

doi: 10.2144/000112631
[41]
ARIF M, OCHOA-CORONA F M. Comparative assessment of 5′ A/T-rich overhang sequences with optimal and sub-optimal primers to increase PCR yields and sensitivity. Molecular Biotechnology, 2013, 55(1): 17-26.

doi: 10.1007/s12033-012-9617-5
[42]
TIMMONS C, DOBHAL S, FLETCHER J, MA L M. Primers with 5′ flaps improve the efficiency and sensitivity of multiplex PCR assays for the detection of Salmonella and Escherichia coli O157: H7. Journal of Food Protection, 2013, 76(4): 668-673.

doi: 10.4315/0362-028X.JFP-12-428
[43]
LARREA-SARMIENTO A, ALVAREZ A M, STACK J P, ARIF M. Synergetic effect of non-complementary 5′ AT-rich sequences on the development of a multiplex TaqMan real-time PCR for specific and robust detection of Clavibacter michiganensis and C. michiganensis subsp. nebraskensis. PLoS ONE, 2019, 14(7): e0218530.

doi: 10.1371/journal.pone.0218530
[44]
WEI T, CLOVER G. Use of primers with 5′ non-complementary sequences in RT-PCR for the detection of nepovirus subgroups A and B. Journal of Virological Methods, 2008, 153(1): 16-21.

doi: 10.1016/j.jviromet.2008.06.020
[45]
叶志红, 廖富荣, 郭木金, 方志鹏, 陈青, 陈红运, 林石明, 林毅. 同时检测豇豆花叶病毒属与蚕豆病毒属病毒的通用RT-PCR检测方法. 中国农业科学, 2015, 48(8): 1527-1537. doi: 10.3864/j.issn.0578-1752.2015.08.07.

doi: 10.3864/j.issn.0578-1752.2015.08.07
YE Z H, LIAO F R, GUO M J, FANG Z P, CHEN Q, CHEN H Y, LIN S M, LIN Y. A universal RT-PCR method for the simultaneous detection of the viruses in genera Comovirus and Fabavirus. Scientia Agricultura Sinica, 2015, 48(8): 1527-1537. doi: 10.3864/j.issn.0578-1752.2015.08.07. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2015.08.07
[1] XIAO Tao, LI Hui, LUO Wei, YE Tao, YU Huan, CHEN YouBo, SHI YuShi, ZHAO DePeng, WU Yun. Screening of Candidate Genes for Green Shell Egg Shell Color Traits in Chishui Black Bone Chicken Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2023, 56(8): 1594-1605.
[2] WANG YiDan,YANG FaLong,CHEN DiShi,XIANG Hua,REN YuPeng. One-Step Multiple TaqMan Real-time RT-PCR for Simultaneous Detection of Swine Diarrhea Viruses [J]. Scientia Agricultura Sinica, 2023, 56(1): 179-192.
[3] WANG SiTong,CHEN Yan,LUO YuJia,YANG YuanYuan,JIANG ZhiYang,JIANG XinYi,ZHONG Fan,CHEN Hao,XU HongXing,WU Yan,DUAN HongXia,TANG Bin. Effect of Three Novel Compounds on Trehalose and Chitin Metabolism and Development of Spodoptera frugiperda [J]. Scientia Agricultura Sinica, 2022, 55(8): 1568-1578.
[4] XIE LiXue,ZHANG XiaoYan,ZHANG LiJie,ZHENG Shan,LI Tao. Complete Genome Sequence Characteristics and TC-RT-PCR Detection of East Asian Passiflora Virus Infecting Passiflora edulis [J]. Scientia Agricultura Sinica, 2022, 55(22): 4408-4418.
[5] KANG JunMei,ZHANG QiaoYan,JIANG Xu,WANG Zhen,ZHANG TieJun,LONG RuiCai,CUI HuiTing,YANG QingChuan. Cloning MsSQE1 from Alfalfa and Functional Analysis in Saponin Synthesis [J]. Scientia Agricultura Sinica, 2020, 53(2): 247-260.
[6] XU JianJian,WANG YanJiao,DUAN Yu,MA ZhiMin,BIN Yu,ZHOU ChangYong,SONG Zhen. Construction of Genome-Length cDNA of Citrus Vein Enation Virus and Identification of Its Infectivity [J]. Scientia Agricultura Sinica, 2020, 53(18): 3707-3715.
[7] ZHANG DaoWei,KANG Kui,YU YaYa,KUANG FuPing,PAN BiYing,CHEN Jing,TANG Bin. Characteristics and Immune Response of Prophenoloxidase Genes in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2020, 53(15): 3108-3119.
[8] LIU YiRan,ZHANG Hong,JIN JiSu,ZHOU ZhongShi,GUO JianYing. Identification and Expression Analysis of the Halloween Gene Family in Agasicles hygrophila [J]. Scientia Agricultura Sinica, 2020, 53(10): 2009-2019.
[9] DING YanJuan,LIU YongKang,LUO YuJia,DENG YingMei,XU HongXing,TANG Bin,XU CaiDi. Potential Functions of Nilaparvata lugens GSK-3 in Regulating Glycogen and Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2019, 52(7): 1237-1246.
[10] TANG Bin,SHEN QiDa,ZENG BoPing,XIAO ZhongJiu,QIU LingYu,PAN BiYing,LI Kun,ZHANG DaoWei. Characteristics, Developmental Expression and RNAi Effect Analysis of a Novel Trehalose-6-Phosphate Synthase Gene in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2019, 52(3): 466-477.
[11] JunBo PENG,XingHong LI,Wei ZHANG,Ying ZHOU,JinBao HUANG,JiYe YAN. Pathogenicity and Gene Expression Pattern of the Exocrine Protein LtGH61A of Grape Canker Fungus [J]. Scientia Agricultura Sinica, 2019, 52(24): 4518-4526.
[12] WAN DongLi,HOU XiangYang,DING Yong,REN WeiBo,WANG Kai,LI XiLiang,WAN YongQing. Response and the Expression of Pi-Responsive Genes in Leymus chinensis Under Inorganic Phosphate Treatment [J]. Scientia Agricultura Sinica, 2019, 52(23): 4215-4227.
[13] YUAN JunHu,DING YiJuan,YANG WenJing,YAN BaoQin,CHAI YaRu,MEI JiaQin,QIAN Wei. Identification of Genes Encoding Secretory Proteins Related to the Pathogenicity of Sclerotinia sclerotiorum Using TRV-HIGS [J]. Scientia Agricultura Sinica, 2019, 52(23): 4274-4284.
[14] LIU FanQi,WAN GuiJun,ZENG LuYing,LI ChunXu,PAN WeiDong,CHEN FaJun. Selection of Stable Internal Reference Genes for Transcript Expression Analyses in Laodelphax striatellus Under Near-Zero Magnetic Field [J]. Scientia Agricultura Sinica, 2019, 52(19): 3346-3356.
[15] ZHANG DaoWei,YU YaYa,PAN BiYing,KANG Kui,ZENG BoPing,CHEN Jing,TANG Bin. Regulation Function of Trehalose-6-phosphate Synthase Genes on Chitin Synthesis in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2019, 52(19): 3357-3366.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!