Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (19): 3346-3356.doi: 10.3864/j.issn.0578-1752.2019.19.006

• PLANT PROTECTION • Previous Articles     Next Articles

Selection of Stable Internal Reference Genes for Transcript Expression Analyses in Laodelphax striatellus Under Near-Zero Magnetic Field

LIU FanQi1,WAN GuiJun1,ZENG LuYing1,LI ChunXu1,PAN WeiDong2,CHEN FaJun1()   

  1. 1 College of Plant Protection, Nanjing Agricultural University, Nanjing 210095
    2 Beijing Key Laboratory of Bioelectromagetics, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190
  • Received:2019-05-05 Accepted:2019-06-03 Online:2019-10-01 Published:2019-10-11
  • Contact: FaJun CHEN E-mail:fajunchen@njau.edu.cn

Abstract:

【Background】 The geomagnetic field (GMF) is not constant, it can change with time and space. At present, with the development of research on animal magnetic biology, the study on transcriptional profiling of magnetic response genes with quantitative real-time PCR (qRT-PCR) has greatly promoted the identification of magnetic response pathway and the uncovering of magnetoreception mechanism.【Objective】 The objective of this study is to screen the internal reference genes of the brachypterous small brown planthopper (Laodelphax striatellus) under near-zero magnetic field (NZMF), and to make the quantification of target genes more accurate.【Method】 The population of L. striatellus, a migratory insect, was collected from the experimental fields of Jiangsu Academy of Agricultural Sciences and expanded indoors using TN1 three-leaf rice seedlings (temperature: (25.0±1.0)℃, relative humidity: 70%-90%, photoperiod: 14L﹕10D). Helmholtz coils system was used to simulate the near-zero magnetic field (NZMF; <500 nT) vs. geomagnetic field (GMF; ~ 50 000 nT), the artificial simulated magnetic field intensity was homogeneous within a spherical space with a diameter of 30 cm. During the experiment, environmental factors other than the magnetic field intensity were strictly controlled (temperature: (25.0±1.0)℃, relative humidity: 75%, photoperiod: 14L﹕10D) and the artificial simulated magnetic field was calibrated and monitored daily using a fluxgate magnetometer. The L. striatellus and TN1 three-leaf rice seedlings were placed in a test tube for exposure treatment. Every two days, the rice seedlings in control and treatment magnetic fields were swapped to avoid the influence triggered by the potential magnetic response of rice seedlings on L. striatellus. Trizol method was used to extract the total RNA of the female and male adults of L. striatellus, respectively. The quality of total RNA was inspected and adjusted to the same mass, and cDNA was then made by reverse transcription. Using qRT-PCR technique and combined with the common internal reference selection software including geNorm, NormFinder, BestKeeper, and the online integrated analysis system RefFinder, the stability of internal reference genes in L. striatellus under NZMF and GMF was evaluated and screened. Among them, 11 common candidate internal reference genes to be evaluated included Actin1, Tubulin (α1TUB and α2TUB), Elongation factor 1 alpha (EF-1α), Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Ubiquitin (UBI), Ribosomal protein S11 (RPS11), Ribosomal protein S15e (RPS15), Ribosomal protein L8 (RPL8), Ribosomal protein L9 (RPL9), and ADP ribosylation factor2 (ARF2). 【Result】 For brachypterous female adults under different magnetic field environments (NZMF vs. GMF), the expression stability of EF-1α and RPL9 ranked as the top two in the two assessment software of geNorm and NormFinder, which was slightly different from the results of BestKeeper software. Furthermore, the stability of the above three methods was sorted by online tool RefFinder. The results showed that the stability of EF-1α was the best, followed by RPL9. For brachypterous male adults under different magnetic field environments (NZMF vs. GMF), based on the three evaluation methods of geNorm, NormFinder, and BestKeeper, the expression stability of α2TUB and RPL9 ranked as the top two. Although the expression stability of Actin1 was in the top two in NormFinder and BestKeeper, its stability was low in geNorm. Finally, through the online tool RefFinder synthesis analysis, it was shown that the stability of α2TUB was the best, followed by RPL9. 【Conclusion】 Stably expressed reference genes in the brachypterous male and female adults of L. striatellus were clarified under different magnetic field intensities (NZMF vs. GMF). For a double reference gene system, the combination of EF-1α and RPL9, and the combination of α2TUB and RPL9 can be used in the brachypterous female and male adults, respectively, which is a stable reference gene system. Also, RPL9 can be used alone as a stable reference gene in both male and female brachypterous adults of L. striatellus. The results of this study ensure the accurate quantification of transcription expression of key target genes in response to changes in magnetic field intensity, and provide a strong guarantee for the future analysis of transcription expression profile under changes in magnetic field intensity.

Key words: Laodelphax striatellus, near-zero magnetic field, magnetic field intensity, quantitative real-time PCR (qRT-PCR), internal-reference gene selection

Table 1

Primer information of reference genes"

引物
Primer
序列
Sequence (5′ to 3′)
扩增效率
Amplification efficiency (%)
GenBank编号
GenBank number
描述
Description
LSACT1-F CGTGACTTGACCGACTACCT 101.49 KC683802.1 Actin1
LSACT1-R GCACAGCTTCTCCTTGATGTCT
LSARF2-F AATCAAAATAAAGCATCGCCCAC 100.44 JF728807.1 ADP ribosylation
factor2
LSARF2-R AGCAGCCCCATTATTTAACACGA
LSα1TUB-F TCCGAGAAAGCATACCACGAACA 100.58 AY508717.1 Alpha 1-tubulin
LSα1TUB-R TCCACGGTACAACATGCAACAAG
LSα2TUB-F GTTCGCCATCTACCCTGCTC 100.02 AY550922.1 Alpha 2-tubulin
LSα2TUB-R CAGATGTCGTAGATAGCCTCATTGT
LSEF-1α-F CTCTGCTCGCCTTCACACTC 99.98 N/A Elongation factor 1 alpha
LSEF-1α-R GCCGGGTTGTAGCCAATCTTC
LSGAPDH-F GCCAGTGCCCAATGTATCAGTC 100.26 HQ385974.1 Glyceraldehyde-3-phosphate
dehydrogenase
LSGAPDH-R AGACGACCTCTTCCTCGGTG
LSRPL8-F CAACTATGCCACTGTCATTGCT 100.51 HQ385976.1 Ribosomal protein L8
LSRPL8-R CGCCACAATGCCAACCATC
LSRPL9-F TGTGACCACCGAAAACAACTCT 100.24 JF728806.1 Ribosomal protein L9
LSRPL9-R TCGTCCTTCTGCTTTGTCGAGT
LSRPS11-F GGCACAAGCTACCGCATTAACAT 100.05 N/A Ribosomal protein S11
LSRPS11-R GCCTGTTCCTCTGACAACTACT
LSRPS15-F GTTGCCAGCCATTTTATCCAGTC 100.12 N/A Ribosomal protein S15e
LSRPS15-R TTGGGTTCTTCGTCTGCCAT
LSUBI-F GTTGTTCCAGTGATTGTGCTGT 100.45 N/A Ubiquitin
LSUBI-R ACGGCTCCACCTCCAAC

Fig. 1

Expression levels of 11 candidate internal-reference genes in brachypterous female adults of L. striatellus"

Table 2

The expression stability of the candidate reference genes in brachypterous female adults of L. striatellus calculated by geNorm, NormFinder, BestKeeper and RefFinder"

排序
Rank
geNorm NormFinder BestKeeper RefFinder
基因
Gene
稳定值
Stability value
基因
Gene
稳定值
Stability value
基因
Gene
稳定值
Stability value
基因
Gene
稳定值
Stability value
1 EF-1α 0.171 EF-1α 0.046 UBI 1.05 EF-1α 2.11
2 RPL9 0.173 RPL9 0.046 RPS11 1.07 RPL9 2.21
3 ARF2 0.175 ARF2 0.056 α2TUB 1.10 UBI 3.34
4 RPS15 0.176 α1TUB 0.059 EF-1α 1.11 RPS15 3.36
5 UBI 0.188 RPS15 0.061 Actin1 1.11 ARF2 3.95
6 RPS11 0.196 UBI 0.073 RPL9 1.12 RPS11 4.56
7 α2TUB 0.208 RPS11 0.078 α1TUB 1.13 α2TUB 5.66
8 α1TUB 0.223 α2TUB 0.100 RPS15 1.14 α1TUB 7.44
9 GAPDH 0.237 GAPDH 0.128 ARF2 1.16 Actin1 7.75
10 Actin1 0.248 Actin1 0.129 RPL8 1.21 GAPDH 9.72
11 RPL8 0.264 RPL8 0.137 GAPDH 1.22 RPL8 10.74

Fig. 2

Average expression pairwise variation (V) analysis of candidate reference genes by geNorm (female adult)"

Fig. 3

Expression levels of 11 candidate reference genes in brachypterous male adults of L. striatellus"

Table 3

The expression stability of the candidate reference genes in brachypterous male adults of L. striatellus calculated by geNorm, NormFinder, BestKeeper and RefFinder"

排序
Rank
geNorm NormFinder BestKeeper RefFinder
基因
Gene
稳定值
Stability value
基因
Gene
稳定值
Stability value
基因
Gene
稳定值
Stability value
基因
Gene
稳定值
Stability value
1 α2TUB 0.012 α2TUB 0.042 Actin1 1.07 α2TUB 1.32
2 RPL9 0.013 Actin1 0.049 RPL9 1.10 Actin1 2.00
3 α1TUB 0.013 RPL9 0.053 α2TUB 1.10 RPL9 2.38
4 RPS11 0.014 GAPDH 0.058 UBI 1.10 α1TUB 3.41
5 RPS15 0.014 α1TUB 0.069 α1TUB 1.11 UBI 5.60
6 Actin1 0.014 RPL8 0.061 GAPDH 1.14 GAPDH 6.00
7 UBI 0.016 RPS15 0.068 ARF2 1.15 RPS11 6.47
8 GAPDH 0.017 UBI 0.069 RPS15 1.16 RPS15 8.24
9 RPL8 0.019 RPS11 0.103 RPS11 1.16 RPL8 8.74
10 ARF2 0.025 EF-1α 0.125 RPL8 1.16 ARF2 9.82
11 EF-1α 0.026 ARF2 0.154 EF-1α 1.16 EF-1α 10.24

Fig. 4

Average expression pairwise variation (V) analysis of candidate reference genes by geNorm (male adult)"

[1] WALLRAFF H G . The magnetic map of homing pigeons: an evergreen phantom. Journal of Theoretical Biology, 1999,197(2):265-269.
[2] LOHMANN K J . Q & A: Animal behaviour: Magnetic-field perception. Nature, 2010,464(7292):1140-1142.
[3] ROSEN A D . Mechanism of action of moderate-intensity static magnetic fields on biological systems. Cell Biochemistry and Biophysics, 2003,39(2):163-173.
[4] SAVIĆ T, JANAĆ B, TODOROVIĆ D, PROLIĆ Z . The embryonic and post-embryonic development in two Drosophila species exposed to the static magnetic field of 60 mT. Electromagnetic Biology and Medicine, 2011,30(2):108-114.
[5] WAN G J, JIANG S L, ZHAO M, ZHAO J Y, ZHANG Y C, PAN W D, SWORD G A, CHEN F J . Geomagnetic field absence influences adult body weight of a migratory insect, potentially through appetite regulation. bioRxiv, 2019, doi: 10.1101/737361.
[6] ZHANG Y C, WAN G J, WANG W H, LI Y, YU Y, ZHANG Y X, CHEN F J, PAN W D . Enhancement of the geomagnetic field reduces the phototaxis of rice brown planthopper Nilaparvata lugens associated with frataxin down-regulation. Insect Science, 2019, doi: 10.1111/ 1744-7917.12714.
[7] POLIDORI E, ZEPPA S, POTENZA L, MARTINELLI C, COLOMBO E, CASADEI L, AGOSTINI D, SESTILI P, STOCCHI V . Gene expression profile in cultured human umbilical vein endothelial cells exposed to a 300 mT static magnetic field. Bioelectromagnetics, 2012,33(1):65-74.
[8] FINLAY C C, MAUS S, BEGGAN C D, BONDAR T N, CHAMBODUT A, CHERMOVA T A, CHULLIAT A, GOLOVKOV V P, HAMILTON B, HAMOUDI M ,et al. International geomagnetic reference field: The eleventh generation. Geophysical Journal International, 2010,183(3):1216-1230.
[9] CHAPMAN J W, REYNOLDS D R, WILSON K . Long-range seasonal migration in insects: Mechanisms, evolutionary drivers and ecological consequences. Ecology Letters, 2015,18(3):287-302.
[10] WAN G J, LIU R Y, LI C X, HE J L, PAN W D, SWORD G A, HU G, CHEN F J . Geomagnetic field intensity as a cue for the regulation of insect migration. bioRxiv, 2019, doi: 10.1101/733782.
[11] CUNHA C, PANSERI S, MARCACCI M, TAMPIERI A . Evaluation of the effects of a moderate intensity static magnetic field application on human osteoblast-like cells. American Journal of Biomedical Engineering, 2012,2(6):263-268.
[12] MO W C, ZHANG Z J, WANG D L, LIU Y, BARTLETT P F, HE R Q . Shielding of the geomagnetic field alters actin assembly and inhibits cell motility in human neuroblastoma cells. Scientific Reports, 2016,6:22624.
[13] WAN G J, JIANG S L, ZHAO Z C, XU J J, TAO X R, SWORD G A, GAO Y B, PAN W D, CHEN F J . Bio-effects of near-zero magnetic fields on the growth, development and reproduction of small brown planthopper,Laodelphax striatellus and brown planthopper, Nilaparvata lugens. Journal of Insect Physiology, 2014,68:7-15.
[14] WAN G J, WANG W J, XU J J, YANG Q F, DAI M J, ZHANG F J, SWORD G A, PAN W D, CHEN F J . Cryptochromes and hormone signal transduction under near-zero magnetic fields: New clues to magnetoreception in a rice planthopper. PLoS ONE, 2015,10(7):e0132966.
[15] WAN G J, YUAN R, WANG W J, FU K Y, ZHAO J Y, JIANG S L, PAN W D, SWORD G A, CHEN F J . Reduced geomagnetic field may affect positive phototaxis and flight capacity of a migratory rice planthopper. Animal Behaviour, 2016,121:107-116.
[16] ALEMÁN E I, MOREIRA R O, LIMA A A, SILVA S C, GONZÁLEZ- OLMEDO J L, CHALFUN-JUNIOR A . Effects of 60 Hz sinusoidal magnetic field on in vitro establishment, multiplication, and acclimatization phases of Coffea arabica seedlings. Bioelectromagnetics, 2014,35(6):414-425.
[17] WALTHER M, MAYER F, KAFKA W, SCHUTZE N . Effects of weak, low-frequency pulsed electromagnetic fields (BEMER type) on gene expression of human mesenchymal stem cells and chondrocytes: An in vitro study. Electromagnetic Biology and Medicine, 2007,26(3):179-190.
[18] HORE P J, MOURITSEN H . The radical-pair mechanism of magnetoreception. Annual Review of Biophysics, 2016,45:299-344.
[19] BINHI V N, PRATO F S . Rotations of macromolecules affect nonspecific biological responses to magnetic fields. Scientific Reports, 2018,8:13495.
[20] KISIMOTO R . Flexible diapauses response to photoperiod of a laboratory selected line in the small brown planthopper, Laodelphax striatellus Fallén. Applied Entomology and Zoology, 1989,24(1):157-159.
[21] OTUKA A, MATSUMURA M, SANADA-MORIMURA S, TAKEUCHI H, WATANABE T, OHTSU R, INOUE H . The 2008 overseas mass migration of the small brown planthopper,Laodelphax striatellus, and subsequent outbreak of rice stripe disease in western Japan. Applied Entomology and Zoology, 2010,45(2):259-266.
[22] 程遐年, 陈若篪, 习学, 杨联民, 朱子龙, 吴进才, 钱仁贵, 杨金生 . 稻褐飞虱迁飞规律的研究. 昆虫学报, 1979,22(1):1-21.
CHENG X N, CHEN R C, XI X, YANG L M, ZHU Z L, WU J C, QIAN R G, YANG J S . Studies on the migrations of brown planthopper Nilaparvata lugens Stal. Acta Entomologica Sinica, 1979,22(1):1-21. (in Chinese)
[23] 贺静斓, 张明, 刘瑞莹, 万贵钧, 潘卫东, 陈法军 . 近零磁场下干扰磁响应关键基因对褐飞虱寿命的影响. 中国农业科学, 2019,52(1):45-55.
doi: 10.3864/j.issn.0578-1752.2019.01.005
HE J L, ZHANG M, LIU R Y, WAN G J, PAN W D, CHEN F J . Effects of the interference of key magnetic response genes on the longevity of brown planthopper (Nilaparvata lugens) under near-zero magnetic field. Scientia Agricultura Sinica, 2019,52(1):45-55. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.01.005
[24] 张明, 刘瑞莹, 贺静澜, 袁锐, 万贵钧, 潘卫东, 陈法军 . 近零磁场下褐飞虱翅型分化及其长翅成虫正趋光性和飞行能力研究. 昆虫学报, 2019,62(1):82-90.
ZHANG M, LIU R Y, HE J L, YUAN R, WAN G J, PAN W D, CHEN F J . Wing-form differentiation, phototaxis and flight performance of the brown planthopper,Nilaparvata lugens (Hemiptera: Delphacidae) under near-zero magnetic fields. Acta Entomologica Sinica, 2019,62(1):82-90. (in Chinese)
[25] HUGGETT J, DHEDA K, BUSTIN S, ZUMLA A . Real-time RT-PCR normalisation; strategies and considerations. Genes and Immunity, 2005,6(4):279-284.
[26] STEINAU M, RAJEEVAN M S, UNGER E R . DNA and RNA references for qRT-PCR assays in exfoliated cervical cells. The Journal of Molecular Diagnostics, 2006,8(1):113-118.
[27] SUZUKI T, HIGGINS P J, CRAWFORD D R . Control selection for RNA quantitation. Biotechniques, 2000,29(2):332-337.
[28] BUSTIN S A . Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): Trends and problems. Journal of Molecular Endocrinology, 2002,29(1):23-39.
[29] THELLIN O, ZORIZ W, LAKAYE B, DE BORMAN B, COUMANS B, HENNEN G, GRISAR T, LGOUT A, HEINEN E . Housekeeping genes as internal standards: Use and limits. Journal of Biotechnology, 1999,75(2/3):291-295.
[30] DHEDA K, HUGGETT J F, BUSTIN S A, JOHNSON M A, ROOK G, ZUMLA A . Validation of housekeeping genes for normalizing RNA expression in real-time PCR. BioTechniques, 2004,37(1):112-119.
[31] VOLKOV R A, PANCHUK I I, SCHÖFFL F . Heat-stress-dependency and developmental modulation of gene expression: The potential of house-keeping genes as internal standards in mRNA expression profiling using real-time RT-PCR. Journal of Experimental Botany, 2003,54(391):2343-2349.
[32] BUSTIN S A, BENES V, NOLAN T, PFAFFL M W . Quantitative real-time RT-PCR—A perspective. Journal of Molecular Endocrinology, 2005,34:597-601.
[33] VANGUILDER H D, VRANA K E, FREEMAN W M . Twenty-five years of quantitative PCR for gene expression analysis. BioTechniques, 2008,44(5):619-626.
[34] DERVEAUX S, VANDESOMPELE J, HELLEMANS J . How to do successful gene expression analysis using real-time PCR. Methods, 2010,50(4):227-230.
[35] GUTIERREZ L, MAURIAT M, GUÉNIN S, PELLOUX J, LEFEBVRE J F, LOUVET R, RUSTERUCCI C, MORITZ T, GUERINEAU F, BELLINI C, VAN WUYTSWINKEL O . The lack of a systematic validation of reference genes: A serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotechnology Journal, 2008,6(6):609-618.
[36] VANDESOMPELE J, PRETER K D, PATTYN F, POPPE B, VAN ROY N, DE PAEPE A, SPELEMAN F . Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multipleinte internal control genes . Genome Biology, 2002, 3(7): research0034. 1.
[37] NIU J Z, DOU W, DING T B, YANG L H, SHEN G M, WANG J J . Evaluation of suitable reference genes for quantitative RT-PCR during development and abiotic stress in Panonychus citri(McGregor), (Acari: Tetranychidae). Molecular Biology Reports, 2012,39(5):5841-5849.
[38] 符伟, 谢文, 张卓, 吴青君, 王少丽, 张友军 . Bt毒素诱导下小菜蛾实时定量PCR内参基因的筛选. 昆虫学报, 2012,55(12):1406-1412.
FU W, XIE W, ZHANG Z, WU Q J, WANG S L, ZHANG Y J . Selection of valid reference genes for gene expression studies by quantitative real-time PCR in Plutella xylostella (Lepidoptera: Plutellidae) after exposure to Bt toxin. Acta Entomologica Sinica, 2012,55(12):1406-1412. (in Chinese)
[39] SHEN G M, JIANG H B, WANG X N, WANG J J . Evaluation of endogenous references for gene expression profiling in different tissues of the oriental fruit fly Bactrocera dorsalis(Diptera: Tephritidae). BMC Molecular Biology, 2010,11:76.
[40] LORD J C, HARTZER K, TOUTGES M, OPPERT B . Evaluation of quantitative PCR reference genes for gene expression studies in Tribolium castaneum after fungal challenge. Journal of Microbiological Methods, 2010,80(2):219-221.
[1] ZHANG DaoWei,KANG Kui,YU YaYa,KUANG FuPing,PAN BiYing,CHEN Jing,TANG Bin. Characteristics and Immune Response of Prophenoloxidase Genes in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2020, 53(15): 3108-3119.
[2] DING YanJuan,LIU YongKang,LUO YuJia,DENG YingMei,XU HongXing,TANG Bin,XU CaiDi. Potential Functions of Nilaparvata lugens GSK-3 in Regulating Glycogen and Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2019, 52(7): 1237-1246.
[3] TANG Bin,SHEN QiDa,ZENG BoPing,XIAO ZhongJiu,QIU LingYu,PAN BiYing,LI Kun,ZHANG DaoWei. Characteristics, Developmental Expression and RNAi Effect Analysis of a Novel Trehalose-6-Phosphate Synthase Gene in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2019, 52(3): 466-477.
[4] ZHANG DaoWei,YU YaYa,PAN BiYing,KANG Kui,ZENG BoPing,CHEN Jing,TANG Bin. Regulation Function of Trehalose-6-phosphate Synthase Genes on Chitin Synthesis in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2019, 52(19): 3357-3366.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!