Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (7): 1237-1246.doi: 10.3864/j.issn.0578-1752.2019.07.011

• PLANT PROTECTION • Previous Articles     Next Articles

Potential Functions of Nilaparvata lugens GSK-3 in Regulating Glycogen and Trehalose Metabolism

DING YanJuan1,LIU YongKang1,LUO YuJia1,DENG YingMei1,XU HongXing2,TANG Bin1(),XU CaiDi1,3   

  1. 1 College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036
    2 Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021
    3 College of Education, Hangzhou Normal University, Hangzhou 310036
  • Received:2018-11-15 Accepted:2018-12-29 Online:2019-04-01 Published:2019-04-04
  • Contact: Bin TANG E-mail:xucaidi001@163.com

Abstract:

【Objective】The insect insulin signaling pathway can mediate glycogen synthase kinase 3 (GSK-3 or GSK3) to regulate glucose metabolism in the body, such as glycogen and trehalose, thereby controlling different life activities of insects. The objective of this study is to explore the regulation of glycogen synthase kinase on the metabolism of glycogen and trehalose in Nilaparvata lugens.【Method】 Firstly, based on the cDNA coding sequence of GSK-3, the GSK-3 amino acid sequence was translated using the ExPASy tool to predict the molecular weight and isoelectric point (pI) of the protein, and then the signal peptide was analyzed by SignalaIP4.1Server. Secondly, the N. lugens raised in the author’s laboratory was collected every 12 hours from the 4th instar to 48-h-old adult. The total RNA of N. lugens was extracted by Trizol method. The first strand DNA was synthesized according to the reverse transcription kit, and 18S was used as the internal reference gene. The relative expression of GSK-3 in different ages at mRNA level was detected by quantitative real-time PCR (qRT-PCR). Then, double-stranded RNA (dsRNA) was microinjected into N. lugens with RNAi technology to inhibit the GSK-3, and N. lugens of dsGFP was injected as a control group. The expression of GSK-3 was detected by qRT-PCR 48 h after injection to determine the inhibitory effect. In addition, the N. lugens was taken 48 h after injection, and the change of trehalose, glucose, glycogen content and trehalase (TRE) activity in N. lugens was determined. Finally, the relative expression of related genes in insulin signaling pathway (including insulin receptor (InR), insulin-like peptides (Ilps)) and trehalose metabolism pathway (TRE, trehalose-6-phophate synthase (TPS), glycogen phosphorylase (GP), glycogen synthase (GS)) was detected by qRT-PCR to analyze the regulation of GSK-3 in insulin signaling pathway and trehalose metabolic pathway.【Result】The open reading frame of N. lugens GSK-3 is 1 914 bp, encoding 637 amino acids; the predicted molecular weight of the protein is 69.25 kD, and the isoelectric point is 9.15. It is a basic protein with no signal peptide structure and the sequence is highly conserved. The results of developmental expression pattern showed that the expression of GSK-3 was inconsistent at different developmental stages, and the expression was low before and after molting of 5th instar nymph. At 48 h after the dsRNA injection of GSK-3, the expression of GSK-3 decreased significantly compared with the dsGFP of the control group, indicating that the RNA interference effect was obvious. Glycogen content and two types of trehalase activity decreased significantly, while trehalose content increased significantly. It is speculated that glycogen and glucose are converted to trehalose as an energy source for their physiological activities. The results of qRT-PCR showed that the expression of TRE1-2 significantly decreased 48 h after the inhibition of GSK-3 expression, while the expression of TRE1-1 and TRE2 extremely significant decreased. In addition, the expression of two TPS genes, GS and GP genes all extremely significant decreased; the expression of two InR genes and four Ilps genes in the insulin signaling pathway were also inhibited, indirectly indicating that InR can regulate the expression of GSK-3. 【Conclusion】 The low expression of GSK-3 in N. lugens can regulate glycogen and trehalose metabolism by regulating insulin signaling pathway and trehalose metabolism pathway related gene expression. The relevant research results will help to explore more comprehensive molecular mechanisms for the regulation of the balance of trehalose and carbohydrates by insect glycogen synthase kinases such as N. lugens.

Key words: Nilaparvata lugens, RNA interference (RNAi), glycogen synthase kinase 3, glycogen and trehalose metabolism, quantitative real-time PCR (qRT-PCR)

Table 1

dsRNA synthesis and qRT-PCR primers"

引物名称Primer name 引物序列Primer sequence (5′-3′) 引物名称Primer name 引物序列Primer sequence (5′-3′)
GSK-3 F: GGAAAGTTGAATCAAAGTGCTCG
R: AGGCTTTTGCCAGGGATG

qNlIlp1 F: AACGATGCTGACTTGCAGATT
R: CGTACACGCGGAATAAATCA
dsGSK-3 F: T7-CTGCGACAGCGGCGAAATG
R: T7-CGGTGACAGATGCCCAGCGAGT

qNlIlp2 F: TTCTCAGCCGCTCTAGCAAT
R: CAGACGAAGGATCAGGGAAG
dsGFP F: T7-AAGGGCGAGGAGCTGTTCACCG
R: T7-CAGCAGGACCATGTGATCGCGC

qNlIlp3 F: ATACTGCGGCCAATAGCAAG
R: TCTCAATCCCCAAAATCAGC
qNlTRE1-1 F: GCCATTGTGGACAGGGTG
R: CGGTATGAACGAATAGAGCC

qNlIlp4 F: TCCCGGACAGTTCTCACTTT
R: TTGTATTCTCCGGAGGCAAG
qNlTRE1-2 F: GATCGCACGGATGTTTA
R: AATGGCGTTCAAGTCAA

qNlTPS1 F: AAGACTGAGGCGAATGGT
R: AAGGTGGAAATGGAATGTG
qNlTRE2 F: TCACGGTTGTCCAAGTCT
R: TGTTTCGTTTCGGCTGT

qNlTPS2 F: AGAGTGGACCGCAACAACA
R: TCAACGCCGAGAATGACTT
qNlInR1 F: GAGTGCAACCCGGAGTATGT
R: TCTTGACGGCACACTTCTTG

qNlGP F: GCTGCCTATGGCTATGGTATTC
R: TCTGAGTGTTGACCCACTTCTTG
qNlInR2 F: CTCTTGCCGAACAGCCTTAC
R: GGGTCGTTTAGTGGGTCTGA

qNlGS F: GCTCCAAAGCCTATGTTTCTACTG
R: TGGTAACCCCTGTCCCTCA
T7 GGATCCTAATACGACTCACTATAGG qNl18S F: CGCTACTACCGATTGAA
R: GGAAACCTTGTTACGACTT

Fig. 1

Nucleotide and amino acid sequence of N. lugens GSK-3"

Fig. 2

Relative expression level of GSK-3 in different developmental stages of N. lugens The relative expression of GSK-3 in different days of 4th instar nymphs (day 1 to day 4), 5th instar nymphs (day 1 to day 7), and early stages of adult (day 1 to day 4) Different lowercases on the bars indicate significant difference (P<0.05)"

Fig. 3

Relative expression level of N. lugens GSK-3 after RNA interference"

Fig. 4

Effect of GSK-3 RNA interference on glycogen and glucose contents of N. lugens"

Fig. 5

Effect of GSK-3 RNA interference on trehalase metabolism of N. lugens"

Fig. 6

Relative expression level of regulated genes of trehalose metabolism pathway and insulin signaling pathway after GSK-3 RNA interference"

[1] BARRION A T, LITSINGER J A . Taxonomy of rice insect pests and their arthropod parasites and predators//HEINRICHS E A. Biology and Management of Rice Insects. Wiley Eastern Ltd., India and IRRI, Manila, Philippines, 1994: 13.
[2] 赵颖, 黄凤宽, 童晓立, 庞雄飞 . 水稻品种对褐飞虱不同生物型抗性的HPLC分析. 华南农业大学学报, 2005,26(2):52-55.
doi: 10.3969/j.issn.1001-411X.2005.02.013
ZHAO Y, HUANG F K, TONG X L, PANG X F . HPLC analysis of rice variety resistance to different biotypes of Nilaparvata lugens. Journal of South China Agricultural University, 2005,26(2):52-55. (in Chinese)
doi: 10.3969/j.issn.1001-411X.2005.02.013
[3] WANG Y C, TANG M, HAO P Y, YANG Z F, ZHU L L, HE G C . Penetration into rice tissues by brown plant hopper and fine structure of the salivary sheaths. Entomologia Experimentalis et Applicata, 2008,129(3):295-307.
doi: 10.1111/j.1570-7458.2008.00785.x
[4] XI Y, PAN P L, YE Y X, YU B, XU H J, ZHANG C X . Chitinase-like gene family in the brown planthopper, Nilaparvata lugens. Insect Molecular Biology, 2015,24(1):29-40.
[5] XI Y, PAN P L, ZHANG C X . The β-N-acetylhexosaminidase gene family in the brown planthopper, Nilaparvata lugens. Insect Molecular Biology, 2015,24(6):601-610.
[6] GHAFFAR M B, PRITCHARD J, FORD-LLOYD B . Brown planthopper (N. lugens Stål) feeding behavior on rice germplasm as an indicator of resistance. PLoS ONE, 2011,6(7):e22137.
doi: 10.1371/journal.pone.0022137 pmid: 3136512
[7] YASUGI T, YAMADAL T, NISHIMURA T . Adaptation to dietary conditions by trehalose metabolism in Drosophila. Scientific Reports, 2017,7:1619.
doi: 10.1038/s41598-017-01754-9 pmid: 5431645
[8] 安涛, 张洪志, 刘晨曦, 王孟卿, 陈红印, 张礼生 . 胰岛素信号通路和FOXO调控烟蚜茧蜂海藻糖积累的机制初探//植保科技创新与农业精准扶贫——中国植物保护学会2016年学术年会论文集. 中国植物保护学会, 2016: 549.
AN T, ZHANG H Z, LIU C X, WANG M Q, CHEN H Y, ZHANG L S . Preliminary study on the mechanism of insulin signaling pathway and FOXO regulation of trehalose accumulation in Aphidius gifuensis Ashmead//Plant Protection Technology Innovation and Agricultural Precision Poverty AlleviationProceedings of the 2016 Annual Conference of the Chinese Society for Plant Protection. China Plant Protection Society, 2016: 549. (in Chinese)
[9] 于彩虹, 卢丹, 林荣华, 王晓军, 姜辉, 赵飞 . 海藻糖——昆虫的血糖. 昆虫知识, 2008,45(5):832-837.
doi: 10.3969/j.issn.0452-8255.2008.05.035
YU C H, LU D, LIN R H, WANG X J, JIANG H, ZHAO F . Trehalose—The blood sugar in insects. Chinese Bulletin of Entomology, 2008,45(5):832-837. (in Chinese)
doi: 10.3969/j.issn.0452-8255.2008.05.035
[10] PLOTKIN B, KAIDANOVICH O, TALIOR I, ELDAR-FINKELMAN H . Insulin mimetic action of synthetic phosphorylated peptide inhibitors of glycogen synthase kinase-3. The Journal of Pharmacology and Experimental Therapeutics, 2003,305(3):974-980.
doi: 10.1124/jpet.102.047381 pmid: 12626660
[11] MAQBOOL M, MOBASHIR M, HODA N . Pivotal role of glycogen synthase kinase-3: A therapeutic target for Alzheimer’s disease. European Journal of Medicinal Chemistry, 2016,107:63-81.
doi: 10.1016/j.ejmech.2015.10.018 pmid: 26562543
[12] COHEN P . Identification of a protein kinase cascade of major importance in insulin signal transduction. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 1999,354(1382):485-495.
[13] CONTRERAS C J, SEGVICH D M, MAHALINGAN K, CHIKWANA V M, KIRLEY T L, HURLEY T D, DE PAOLI- ROACH A A, ROACH P J . Incorporation of phosphate into glycogen by glycogen synthase. Archives of Biochemistry and Biophysics, 2016,597:21-29.
doi: 10.1016/j.abb.2016.03.020 pmid: 27036853
[14] 张妍, 阮杨, 周旭晨 . Akt/GSK-3β信号通路在高血压心肌肥厚中的作用. 中国分子心脏病学杂志, 2010,10(1):61-64.
doi: 10.7666/d.y1557094
ZHANG Y, RUAN Y, ZHOU X C . The roles of Akt/GSK-3 β signal pathway in myocardial hypertrophy. Molecular Cardiology of China, 2010,10(1):61-64. (in Chinese)
doi: 10.7666/d.y1557094
[15] 薛建 . 褐飞虱翅型分化分子机理研究[D]. 杭州: 浙江大学, 2015.
XUE J . Molecular mechanism of the wing dimorphism of the brown planthopper, Nilaparvata lugens[D]. Hangzhou: Zhejiang University, 2015. ( in Chinese)
[16] 巩涛, 刘德海, 王继雯, 杨文玲, 解复红 . 海藻糖合成途径及分子生物学研究进展. 中国农学通报, 2016,32(14):62-67.
doi: 10.11924/j.issn.1000-6850.casb15120111
GONG T, LIU D H, WANG J W, YANG W L, XIE F H . Advances in trehalose biosynthesis pathways and application of molecular biology technique. Chinese Agricultural Science Bulletin, 2016,32(14):62-67. (in Chinese)
doi: 10.11924/j.issn.1000-6850.casb15120111
[17] AVONCE N, MENDOZA-VARGAS A, MORETT E, ITURRIAGA G . Insights on the evolution of trehalose biosynthesis. BMC Evolutionary Biology, 2006,6:109.
doi: 10.1186/1471-2148-6-109
[18] 陈静, 张道伟 . 德国小蠊两个海藻糖合成酶基因的克隆、组织分布及温度诱导表达分析. 昆虫学报, 2015,58(10):1046-1053.
doi: 10.16380/j.kcxb.2015.10.002
CHEN J, ZHANG D W . Molecular cloning, tissue distribution and temperature-induced expression of two trehalose-6-phosphate synthase genes in Blattella germanica(Blattodea: Blattellidae). Acta Entomologica Sinica, 2015,58(10):1046-1053. (in Chinese)
doi: 10.16380/j.kcxb.2015.10.002
[19] MITSUMASU K, KANAMORI Y, FUJITA M, IWATA K, TANAKA D, KIKUTA S, WATANABE M, CORNETTE R, OKUDA T, KIKAWADA T . Enzymatic control of anhydrobiosis- related accumulation of trehalose in the sleeping chironomid, Polypedilum vanderplanki. The FEBS Journal, 2010,277(20):4215-4228.
doi: 10.1111/j.1742-4658.2010.07811.x pmid: 3037560
[20] SHUKLA E, THORAT L J, NATH B B, GAIKWAD S M . Insect trehalase: physiological significance and potential applications. Glycobiology, 2015,25(4):357-367.
doi: 10.1093/glycob/cwu125 pmid: 25429048
[21] ARMSTRONG A R, DRUMMOND-BARBOSA D . Insulin signaling acts in adult adipocytes via GSK-3 β and independently of FOXO to control Drosophila female germline stem cell numbers. Developmental Biology, 2018,440(1):31-39.
doi: 10.1016/j.ydbio.2018.04.028 pmid: 29729259
[22] SATO A, SHIBUYA H . Glycogen synthase kinase 3 β functions as a positive effector in the WNK signaling pathway. PLoS ONE, 2018,13(3):e0193204.
doi: 10.1371/journal.pone.0193204
[23] 张瑜, 李京, 杜孟芳 . 家蚕GSK3α氨基酸序列分析及其mRNA转录水平研究. 西北农林科技大学学报(自然科学版), 2012,40(4):25-30.
ZHANG Y, LI J, DU M F . Amino acid sequence analysis and study on mRNA transcription level of Bombyx mori glycogen synthase kinase 3α. Journal of Northwest A&F University (Natural Science Edition), 2012,40(4):25-30. (in Chinese)
[24] ZHANG L, WANG H J, CHEN J Y, SHEN Q D, WANG S G, XU H X, TANG B . Glycogen phosphorylase and glycogen synthase: gene cloning and expression analysis reveal their role in trehalose metabolism in the brown planthopper, Nilaparvata lugens Stål (Hemiptera: Delphacidae). Journal of Insect Science, 2017,17(2):42.
[25] 张露, 朱世城, 郑好, 沈祺达, 王世贵, 唐斌 . 褐飞虱海藻糖酶基因在表皮几丁质代谢中的调控作用. 中国农业科学, 2017,50(6):1047-1056.
doi: 10.3864/j.issn.0578-1752.2017.06.006
ZHANG L, ZHU S C, ZHENG H, SHEN Q D, WANG S G, TANG B . Regulatory function of trehalase genes on chitin metabolism in the cuticle of Nilaparvata lugens. Scientia Agricultura Sinica, 2017,50(6):1047-1056. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.06.006
[26] 李凯龙 . 褐飞虱蜕皮及变态信号途径相关基因的功能分析[D]. 北京: 中国农业科学院, 2016.
LI K L . Functional analysis of genes involved in molting and metamorphosis signal pathways in Nilaparvata lugens[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. ( in Chinese)
[27] XUE J, ZHOU X, ZHANG C X, YU L L, FAN H W, WANG Z, XU H J, XI Y, ZHU Z R, ZHOU W W, PAN P L, LI B L, COLBOURNE J K, NODA H, SUETSUGU Y, KOBAYASHI T, ZHENG Y, LIU S, ZHANG R, LIU Y, LUO Y D, FANG D M, CHEN Y, ZHAN D L, LV X D, CAI Y, WANG Z B, HUANG H J, CHENG R L, ZHANG X C, LOU Y H, YU B, ZHOU J C, YE Y X, ZHANG W Q, SHEN Z C, YANG H M, WANG J, WANG J, BAO Y Y, CHENG J A . Genomes of the rice pest brown planthopper and its endosymbionts reveal complex complementary contributions for host adaptation. Genome Biology, 2014,15(12):521.
doi: 10.1186/s13059-014-0521-0 pmid: 4269174
[28] FRAME S, COHEN P . GSK 3 takes center stage more than 20 years after its discovery. The Biochemical Journal, 2001,359(1):1-16.
doi: 10.1042/bj3590001
[29] FIRE A, XU S, MONTGOMERY M K, KOSTAS S A, DRIVER S E, MELLO C C . Potent and specific genetic interference by double- stranded RNA in Caenorhabditis elegans. Nature, 1998,391(6669):806-811.
[30] ZHU Q S, ARAKANE Y, BEEMAN R W, KRAMER K J, MUTHUKRISHNAN S . Functional specialization among insect chitinase family genes revealed by RNA interference. Proceedings of the National Academy of Sciences of the United States of America, 2008,105(18):6650-6655.
doi: 10.1073/pnas.0800739105 pmid: 18436642
[31] FU K Y, LI Q, ZHOU L T, MENG Q W, LÜ F G, GUO W C, LI G Q . Knockdown of juvenile hormone acid methyl transferase severely affects the performance of Leptinotarsa decemlineata(Say) larvae and adults. Pest Management Science, 2016,72(6):1231-1241.
doi: 10.1002/ps.4103 pmid: 26299648
[32] 周谊霞 . DKD大鼠肾组织中GSK-3β对GSK-Wnt通路与RANKL-NF-κB通路交互作用相关因子调控机制研究[D]. 贵阳: 贵州医科大学, 2015.
ZHOU Y X . GSK-3β regulates positively of RANKL, NF-κB, OPN through the cross-talk of GSK-Wnt and RANKL-NF-κB pathway in renal tissue of the rats with DKD[D]. Guiyang: Guizhou Medical University, 2015. ( in Chinese)
[33] LIBERMAN Z, ELDAR-FINKELMAN H . Serine 332 phosphorylation of insulin receptor substrate-1 by glycogen synthase kinase-3 attenuates insulin signaling. The Journal of Biological Chemistry, 2005,280(6):4422-4428.
doi: 10.1074/jbc.M410610200 pmid: 15574412
[34] WOODGETT J R, COHEN P . Multisite phosphorylation of glycogen synthase. Molecular basis for the substrate specificity of glycogen synthase kinase-3 and casein kinase-II (glycogen synthase kinase-5). Biochimica et Biophysica Acta, 1984,788(3):339-347.
doi: 10.1016/0167-4838(84)90047-5
[35] KHAN I, TANTRAY M A, ALAM M S, HAMID H . Natural and synthetic bioactive inhibitors of glycogen synthase kinase. European Journal of Medicinal Chemistry, 2017,125:464-477.
doi: 10.1016/j.ejmech.2016.09.058 pmid: 27689729
[36] 刘军, 肖颂华, 刘中霖 . 鼻咽癌放疗后神经损伤学. 广州: 广东科技出版社, 2010.
LIU J, XIAO S H, LIU Z L. Neuronal Injury after Radiotherapy for Nasopharyngeal Carcinoma. Guangzhou: Guangdong Science and Technology Press, 2010. ( in Chinese)
[37] SATAKE S, MASUMURA M, ISHIZAKI H, NAGATA K, KATAOKA H, SUZUKI A, MIZOGUCHI A . Bombyxin, an insulin-related peptide of insects, reduces the major storage carbohydrates in the silk worm Bombyx mori. Comparative Biochemistry and Physiology B: Biochemistry and Molecular Biology, 1997,118(2):349-357.
doi: 10.1016/S0305-0491(97)00166-1 pmid: 9440228
[38] SATAKE S, NAGATA K, KATAOKA H, MIZOGUCHI A . Bombyxin secretion in the adult silk moth Bombyx mori: sex-specificity and its correlation with metabolism. Journal of Insect Physiology, 1999,45(10):939-945.
doi: 10.1016/S0022-1910(99)00074-8 pmid: 12770287
[39] XU H J, XUE J, LU B, ZHANG X C, ZHUO J C, HE S F, MA X F, JIANG Y Q, FAN H W, XU J Y, YE Y X, PAN P L, LI Q, BAO Y Y, NIJHOUT H F, ZHANG C X . Two insulin receptors determine alternative wing morphs in planthoppers. Nature, 2015,519(7544):464-467.
doi: 10.1038/nature14286 pmid: 25799997
[1] GUAN RuoBing,LI HaiChao,MIAO XueXia. Commercialization Status and Existing Problems of RNA Biopesticides [J]. Scientia Agricultura Sinica, 2022, 55(15): 2949-2960.
[2] YIN Fei,LI ZhenYu,SAMINA Shabbir,LIN QingSheng. Expression and Function Analysis of Cytochrome P450 Genes in Plutella xylostella with Different Chlorantraniliprole Resistance [J]. Scientia Agricultura Sinica, 2022, 55(13): 2562-2571.
[3] WU Wei,XU HuiLi,WANG ZhengLiang,YU XiaoPing. Cloning and Function Analysis of a Serine Protease Inhibitor Gene Nlserpin2 in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2022, 55(12): 2338-2346.
[4] CHEN ErHu,MENG HongJie,CHEN Yan,TANG PeiAn. Cuticle Protein Genes TcCP14.6 and TcLCPA3A are Involved in Phosphine Resistance of Tribolium castaneum [J]. Scientia Agricultura Sinica, 2022, 55(11): 2150-2160.
[5] Xiang XU,Yi XIE,LiYun SONG,LiLi SHEN,Ying LI,Yong WANG,MingHong LIU,DongYang LIU,XiaoYan WANG,CunXiao ZHAO,FengLong WANG,JinGuang YANG. Screening and Large-Scale Preparation of dsRNA for Highly Targeted Degradation of Tobacco Mosaic Virus (TMV) Nucleic Acids [J]. Scientia Agricultura Sinica, 2021, 54(6): 1143-1153.
[6] GE XinZhu,SHI YuXing,WANG ShaSha,LIU ZhiHui,CAI WenJie,ZHOU Min,WANG ShiGui,TANG Bin. Sequence Analysis of Harmonia axyridis Pyruvate Kinase Gene and Its Regulation of Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2021, 54(23): 5021-5031.
[7] YU WeiDong,PAN BiYing,QIU LingYu,HUANG Zhen,ZHOU Tai,YE Lin,TANG Bin,WANG ShiGui. The Structure Characteristics and Biological Functions on Regulating Trehalose Metabolism of Two NlTret1s in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2020, 53(23): 4802-4812.
[8] ZHANG DaoWei,KANG Kui,YU YaYa,KUANG FuPing,PAN BiYing,CHEN Jing,TANG Bin. Characteristics and Immune Response of Prophenoloxidase Genes in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2020, 53(15): 3108-3119.
[9] LIU XiaoJian,GUO Jun,ZHANG XueYao,MA EnBo,ZHANG JianZhen. Molecular Characteristics and Function Analysis of Nuclear Receptor Gene LmE75 in Locusta migratoria [J]. Scientia Agricultura Sinica, 2020, 53(11): 2219-2231.
[10] YAO LiXiao,FAN HaiFang,ZHANG QingWen,HE YongRui,XU LanZhen,LEI TianGang,PENG AiHong,LI Qiang,ZOU XiuPing,CHEN ShanChun. Function of Citrus Bacterial Canker Resistance-Related Transcription Factor CitMYB20 [J]. Scientia Agricultura Sinica, 2020, 53(10): 1997-2008.
[11] MA Wen,LIU Jiao,ZHANG XueYao,SHEN GuoHua,QIN XueMei,ZHANG JianQin. Enzymatic Characteristics and Metabolic Analysis to Malathion and p,p’-DDT of LmGSTS2 from Locusta migratoria [J]. Scientia Agricultura Sinica, 2019, 52(8): 1389-1399.
[12] TANG Bin,SHEN QiDa,ZENG BoPing,XIAO ZhongJiu,QIU LingYu,PAN BiYing,LI Kun,ZHANG DaoWei. Characteristics, Developmental Expression and RNAi Effect Analysis of a Novel Trehalose-6-Phosphate Synthase Gene in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2019, 52(3): 466-477.
[13] JunBo PENG,XingHong LI,Wei ZHANG,Ying ZHOU,JinBao HUANG,JiYe YAN. Pathogenicity and Gene Expression Pattern of the Exocrine Protein LtGH61A of Grape Canker Fungus [J]. Scientia Agricultura Sinica, 2019, 52(24): 4518-4526.
[14] LIU FanQi,WAN GuiJun,ZENG LuYing,LI ChunXu,PAN WeiDong,CHEN FaJun. Selection of Stable Internal Reference Genes for Transcript Expression Analyses in Laodelphax striatellus Under Near-Zero Magnetic Field [J]. Scientia Agricultura Sinica, 2019, 52(19): 3346-3356.
[15] ZHANG DaoWei,YU YaYa,PAN BiYing,KANG Kui,ZENG BoPing,CHEN Jing,TANG Bin. Regulation Function of Trehalose-6-phosphate Synthase Genes on Chitin Synthesis in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2019, 52(19): 3357-3366.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!