Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (23): 4274-4284.doi: 10.3864/j.issn.0578-1752.2019.23.008
• PLANT PROTECTION • Previous Articles Next Articles
YUAN JunHu,DING YiJuan,YANG WenJing,YAN BaoQin,CHAI YaRu,MEI JiaQin,QIAN Wei()
[1] |
BOLAND G J, HALL R . Index of plant hosts of Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology, 1994,16(2):93-108.
doi: 10.1094/PDIS-06-19-1147-RE pmid: 31746694 |
[2] |
SEIFBARGHI S, BORHAN M H, WEI Y, COUTU C, ROBINSON S J, HEGEDUS D D . Changes in the Sclerotinia sclerotiorum transcriptome during infection of Brassica napus. BMC Genomics, 2017,18:266.
doi: 10.1186/s12864-017-3642-5 pmid: 28356071 |
[3] |
YANG G, TANG L, GONG Y, XIE J, FU Y, JIANG D, LI G, COLLINGE D B, CHEN W, CHENG J . A cerato-platanin protein SsCP1 targets plant PR1 and contributes to virulence of Sclerotinia sclerotiorum. New Phytologist, 2018,217(2):739-755.
doi: 10.1111/nph.14842 pmid: 29076546 |
[4] |
LYU X, SHEN C, FU Y, XIE J, JIANG D, LI G, CHENG J . A small secreted virulence-related protein is essential for the necrotrophic interactions of Sclerotinia sclerotiorum with its host plants. PLoS Pathogens, 2016,12(2):e1005435.
doi: 10.1371/journal.ppat.1005435 pmid: 26828434 |
[5] |
ZHU W, WEI W, FU Y, CHENG J, XIE J, LI G, YI X, KANG Z, DICKMAN M B, JIANG D . A secretory protein of necrotrophic fungus Sclerotinia sclerotiorum that suppresses host resistance. PLoS ONE, 2013,8(1):e53901.
doi: 10.1371/journal.pone.0053901 pmid: 23342034 |
[6] |
LYU X, SHEN C, FU Y, XIE J, JIANG D, LI G, CHENG J . Comparative genomic and transcriptional analyses of the carbohydrate- active enzymes and secretomes of phytopathogenic fungi reveal their significant roles during infection and development. Scientific Reports, 2015,5:15565.
doi: 10.1038/srep15565 pmid: 26531059 |
[7] |
YU Y, XIAO J, ZHU W, YANG Y, MEI J, BI C, QIAN W, QING L, TAN W . Ss-Rhs1, a secretory Rhs repeat-containing protein, is required for the virulence of Sclerotinia sclerotiorum. Molecular Plant Pathology, 2017,18(8):1052-1061.
doi: 10.1111/mpp.12459 pmid: 27392818 |
[8] |
XIAO X, XIE J, CHENG J, LI G, YI X, JIANG D, FU Y . Novel secretory protein Ss-Caf1 of the plant-pathogenic fungus Sclerotinia sclerotiorum is required for host penetration and normal sclerotial development. Molecular Plant-Microbe Interactions, 2014,27(1):40-55.
doi: 10.1094/MPMI-05-13-0145-R pmid: 24299212 |
[9] |
DERBYSHIRE M, DENTON-GILES M, HEGEDUS D, SEIFBARGHI S, ROLLINS J, VAN KAN J, SEIDL M F, FAINO L, MBENGUE M, NAVAUD O, RAFFAELE S, HAMMOND-KOSACK K, HEARD S, OLIVER R . The complete genome sequence of the phytopathogenic fungus Sclerotinia sclerotiorum reveals insights into the genome architecture of broad host range pathogens. Genome Biology and Evolution, 2017,9(3):593-618.
doi: 10.1093/gbe/evx030 pmid: 28204478 |
[10] |
GUYON K, BALAGUÉ C, ROBY D, RAFFAELE S . Secretome analysis reveals effector candidates associated with broad host range necrotrophy in the fungal plant pathogen Sclerotinia sclerotiorum. BMC Genomics, 2014,15:336.
doi: 10.1186/1471-2164-15-336 pmid: 24886033 |
[11] |
DING Y, MEI J, CHAI Y, YU Y, SHAO C, WU Q, DISI J O, LI Y, WAN H, QIAN W . Simultaneous transcriptome analysis of host and pathogen highlights the interaction between Brassica oleracea and Sclerotinia sclerotiorum. Phytopathology, 2019,109(4):542-550.
doi: 10.1094/PHYTO-06-18-0204-R pmid: 30265202 |
[12] |
KRAUSE C, RICHTER S, KNӦLL C, JÜRGENS G . Plant secretome—from cellular process to biological activity. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2013,1834(11):2429-2441.
doi: 10.1016/j.bbapap.2013.03.024 pmid: 23557863 |
[13] |
KUMAGAI M H, DONSON J, DELLA-CIOPPA G, HARVEY D, HANLEY K, GRILL L K . Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proceedings of the National Academy of Sciences of the United States of America, 1995,92(5):1679-1683.
doi: 10.1073/pnas.92.5.1679 pmid: 7878039 |
[14] |
BURCH-SMITH T M, ANDERSON J C, MAETIN G B, DINESH- KUMAR S P . Application and advantages of virus-induced gene silencing for gene function studies in plants. The Plant Journal, 2004,39(5):734-746.
doi: 10.1111/j.1365-313X.2004.02158.x pmid: 15315635 |
[15] |
ROBERTSON D . VIGS vectors for gene silencing: Many targets, many tools. Annual Review of Plant Biology, 2004,55:495-519.
doi: 10.1146/annurev.arplant.55.031903.141803 pmid: 15377229 |
[16] |
RUIZ M T, VOINNET O, BAULCOMBE D C . Initiation and maintenance of virus-induced gene silencing. The Plant Cell, 1998,10(6):937-946.
doi: 10.1105/tpc.10.6.937 pmid: 9634582 |
[17] |
KJEMTRUP S, SAMPSON K S, PEELE C G, NGUYEN L V, CONKLING M A, THOMPSON W F, ROBERTSON D . Gene silencing from plant DNA carried by a Germinivirus. The Plant Journal, 1998,14(1):91-100.
doi: 10.1046/j.1365-313X.1998.00101.x pmid: 15494056 |
[18] |
SONG Y, THOMMA B P . Host-induced gene silencing compromises Verticillium wilt in tomato and Arabidopsis. Molecular Plant Pathology, 2018,19(1):77-89.
doi: 10.1111/mpp.12500 pmid: 27749994 |
[19] |
PANWAR V, MCCALLUM B, BAKKEREN G . Host-induced gene silencing of wheat leaf rust fungus Puccinia triticina pathogenicity genes mediated by the Barley stripe mosaic virus. Plant Molecular Biology, 2013,81(6):595-608.
doi: 10.1007/s11103-013-0022-7 |
[20] |
田焕焕, 覃瑞, 刘虹, 刘清云, 李刚 . 病毒诱导基因沉默(VIGS)在禾本科植物中的研究进展. 植物学研究, 2014,3:91-104.
doi: 10.12677/BR.2014.33014 |
TIAN H H, QIN R, LIU H, LIU Q Y, LI G . Progress of virus induced gene silence (VIGS) system in the studies of Gramineae plant. Botanical Research, 2014,3:91-104. (in Chinese)
doi: 10.12677/BR.2014.33014 |
|
[21] |
NOWARA D, GAY A, LACOMME C, SHAW J, RIDOUT C, DOUCHKOV D, HENSEL G, KUMLEHN J, SCHWEIZER P . HIGS: Host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. The Plant Cell, 2010,22(9):3130-3141.
doi: 10.1105/tpc.110.077040 pmid: 20884801 |
[22] |
QI T, ZHU X, TAN C, LIU P, GUO J, KANG Z, GUO J . Host-induced gene silencing of an important pathogenicity factor PsCPK1 in Puccinia striiformis f. sp. tritici enhances resistance of wheat to stripe rust. Plant Biotechnology Journal, 2018,16(3):797-807.
doi: 10.1111/pbi.12829 pmid: 28881438 |
[23] |
XU J, WANG X, LI Y, ZENG J, WANG G, DENG C, GUO W . Host-induced gene silencing of a regulator of G protein signalling gene ( VdRGS1) confers resistance to Verticillium wilt in cotton. Plant Biotechnology Journal, 2018,16(9):1629-1643.
doi: 10.1111/pbi.12900 pmid: 29431919 |
[24] |
赵玉兰, 苏晓峰, 程红梅 . 利用寄主诱导的基因沉默技术验证大丽轮枝菌糖代谢相关基因的致病力. 中国农业科学, 2015,48(7):1321-1329.
doi: 10.3864/j.issn.0578-1752.2015.07.07 |
ZHAO Y L, SU X F, CHENG H M . Verification of Verticillium dahliae pathogenicity of glycometabolism related genes by using host-induced gene silencing method. Scientia Agricultura Sinica, 2015,48(7):1321-1329. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.07.07 |
|
[25] |
ANDRADE C M, TINOCO M L, RIETH A F, MAIA F C, ARAGᾸO F J . Host-induced gene silencing in the necrotrophic fungal pathogen Sclerotinia sclerotiorum. Plant Pathology, 2016,65(4):626-632.
doi: 10.3390/ijms19041138 pmid: 29642627 |
[26] |
LIU E W, PAGE J E . Optimized cDNA libraries for virus-induced gene silencing (VIGS) using tobacco rattle virus. Plant Methods, 2008,4:5.
doi: 10.1186/1746-4811-4-5 pmid: 18211705 |
[27] |
LIVAK K J, SCHMITTGEN T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method . Methods, 2001,25(4):402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[28] |
ZHENG Z, NONOMURA T, APPIANO M, PAVAN S, MATSUDA Y, TOYODA H, WOLTERS A M A, VISSER R G F, BAI Y, . Loss of function in Mlo orthologs reduces susceptibility of pepper and tomato to powdery mildew disease caused by Leveillula taurica. PLoS ONE, 2013,8(7):e70723.
doi: 10.1371/journal.pone.0070723 pmid: 23923019 |
[29] |
吕琳慧, 徐幼平, 任至玄, 康冬, 王继鹏, 蔡新忠 . Ca2+信号通路对本氏烟叶位介导的核盘菌抗性的影响. 浙江大学学报(农业与生命科学版), 2014,40(6):605-610.
doi: 10.3785/j.issn.1008-9209.2014.03.131 |
LÜ L H, XU Y P, REN Z X, KANG D, WANG J P, CAI X Z . Effect of Ca2+ signaling pathway on leaf position-associated resistance to Sclerotinia sclerotiorum in Nicotiana benthamiana. Journal of Zhejiang University (Agriculture and Life Sciences), 2014,40(6):605-610. (in Chinese)
doi: 10.3785/j.issn.1008-9209.2014.03.131 |
|
[30] | 王继鹏 . 菌龄对核盘菌致病性的影响及植物抗核盘菌分子机制[D]. 杭州: 浙江大学, 2015. |
WANG J P . Molecular mechanisms underlying effect of mycelial age on pathogenicity of Sclerotinia sclerotiorum and plant resistance to this fungus[D]. Hangzhou: Zhejiang University, 2015. (in Chinese) | |
[31] | 吴健, 周永明, 王幼平 . 油菜与核盘菌互作分子机理研究进展. 中国油料作物学报, 2018,40(5) : 721-729. |
WU J, ZHOU Y M, WANG Y P . Research progress on molecular mechanisms of Brassica napus -Sclerotinia sclerotiorum interaction. Chinese Journal of Oil Crop Sciences, 2018,40(5):721-729. (in Chinese) | |
[32] | 任晓梅 . 鸭疫里默氏杆菌生物素合成相关基因bioF生物学特性分析及应用[D]. 北京: 中国农业科学院, 2018. |
REN X M . Biological characterization of biotin-synthesis associated bioF gene Riemerella anatipestifer and its application[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. (in Chinese) | |
[33] |
HAYDON D J, GUEST J R . A new family of bacterial regulatory proteins. FEMS Microbiology Letters, 1991,79(2/3):291-295.
doi: 10.1016/j.biochi.2019.11.012 pmid: 31765672 |
[34] | 曾洁 . 结核分枝杆菌GntR家族转录因子Rv1152在万古霉素耐受中的分子机理研究[D]. 重庆: 西南大学, 2016. |
ZENG J . The underlying molecular mechanisms of Mycobacterium tuberculosis GntR family transcription factor Rv1152 in vancomycin resistance[D]. Chongqing: Southwest University, 2016. (in Chinese) | |
[35] |
CHISHOLM S T, COAKER G, DAY B, STASKAWICZ B J . Host-microbe interactions: Shaping the evolution of the plant immune response. Cell, 2006,124(4):803-814.
doi: 10.1016/j.cell.2006.02.008 pmid: 16497589 |
[36] |
KUNZE G, ZIPFEL C, ROBATZEK S, NIEHAUS K, BOLLER T, FELIX G . The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. The Plant Cell, 2004,16(12):3496-3507.
doi: 10.1105/tpc.104.026765 pmid: 15548740 |
[1] | WANG SiTong,CHEN Yan,LUO YuJia,YANG YuanYuan,JIANG ZhiYang,JIANG XinYi,ZHONG Fan,CHEN Hao,XU HongXing,WU Yan,DUAN HongXia,TANG Bin. Effect of Three Novel Compounds on Trehalose and Chitin Metabolism and Development of Spodoptera frugiperda [J]. Scientia Agricultura Sinica, 2022, 55(8): 1568-1578. |
[2] | HUANG JiaQuan,LI Li,WU FengNian,ZHENG Zheng,DENG XiaoLing. Proliferation of Two Types Prophage of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri and their Pathogenicity [J]. Scientia Agricultura Sinica, 2022, 55(4): 719-728. |
[3] | YANG ShiMan, XU ChengZhi, XU BangFeng, WU YunPu, JIA YunHui, QIAO ChuanLing, CHEN HuaLan. Amino Acid of 225 in the HA Protein Affects the Pathogenicities of H1N1 Subtype Swine Influenza Viruses [J]. Scientia Agricultura Sinica, 2022, 55(4): 816-824. |
[4] | ZHANG JinLong,ZHAO ZhiBo,LIU Wei,HUANG LiLi. The Function of Key T3SS Effectors in Pseudomonas syringae pv. actinidiae [J]. Scientia Agricultura Sinica, 2022, 55(3): 503-513. |
[5] | PEI YueHong,LI FengWei,LIU WeiNa,WEN YuXia,ZHU Xin,TIAN ShaoRui,FAN GuangJin,MA XiaoZhou,SUN XianChao. Characteristics of Cysteine Proteinase Gene Family in Nicotiana benthamiana and Its Function During TMV Infection [J]. Scientia Agricultura Sinica, 2022, 55(21): 4196-4210. |
[6] | YuXia WEN,Jian ZHANG,Qin WANG,Jing WANG,YueHong PEI,ShaoRui TIAN,GuangJin FAN,XiaoZhou MA,XianChao SUN. Cloning, Expression and Anti-TMV Function Analysis of Nicotiana benthamiana NbMBF1c [J]. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555. |
[7] | LI ZhengGang,TANG YaFei,SHE XiaoMan,YU Lin,LAN GuoBing,HE ZiFu. Molecular Characteristics and Pathogenicity Analysis of Youcai Mosaic Virus Guangdong Isolate Infecting Radish [J]. Scientia Agricultura Sinica, 2022, 55(14): 2752-2761. |
[8] | WANG RongHua,MENG LiFeng,FENG Mao,FANG Yu,WEI QiaoHong,MA BeiBei,ZHONG WeiLai,LI JianKe. Proteome Analysis of the Salivary Gland of Nurse Bee from High Royal Jelly Producing Bees and Italian Bees [J]. Scientia Agricultura Sinica, 2022, 55(13): 2667-2684. |
[9] | ZHANG ChengQi,LIAO LuLu,QI YongXia,DING KeJian,CHEN Li. Functional Analysis of the Nucleoporin Gene FgNup42 in Fusarium graminearium [J]. Scientia Agricultura Sinica, 2021, 54(9): 1894-1903. |
[10] | CAO YuHan,LI ZiTeng,ZHANG JingYi,ZHANG JingNa,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Analysis of dsRNA Carried by Alternaria alternata f. sp. mali in China and Identification of a dsRNA Virus [J]. Scientia Agricultura Sinica, 2021, 54(22): 4787-4799. |
[11] | ZHANG Li,TANG YaFei,LI ZhengGang,YU Lin,LAN GuoBing,SHE XiaoMan,HE ZiFu. Molecular Characteristic of Squash Leaf Curl China Virus (SLCCNV) Infecting Cucurbitaceae Crops in Guangdong Province [J]. Scientia Agricultura Sinica, 2021, 54(19): 4097-4109. |
[12] | ZHAO JingYa,XIA HuiQing,PENG MengYa,FAN Zhuo,YIN Yue,XU SaiBo,ZHANG Nan,CHEN WenBo,CHEN LinLin. Identification and Functional Analysis of Transcription Factors FpAPSES in Fusarium pseudograminearum [J]. Scientia Agricultura Sinica, 2021, 54(16): 3428-3439. |
[13] | ZHENG XinShi,SHANG PengXiang,LI JingYuan,DING XinLun,WU ZuJian,ZHANG Jie. Effects of Proteins Encoded by “C4 ORFs” of Cotton Leaf Curl Multan Virus on Viral Pathogenicity [J]. Scientia Agricultura Sinica, 2021, 54(10): 2095-2104. |
[14] | JiaYing CHANG,ShuSen LIU,Jie SHI,Ning GUO,HaiJian ZHANG,HongXia MA,ChunFeng YANG. Pathogenicity and Genetic Diversity of Bipolaria maydis in Sanya, Hainan and Huang-Huai-Hai Region [J]. Scientia Agricultura Sinica, 2020, 53(6): 1154-1165. |
[15] | LI ZhengGang,NONG Yuan,TANG YaFei,SHE XiaoMan,YU Lin,LAN GuoBing,DENG MingGuang,HE ZiFu. Molecular Characteristic and Pathogenicity Analyses of Cucumber green mottle mosaic virus (CGMMV) Infecting Bottle Gourd in Lianzhou, Guangdong [J]. Scientia Agricultura Sinica, 2020, 53(5): 955-964. |
|