Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (23): 4274-4284.doi: 10.3864/j.issn.0578-1752.2019.23.008

• PLANT PROTECTION • Previous Articles     Next Articles

Identification of Genes Encoding Secretory Proteins Related to the Pathogenicity of Sclerotinia sclerotiorum Using TRV-HIGS

YUAN JunHu,DING YiJuan,YANG WenJing,YAN BaoQin,CHAI YaRu,MEI JiaQin,QIAN Wei()   

  1. College of Agronomy and Biotechnology, Southwest University, Chongqing 400715
  • Received:2019-05-28 Accepted:2019-08-14 Online:2019-12-01 Published:2019-12-01
  • Contact: Wei QIAN E-mail:qianwei666@hotmail.com

Abstract:

【Objective】 Sclerotinia stem rot (SSR) caused by Sclerotinia sclerotiorum is the main problem in rapeseed planting in China, which causes serious yield and quality loss. Secretory proteins play an important role in the pathogenesis of pathogens. The genome of S. sclerotiorum contains a large number of genes encoding secretory proteins. The objective of this study is to identify and screen the secretory protein genes related to pathogenicity, reveal the pathogenic mechanism of S. sclerotiorum, and to provide an important target for the prevention and control of SSR. 【Method】 SMART software was used to analyze the protein domains of 8 candidate genes with signal peptides that were differentially expressed in the process of S. sclerotiorum infecting the susceptible and resistant Brassica oleracea lines, then the domains obtained by SMART analysis were annotated in SCOP, Pfam and PDB databases. The fragment with the length of around 300 bp in the encoding region of these genes was cloned into pTRV2 vector together with the GFP fragment. The suspension of pTRV1 was mixed equally with pTRV2-Gene and pTRV2-GFP, respectively. After 3 hours at room temperature, pTRV2-Gene vector and control (pTRV2-GFP) were transformed into 5-6 week-old leaves of Nicotiana benthamiana using syringe infiltration method. Subsequently, the infiltrated plants were cultured in dark for 48 hours and then grown in the normal light for 7 days. PDA mycelium blocks of S. sclerotiorum with a diameter of 6 mm were used to inoculate the infiltrated leaves of tobacco at the 9th day after transformation in vivo, in which the carrying surface was close to the leaves. After 48 hours of inoculation, the lesion size was measured and RNA from necrotic and infected tissues (around 1 cm from the edge of necrotic tissue) was extracted. qRT-PCR analysis was carried out to estimate the relative expression of target gene in N. benthamiana lines carrying TRV-HIGS vector. 【Result】 The putative functions of these 8 genes predicated with SMART and domain annotation were involved in the hydrolysis of proteins, nucleic acids or polysaccharides, the immunity response of host plants, and the tolerance to drugs and biotin synthesis of S. sclerotiorum. The average lesion area of control carrying TRV-GFP was 3.44 cm 2 at 48 hours post inoculation of S. sclerotiorum. Except for one line (SS1G_07655), the lesion area of other 7 lines carrying TRV-HIGS vector was significantly lower than that of the control plants (P≤0.05), ranging from 1.63 to 2.61 cm 2. qRT-PCR analysis showed that the gene expression level of these 7 genes in the TRV-HIGS lines was significantly lower than that of the control (P≤0.05). 【Conclusion】 Eight secretory protein genes with unknown function in S. sclerotiorum were successfully identified by TRV-HIGS technique. Seven genes related to the pathogenicity of S. sclerotiorum were screened out. Among them, SS1G_03146 with the strongest effect on the pathogenicity of S. sclerotiorum may be involved in the synthesis of biotin, and SS1G_04343 and SS1G_11912 may be involved in the immune response of host.

Key words: Sclerotinia sclerotiorum, TRV-HIGS, Nicotiana benthamiana, secretory protein, pathogenicity, qRT-PCR

Table 1

Primers used in this study"

基因
Gene
引物序列
Primer sequence (5′-3′)
产物大小
Product size (bp)
用途
Usage
SS1G_00263
F: CCGGAATTCCGGCAGCGCCTCAAGCTCGACTCAAATC
R: CGAGCTCGCTGACGGTAGCGGAACCAACAACGG
qF: TCTTTGAGGATGGAACTTGGAC
qR: AGCCTGGCAAGCATAATCG
273 基因扩增Gene amplification

qRT-PCR
SS1G_04945
F: CCGGAATTCCGGTCTCCTTCCTTCTCGGC
R: CGAGCTCGCTCGTAATCGGCACCAT
qF: TCTCAACGGTGCTCTTTACTTC
qR: TTGCTATCAGGGACCCATCC
263 基因扩增Gene amplification

qRT-PCR
SS1G_03181
F: CCGGAATTCCGGTGAGCGATGCTACCAACAGCGCCTAC
R: CGAGCTCGCACCAGCACTTTGGAGAGCACCGTAA
qF: TGCCGATTACGAGGGAACA
qR: TGGAAACATCGACGGTGAAG
210 基因扩增Gene amplification

qRT-PCR
SS1G_04343
F: CCGGAATTCCGGTGGTCTTTACGCTGGGTATTTC
R: CGAGCTCGCACCGTTGGTTGTGTTTTCATT
qF: TGGTCTTTACGCTGGGTATTTC
qR: CAGACACTTGCGAATGGAGC
284


基因扩增Gene amplification

qRT-PCR
SS1G_03146
F: CCGGAATTCCGGACATTTCCTCTTGAACCATCCCGTA
R: CGAGCTCGTTTATGACACCCTTGTTTCCAGCGA
qF: GCACATTTCCTCTTGAACCATC
qR: GCAGTGTCACTTCCCACCATT
309 基因扩增Gene amplification

qRT-PCR
SS1G_02250
F: CCGGAATTCCGGTCACACTTTTGGCATT
R: CGAGCTCGATCAGCACGTTTTTCT
qF: AAGCCAACACCAACCTCATC
qR: CACTGGAGCGTAGTTCTCGTAG
272 基因扩增Gene amplification

qRT-PCR
SS1G_11912
F: CCGGAATTCCGGTCAGCAGCTCCACCTCCACCACC
R: CGAGCTCGATTCGCCTTTCCAAAATCCGTAT
qF: TTCCCGAAACCGTTCCTAGT
qR: TCACCATTGCTACTGCCACTT
257 基因扩增Gene amplification

qRT-PCR
SS1G_07655



Sstub1
(内参基因Actin gene)
F: CCGGAATTCCGGGCTACTGTTCCTTTGGACTACGCT
R: CGAGCTCGTTACTGAGGAGTGAGTCGTGTCGG
qF: AATATGCCAGAGCCATCACA
qR: CAGCGTAGTCCAAAGGAACAG
qF: GTGAGGCTGAGGGCTGTGTGA
qR: CCTTTGGCGATGGGACG
322 基因扩增Gene amplification

qRT-PCR

qRT-PCR

Fig. 1

Heatmap of candidate genes of S. sclerotiorum in the process of infecting the resistant and susceptible B. oleracea"

Table 2

Putative functions of the domains in candidate genes"

基因
Gene
结构域名称
Domain name
结构域位置
Location (aa)
E期望值
E-value
可能的功能或特性
Putative function or feature
SS1G_00263 SCOP:d1hw1a2 14-79 0.77 调节药物的耐受性 Regulation of drug tolerance
SS1G_04945 Pfam:Glyco_hydro_7 21-446 2.6e-200 O型糖苷水解酶 O-glycoside hydrolase
PDB:3PL3|A 19-446 0 纤维二糖水解酶 Cellobiohydrolase
SCOP:d1gpia_ 19-450 0 伴刀豆球蛋白A样凝集素/葡聚糖酶 Concanavalin A/Glucanase
SS1G_03181 Pfam:ASP 91-399 3.2e-69 天冬氨酰蛋白酶(酸性蛋白酶)Aspartyl proteases (acid proteases)
SCOP:d1bxoa_ 79-399 1e-81 酸性蛋白酶 Acid proteases
PDB:3APP|A 83-398 1e-90 酸性蛋白酶 Acid proteases
SS1G_04343 SCOP:d1gh8a_ 339-377 0.39 翻译延长因子 Translation elongation factor
SCOP:d1fuia2 411-457 0.68 异构酶 Isomerase
SS1G_03146 SCOP:d1h4vb2 18-62 1.8 生物素合成酶 Biotin synthetase
SS1G_02250 SCOP:d1ed8a_ 43-90 5.7 碱性磷酸酶 Alkaline phosphatase
SCOP:d1dofa_ 215-241 0.86 L型天冬氨酸 L-aspartic acid
SS1G_11912 Pfam:NPP1 52-242 4.5e-61 坏死诱导蛋白 Necrosis inducing protein
PDB:3GNZ|P 32-242 4e-65 毒素 Toxin
SCOP:d1fuia2 188-240 0.58 异构酶 Isomerase
SS1G_07655 Pro-kuma_activ 35-181 3.25e-19 肽酶 Peptidase
PDB:3EDY|A 35-581 2e-67 肽酶 Peptidase
SCOP:d1gt91_ 36-581 9e-19 枯草杆菌蛋白酶类 Subtilisins

Fig. 2

Verification of pTRV2-Gene vectors by EcoRI/SacI digestion"

Fig. 3

Identification of TRV-HIGS N. benthamiana"

Fig. 4

Relative expression level of the target gene in the N. benthamiana lines carrying TRV-HIGS vector to those carrying TRV-GFP vector at 48 hours post inoculation of S. sclerotiorum"

Fig. 5

Resistance identification of N. benthamiana plants carrying TRV-HIGS vector to Sclerotinia stem rot Phenotypes (A) and lesion sizes (B) of TRV-HIGS N. benthamiana at 48 hours post inoculation with S. sclerotiorum in vivo. Different letters on the columns indicate significant difference (P≤0.05)"

[1] BOLAND G J, HALL R . Index of plant hosts of Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology, 1994,16(2):93-108.
doi: 10.1094/PDIS-06-19-1147-RE pmid: 31746694
[2] SEIFBARGHI S, BORHAN M H, WEI Y, COUTU C, ROBINSON S J, HEGEDUS D D . Changes in the Sclerotinia sclerotiorum transcriptome during infection of Brassica napus. BMC Genomics, 2017,18:266.
doi: 10.1186/s12864-017-3642-5 pmid: 28356071
[3] YANG G, TANG L, GONG Y, XIE J, FU Y, JIANG D, LI G, COLLINGE D B, CHEN W, CHENG J . A cerato-platanin protein SsCP1 targets plant PR1 and contributes to virulence of Sclerotinia sclerotiorum. New Phytologist, 2018,217(2):739-755.
doi: 10.1111/nph.14842 pmid: 29076546
[4] LYU X, SHEN C, FU Y, XIE J, JIANG D, LI G, CHENG J . A small secreted virulence-related protein is essential for the necrotrophic interactions of Sclerotinia sclerotiorum with its host plants. PLoS Pathogens, 2016,12(2):e1005435.
doi: 10.1371/journal.ppat.1005435 pmid: 26828434
[5] ZHU W, WEI W, FU Y, CHENG J, XIE J, LI G, YI X, KANG Z, DICKMAN M B, JIANG D . A secretory protein of necrotrophic fungus Sclerotinia sclerotiorum that suppresses host resistance. PLoS ONE, 2013,8(1):e53901.
doi: 10.1371/journal.pone.0053901 pmid: 23342034
[6] LYU X, SHEN C, FU Y, XIE J, JIANG D, LI G, CHENG J . Comparative genomic and transcriptional analyses of the carbohydrate- active enzymes and secretomes of phytopathogenic fungi reveal their significant roles during infection and development. Scientific Reports, 2015,5:15565.
doi: 10.1038/srep15565 pmid: 26531059
[7] YU Y, XIAO J, ZHU W, YANG Y, MEI J, BI C, QIAN W, QING L, TAN W . Ss-Rhs1, a secretory Rhs repeat-containing protein, is required for the virulence of Sclerotinia sclerotiorum. Molecular Plant Pathology, 2017,18(8):1052-1061.
doi: 10.1111/mpp.12459 pmid: 27392818
[8] XIAO X, XIE J, CHENG J, LI G, YI X, JIANG D, FU Y . Novel secretory protein Ss-Caf1 of the plant-pathogenic fungus Sclerotinia sclerotiorum is required for host penetration and normal sclerotial development. Molecular Plant-Microbe Interactions, 2014,27(1):40-55.
doi: 10.1094/MPMI-05-13-0145-R pmid: 24299212
[9] DERBYSHIRE M, DENTON-GILES M, HEGEDUS D, SEIFBARGHI S, ROLLINS J, VAN KAN J, SEIDL M F, FAINO L, MBENGUE M, NAVAUD O, RAFFAELE S, HAMMOND-KOSACK K, HEARD S, OLIVER R . The complete genome sequence of the phytopathogenic fungus Sclerotinia sclerotiorum reveals insights into the genome architecture of broad host range pathogens. Genome Biology and Evolution, 2017,9(3):593-618.
doi: 10.1093/gbe/evx030 pmid: 28204478
[10] GUYON K, BALAGUÉ C, ROBY D, RAFFAELE S . Secretome analysis reveals effector candidates associated with broad host range necrotrophy in the fungal plant pathogen Sclerotinia sclerotiorum. BMC Genomics, 2014,15:336.
doi: 10.1186/1471-2164-15-336 pmid: 24886033
[11] DING Y, MEI J, CHAI Y, YU Y, SHAO C, WU Q, DISI J O, LI Y, WAN H, QIAN W . Simultaneous transcriptome analysis of host and pathogen highlights the interaction between Brassica oleracea and Sclerotinia sclerotiorum. Phytopathology, 2019,109(4):542-550.
doi: 10.1094/PHYTO-06-18-0204-R pmid: 30265202
[12] KRAUSE C, RICHTER S, KNӦLL C, JÜRGENS G . Plant secretome—from cellular process to biological activity. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2013,1834(11):2429-2441.
doi: 10.1016/j.bbapap.2013.03.024 pmid: 23557863
[13] KUMAGAI M H, DONSON J, DELLA-CIOPPA G, HARVEY D, HANLEY K, GRILL L K . Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proceedings of the National Academy of Sciences of the United States of America, 1995,92(5):1679-1683.
doi: 10.1073/pnas.92.5.1679 pmid: 7878039
[14] BURCH-SMITH T M, ANDERSON J C, MAETIN G B, DINESH- KUMAR S P . Application and advantages of virus-induced gene silencing for gene function studies in plants. The Plant Journal, 2004,39(5):734-746.
doi: 10.1111/j.1365-313X.2004.02158.x pmid: 15315635
[15] ROBERTSON D . VIGS vectors for gene silencing: Many targets, many tools. Annual Review of Plant Biology, 2004,55:495-519.
doi: 10.1146/annurev.arplant.55.031903.141803 pmid: 15377229
[16] RUIZ M T, VOINNET O, BAULCOMBE D C . Initiation and maintenance of virus-induced gene silencing. The Plant Cell, 1998,10(6):937-946.
doi: 10.1105/tpc.10.6.937 pmid: 9634582
[17] KJEMTRUP S, SAMPSON K S, PEELE C G, NGUYEN L V, CONKLING M A, THOMPSON W F, ROBERTSON D . Gene silencing from plant DNA carried by a Germinivirus. The Plant Journal, 1998,14(1):91-100.
doi: 10.1046/j.1365-313X.1998.00101.x pmid: 15494056
[18] SONG Y, THOMMA B P . Host-induced gene silencing compromises Verticillium wilt in tomato and Arabidopsis. Molecular Plant Pathology, 2018,19(1):77-89.
doi: 10.1111/mpp.12500 pmid: 27749994
[19] PANWAR V, MCCALLUM B, BAKKEREN G . Host-induced gene silencing of wheat leaf rust fungus Puccinia triticina pathogenicity genes mediated by the Barley stripe mosaic virus. Plant Molecular Biology, 2013,81(6):595-608.
doi: 10.1007/s11103-013-0022-7
[20] 田焕焕, 覃瑞, 刘虹, 刘清云, 李刚 . 病毒诱导基因沉默(VIGS)在禾本科植物中的研究进展. 植物学研究, 2014,3:91-104.
doi: 10.12677/BR.2014.33014
TIAN H H, QIN R, LIU H, LIU Q Y, LI G . Progress of virus induced gene silence (VIGS) system in the studies of Gramineae plant. Botanical Research, 2014,3:91-104. (in Chinese)
doi: 10.12677/BR.2014.33014
[21] NOWARA D, GAY A, LACOMME C, SHAW J, RIDOUT C, DOUCHKOV D, HENSEL G, KUMLEHN J, SCHWEIZER P . HIGS: Host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. The Plant Cell, 2010,22(9):3130-3141.
doi: 10.1105/tpc.110.077040 pmid: 20884801
[22] QI T, ZHU X, TAN C, LIU P, GUO J, KANG Z, GUO J . Host-induced gene silencing of an important pathogenicity factor PsCPK1 in Puccinia striiformis f. sp. tritici enhances resistance of wheat to stripe rust. Plant Biotechnology Journal, 2018,16(3):797-807.
doi: 10.1111/pbi.12829 pmid: 28881438
[23] XU J, WANG X, LI Y, ZENG J, WANG G, DENG C, GUO W . Host-induced gene silencing of a regulator of G protein signalling gene ( VdRGS1) confers resistance to Verticillium wilt in cotton. Plant Biotechnology Journal, 2018,16(9):1629-1643.
doi: 10.1111/pbi.12900 pmid: 29431919
[24] 赵玉兰, 苏晓峰, 程红梅 . 利用寄主诱导的基因沉默技术验证大丽轮枝菌糖代谢相关基因的致病力. 中国农业科学, 2015,48(7):1321-1329.
doi: 10.3864/j.issn.0578-1752.2015.07.07
ZHAO Y L, SU X F, CHENG H M . Verification of Verticillium dahliae pathogenicity of glycometabolism related genes by using host-induced gene silencing method. Scientia Agricultura Sinica, 2015,48(7):1321-1329. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.07.07
[25] ANDRADE C M, TINOCO M L, RIETH A F, MAIA F C, ARAGᾸO F J . Host-induced gene silencing in the necrotrophic fungal pathogen Sclerotinia sclerotiorum. Plant Pathology, 2016,65(4):626-632.
doi: 10.3390/ijms19041138 pmid: 29642627
[26] LIU E W, PAGE J E . Optimized cDNA libraries for virus-induced gene silencing (VIGS) using tobacco rattle virus. Plant Methods, 2008,4:5.
doi: 10.1186/1746-4811-4-5 pmid: 18211705
[27] LIVAK K J, SCHMITTGEN T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method . Methods, 2001,25(4):402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[28] ZHENG Z, NONOMURA T, APPIANO M, PAVAN S, MATSUDA Y, TOYODA H, WOLTERS A M A, VISSER R G F, BAI Y, . Loss of function in Mlo orthologs reduces susceptibility of pepper and tomato to powdery mildew disease caused by Leveillula taurica. PLoS ONE, 2013,8(7):e70723.
doi: 10.1371/journal.pone.0070723 pmid: 23923019
[29] 吕琳慧, 徐幼平, 任至玄, 康冬, 王继鹏, 蔡新忠 . Ca2+信号通路对本氏烟叶位介导的核盘菌抗性的影响. 浙江大学学报(农业与生命科学版), 2014,40(6):605-610.
doi: 10.3785/j.issn.1008-9209.2014.03.131
LÜ L H, XU Y P, REN Z X, KANG D, WANG J P, CAI X Z . Effect of Ca2+ signaling pathway on leaf position-associated resistance to Sclerotinia sclerotiorum in Nicotiana benthamiana. Journal of Zhejiang University (Agriculture and Life Sciences), 2014,40(6):605-610. (in Chinese)
doi: 10.3785/j.issn.1008-9209.2014.03.131
[30] 王继鹏 . 菌龄对核盘菌致病性的影响及植物抗核盘菌分子机制[D]. 杭州: 浙江大学, 2015.
WANG J P . Molecular mechanisms underlying effect of mycelial age on pathogenicity of Sclerotinia sclerotiorum and plant resistance to this fungus[D]. Hangzhou: Zhejiang University, 2015. (in Chinese)
[31] 吴健, 周永明, 王幼平 . 油菜与核盘菌互作分子机理研究进展. 中国油料作物学报, 2018,40(5) : 721-729.
WU J, ZHOU Y M, WANG Y P . Research progress on molecular mechanisms of Brassica napus -Sclerotinia sclerotiorum interaction. Chinese Journal of Oil Crop Sciences, 2018,40(5):721-729. (in Chinese)
[32] 任晓梅 . 鸭疫里默氏杆菌生物素合成相关基因bioF生物学特性分析及应用[D]. 北京: 中国农业科学院, 2018.
REN X M . Biological characterization of biotin-synthesis associated bioF gene Riemerella anatipestifer and its application[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. (in Chinese)
[33] HAYDON D J, GUEST J R . A new family of bacterial regulatory proteins. FEMS Microbiology Letters, 1991,79(2/3):291-295.
doi: 10.1016/j.biochi.2019.11.012 pmid: 31765672
[34] 曾洁 . 结核分枝杆菌GntR家族转录因子Rv1152在万古霉素耐受中的分子机理研究[D]. 重庆: 西南大学, 2016.
ZENG J . The underlying molecular mechanisms of Mycobacterium tuberculosis GntR family transcription factor Rv1152 in vancomycin resistance[D]. Chongqing: Southwest University, 2016. (in Chinese)
[35] CHISHOLM S T, COAKER G, DAY B, STASKAWICZ B J . Host-microbe interactions: Shaping the evolution of the plant immune response. Cell, 2006,124(4):803-814.
doi: 10.1016/j.cell.2006.02.008 pmid: 16497589
[36] KUNZE G, ZIPFEL C, ROBATZEK S, NIEHAUS K, BOLLER T, FELIX G . The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. The Plant Cell, 2004,16(12):3496-3507.
doi: 10.1105/tpc.104.026765 pmid: 15548740
[1] WANG SiTong,CHEN Yan,LUO YuJia,YANG YuanYuan,JIANG ZhiYang,JIANG XinYi,ZHONG Fan,CHEN Hao,XU HongXing,WU Yan,DUAN HongXia,TANG Bin. Effect of Three Novel Compounds on Trehalose and Chitin Metabolism and Development of Spodoptera frugiperda [J]. Scientia Agricultura Sinica, 2022, 55(8): 1568-1578.
[2] HUANG JiaQuan,LI Li,WU FengNian,ZHENG Zheng,DENG XiaoLing. Proliferation of Two Types Prophage of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri and their Pathogenicity [J]. Scientia Agricultura Sinica, 2022, 55(4): 719-728.
[3] YANG ShiMan, XU ChengZhi, XU BangFeng, WU YunPu, JIA YunHui, QIAO ChuanLing, CHEN HuaLan. Amino Acid of 225 in the HA Protein Affects the Pathogenicities of H1N1 Subtype Swine Influenza Viruses [J]. Scientia Agricultura Sinica, 2022, 55(4): 816-824.
[4] ZHANG JinLong,ZHAO ZhiBo,LIU Wei,HUANG LiLi. The Function of Key T3SS Effectors in Pseudomonas syringae pv. actinidiae [J]. Scientia Agricultura Sinica, 2022, 55(3): 503-513.
[5] PEI YueHong,LI FengWei,LIU WeiNa,WEN YuXia,ZHU Xin,TIAN ShaoRui,FAN GuangJin,MA XiaoZhou,SUN XianChao. Characteristics of Cysteine Proteinase Gene Family in Nicotiana benthamiana and Its Function During TMV Infection [J]. Scientia Agricultura Sinica, 2022, 55(21): 4196-4210.
[6] YuXia WEN,Jian ZHANG,Qin WANG,Jing WANG,YueHong PEI,ShaoRui TIAN,GuangJin FAN,XiaoZhou MA,XianChao SUN. Cloning, Expression and Anti-TMV Function Analysis of Nicotiana benthamiana NbMBF1c [J]. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555.
[7] LI ZhengGang,TANG YaFei,SHE XiaoMan,YU Lin,LAN GuoBing,HE ZiFu. Molecular Characteristics and Pathogenicity Analysis of Youcai Mosaic Virus Guangdong Isolate Infecting Radish [J]. Scientia Agricultura Sinica, 2022, 55(14): 2752-2761.
[8] WANG RongHua,MENG LiFeng,FENG Mao,FANG Yu,WEI QiaoHong,MA BeiBei,ZHONG WeiLai,LI JianKe. Proteome Analysis of the Salivary Gland of Nurse Bee from High Royal Jelly Producing Bees and Italian Bees [J]. Scientia Agricultura Sinica, 2022, 55(13): 2667-2684.
[9] ZHANG ChengQi,LIAO LuLu,QI YongXia,DING KeJian,CHEN Li. Functional Analysis of the Nucleoporin Gene FgNup42 in Fusarium graminearium [J]. Scientia Agricultura Sinica, 2021, 54(9): 1894-1903.
[10] CAO YuHan,LI ZiTeng,ZHANG JingYi,ZHANG JingNa,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Analysis of dsRNA Carried by Alternaria alternata f. sp. mali in China and Identification of a dsRNA Virus [J]. Scientia Agricultura Sinica, 2021, 54(22): 4787-4799.
[11] ZHANG Li,TANG YaFei,LI ZhengGang,YU Lin,LAN GuoBing,SHE XiaoMan,HE ZiFu. Molecular Characteristic of Squash Leaf Curl China Virus (SLCCNV) Infecting Cucurbitaceae Crops in Guangdong Province [J]. Scientia Agricultura Sinica, 2021, 54(19): 4097-4109.
[12] ZHAO JingYa,XIA HuiQing,PENG MengYa,FAN Zhuo,YIN Yue,XU SaiBo,ZHANG Nan,CHEN WenBo,CHEN LinLin. Identification and Functional Analysis of Transcription Factors FpAPSES in Fusarium pseudograminearum [J]. Scientia Agricultura Sinica, 2021, 54(16): 3428-3439.
[13] ZHENG XinShi,SHANG PengXiang,LI JingYuan,DING XinLun,WU ZuJian,ZHANG Jie. Effects of Proteins Encoded by “C4 ORFs” of Cotton Leaf Curl Multan Virus on Viral Pathogenicity [J]. Scientia Agricultura Sinica, 2021, 54(10): 2095-2104.
[14] JiaYing CHANG,ShuSen LIU,Jie SHI,Ning GUO,HaiJian ZHANG,HongXia MA,ChunFeng YANG. Pathogenicity and Genetic Diversity of Bipolaria maydis in Sanya, Hainan and Huang-Huai-Hai Region [J]. Scientia Agricultura Sinica, 2020, 53(6): 1154-1165.
[15] LI ZhengGang,NONG Yuan,TANG YaFei,SHE XiaoMan,YU Lin,LAN GuoBing,DENG MingGuang,HE ZiFu. Molecular Characteristic and Pathogenicity Analyses of Cucumber green mottle mosaic virus (CGMMV) Infecting Bottle Gourd in Lianzhou, Guangdong [J]. Scientia Agricultura Sinica, 2020, 53(5): 955-964.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!