Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (19): 3357-3366.doi: 10.3864/j.issn.0578-1752.2019.19.007

• PLANT PROTECTION • Previous Articles     Next Articles

Regulation Function of Trehalose-6-phosphate Synthase Genes on Chitin Synthesis in Sogatella furcifera

ZHANG DaoWei1,YU YaYa2,PAN BiYing3,KANG Kui1,ZENG BoPing1,CHEN Jing2,TANG Bin1,3()   

  1. 1 College of Biology and Agriculture, Zunyi Normal University/Key Laboratory of Protection and Utilization of Animal Resource in Chishui River Basin, Zunyi 563006, Guizhou
    2 College of Basic Medical Science, Zunyi Medical University, Zunyi 563006, Guizhou
    3 College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036
  • Received:2019-05-05 Accepted:2019-06-10 Online:2019-10-01 Published:2019-10-11
  • Contact: Bin TANG E-mail:tbzm611@163.com

Abstract:

【Background】 It is well known that trehalose-6-phosphate synthase (TPS) plays an important role in trehalose synthesis, which can mediate trehalose metabolism to regulate chitin synthesis and insect development. 【Objective】 In this study, the effect of silencing SfTPS was detected, the molting status of Sogatella furcifera was observed and the content of chitin and the quantitative expression of chitin synthase (CHS) gene were determined through inhibiting the expression of TPS by RNAi in S. furcifera. The purpose is to explore the potential regulatory effects of SfTPS on the chitin synthesis in S. furcifera.【Method】 The S. furcifera population, which has been fed in laboratory for many years, was used as experimental material. The double-stranded RNA (dsRNA) of SfTPS and GFP were synthesized in vitro in order to study the potential function of TPSs, the RNA of two dsSfTPSs (dsSfTPS1 and dsSfTPS2) was injected into S. furcifera, respectively. Firstly, after dsRNA injection, the total RNA of S. furcifera was extracted by Trizol method at 48 h, and the first strand DNA was synthesized as the template of quantitative real-time PCR (qRT-PCR). As well as qRT-PCR was used to detect the silencing of SfTPS expression for the effect of RNAi. Secondly, the whole chitin of S. furcifera was detected at 48 and 72 h after dsRNA injection, and photographs were taken of the winged developmental malformations. Finally, the relative expression level of SfCHS in S. furcifera was detected by qRT-PCR, and the roles of SfTPS1 and SfTPS2 in the regulation of chitin synthesis were analyzed.【Result】 Compared with dsGFP injection, the expression of SfCHS increased after dsSfTPS1 and dsSfTPS2 injection, as well as the chitin content increased, which lead to the wing deformity of S. furcifera. The qRT-PCR results showed that the expression of SfTPS was significantly inhibited after dsRNA injection of a single SfTPS, which was less than 30% of that in the control group injected with dsGFP. In addition, the expression of another SfTPS also decreased significantly after a single SfTPS dsRNA injection. The adult wings of S. furcifera were all long wings after dsSfTPS1 and dsSfTPS2 injection. Some deformities such as wing curl in a certain ratio had been found in these long wings, and a certain ratio of mortality was found at 48 and 72 h. The chitin content increased significantly at 72 h after these two dsSfTPSs RNA injection. Compared with the control group, the expression of SfCHS1 and SfCHS1a increased significantly at 72 h after dsSfTPS1 injection, followed it increased significantly at 48 and 72 h after dsSfTPS2 injection. In the same time, the expression of SfCHS1b increased significantly after dsSfTPS1 and dsSfTPS2 injection.【Conclusion】 The SfTPS can control the synthesis of chitin through the regulation of chitin synthase gene in S. furcifera. The results are helpful to evaluate the regulatory role of SfTPS in S. furcifera and other insects and as the potential pest control target. It provides a theoretical basis for further development and screening of effective trehalose-6-phosphate synthase inhibitors to control S. furcifera pests and so on.

Key words: white-backed planthopper (Sogatella furcifera), trehalose-6-phosphate synthase (TPS), RNA interference, chitin synthesis, quantitative real-time PCR (qRT-PCR)

Table 1

The primer sequences for dsRNA synthesis"

引物名称 Primer name 上游引物 Forward primer (5′-3′) 下游引物 Reverse primer (5′-3′) 产物长度 Length (bp)
dsSfTPS1 CCCGTTGTGGTGAGAAATA CAAGGTGGGAATGGAATG 473
dsSfTPS1-T7 T7-CCCGTTGTGGTGAGAAATA T7-CAAGGTGGGAATGGAATG 523
dsSfTPS2 CGCATAGACCGCAACAAC TCGCAACGGAGTAACCAG 459
dsSfTPS2-T7 T7-CGCATAGACCGCAACAAC T7-TCGCAACGGAGTAACCAG 509
dsGFP AAGGGCGAGGAGCTGTTCACCG CAGCAGGACCATGTGATCGCGC 688
dsGFP-T7 T7-AAGGGCGAGGAGCTGTTCACCG T7-CAGCAGGACCATGTGATCGCGC 738

Fig. 1

Comparison of nucleotide sequence of TPS1 and TPS2 in S. furcifera"

Table 2

The primer sequences for qRT-PCR detection"

引物名称 Primer name 上游引物 Forward primer (5′-3′) 下游引物 Reverse primer (5′-3′) 产物长度 Length (bp)
Q-SfTPS1 CCGATTCGCTACATCTACG GACAAACTCTTTCGCCACTAA 123
Q-SfTPS2 GATGCTGAGGGCAAAGAC TGTGGAAGCCGACAAAGT 226
Q-SfCHS1 GATTGGTCATTGGCTTCAGA GTAATGTCTTGCTTCGTCAG 151
Q-SfCHS1a CTTCGGTGTTTGGTTTCTT TGGGTAACATCATCATAGGA 136
Q-SfCHS1b GAGAAGGCGAGAATAGCA GCAGCAAGAACACGATTA 103
Q-18S rRNA GCCCCGTAATCGGAATGAGT GACAAGACGTCCCGCAAAAC 205

Fig. 2

The relative expression of two TPSs and moulting of adults of S. furcifera after RNAi"

Fig. 3

Changes of chitin content in S. furcifera after RNAi"

Fig. 4

The relative expression of SfCHS and variants transcripts after SfTPS RNAi"

Fig. 5

Deformity rate and mortality of S. furcifera after SfTPS RNAi The deformity rate of dsGFP control group is 0"

[1] BARRION A T, LITSINGER J A . Taxonomy of rice insect pests and their arthropod parasites and predators//HEINRICHS E A. Biology and Management of Rice Insects. Manila, Philippines: Wiley Eastern Ltd., India and IRRI, 1994: 13-362.
[2] 赵梦, 欧阳芳, 张永生, 李魏, 曹婧, 戈峰 . 2000-2010年我国水稻病虫害发生与为害特征分析. 生物灾害科学, 2014,37(4):275-280.
ZHAO M, OUYANG F, ZHANG Y S, LI W, CAO J, GE F . Characteristics of occurrence and damage from diseases and insect pests in rice production in China during 2000-2010. Biological Disaster Science, 2014,37(4):275-280. (in Chinese)
[3] 赵颖, 黄凤宽, 童晓立, 庞雄飞 . 水稻品种对褐飞虱不同生物型抗性的HPLC分析. 华南农业大学学报, 2005,26(2):52-55.
ZHAO Y, HUANG F K, TONG X L, PANG X F . HPLC analysis of rice variety resistance to different biotypes of Nilaparvata lugens. Journal of South China Agricultural University, 2005,26(2):52-55. (in Chinese)
[4] WANG Y C, TANG M, HAO P Y, YANG Z F, ZHU L L, HE G C . Penetration into rice tissues by brown planthopper and fine structure of the salivary sheaths. Entomologia Experimentalis et Applicata, 2008,129(3):295-307.
[5] XI Y, PAN P L, YE Y X, YU B, XU H J, ZHANG C X . Chitinase-like gene family in the brown planthopper,Nilaparvata lugens. Insect Molecular Biology, 2015,24(1):29-40.
[6] XI Y, PAN P L, ZHANG C X . The β-N-acetylhexosaminidase gene family in the brown planthopper, Nilaparvata lugens. Insect Molecular Biology, 2015,24(6):601-610.
[7] GHAFFAR M B, PRITCHARD J, FORD-LLOYD B . Brown planthopper (N. lugens Stål) feeding behavior on rice germplasm as an indicator of resistance. PLoS ONE, 2011,6(7):e22137.
[8] 唐斌, 魏苹, 陈洁, 王世贵, 张文庆 . 昆虫海藻糖酶的基因特性及功能研究进展. 昆虫学报, 2012,55(11):1315-1321.
TANG B, WEI P, CHEN J, WANG S G, ZHANG W Q . Progress in gene features and functions of insect trehalases. Acta Entomologica Sinica, 2012,55(11):1315-1321. (in Chinese)
[9] 唐斌, 徐青叶, 赵丽娜, 王世贵, 张帆 . 昆虫海藻糖及其合成酶基因的特性与功能研究进展. 应用昆虫学报, 2014,51(6):1397-1405.
TANG B, XU Q Y, ZHAO L N, WANG S G, ZHANG F . Progress in research on the characteristics and functions of trehalose and the TPS gene in insects. Chinese Journal of Applied Entomology, 2014,51(6):1397-1405. (in Chinese)
[10] SHUKLA E, THORAT L J, NATH B B, GAIKWAD S M . Insect trehalase: Physiological significance and potential applications. Glycobiology, 2015,25(4):357-367.
[11] 唐斌, 张露, 熊旭萍, 汪慧娟, 王世贵 . 海藻糖代谢及其调控昆虫几丁质合成研究进展. 中国农业科学, 2018,51(4):697-707.
doi: 10.3864/j.issn.0578-1752.2018.04.009
TANG B, ZHANG L, XIONG X P, WANG H J, WANG S J . Advances in trehalose metabolism and its regulation of insect chitin synthesis. Scientia Agricultura Sinica, 2018,51(4):697-707. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.04.009
[12] CHEN J, TANG B, CHEN H, YAO Q, HUANG X, CHEN J, ZHANG D, ZHANG W Q . Different functions of the insect soluble and membrane-bound trehalase genes in chitin biosynthesis revealed by RNA interference. PLoS ONE, 2010,5(4):e10133.
[13] 张文庆, 陈晓菲, 唐斌, 田宏刚, 陈洁, 姚琼 . 昆虫几丁质合成及其调控研究前沿. 应用昆虫学报, 2011,48(3):475-479.
ZHANG W Q, CHEN X F, TANG B, TIAN H G, CHEN J, YAO Q . Insect chitin biosynthesis and its regulation. Chinese Journal of Applied Entomology, 2011,48(3):475-479. (in Chinese)
[14] TANG B, WANG S, WANG S G, WANG H J, ZHANG J Y, CUI S Y . Invertebrate trehalose-6-phosphate synthase gene: Genetic architecture, biochemistry, physiological function, and potential applications. Frontiers in Physiology, 2018,9:30.
[15] ZHU K Y, MERZENDORFER H, ZHANG W Q, ZHANG J Z, MUTHUKRISHNAN S . Biosynthesis, turnover, and functions of chitin in insects. Annual Review of Entomology, 2016,61:177-196.
[16] CHEN X F, TIAN H G, ZOU L Z, TANG B, HU J, ZHANG W Q . Disruption of Spodoptera exigua larval development by silencing chitin synthase gene A with RNA interference. Bulletin of Entomological Research, 2008,98(6):613-619.
[17] ZHAO L N, YANG M M, SHEN Q D, LIU X J, SHI Z K, WANG S G, TANG B . Functional characterization of three trehalase genes regulating the chitin metabolism pathway in rice brown planthopper using RNA interference. Scientific Reports, 2016,6:27841.
[18] 陈静, 张道伟 . 德国小蠊两个海藻糖合成酶基因的克隆、组织分布及温度诱导表达分析. 昆虫学报, 2015,58(10):1046-1053.
CHEN J, ZHANG D W . Molecular cloning, tissue distribution and temperature-induced expression of two trehalose-6-phosphate synthase genes in Blattella germanica(Blattodea: Blattellidae). Acta Entomologica Sinica, 2015,58(10):1046-1053. (in Chinese)
[19] YANG M M, ZHAO L N, SHEN Q D, XIE G Q, WANG S G, TANG B . Knockdown of two trehalose-6-phosphate synthases severely affects chitin metabolism gene expression in the rice brown planthopper Nilaparvata lugens. Pest Management Science, 2017,73(1):206-216.
[20] 陈静 . 褐飞虱遗传多样性及其海藻糖合成酶基因功能的分析[D]. 广州: 中山大学, 2010.
CHEN J . Genetic diversity and function analysis of a trehalose phosphate synthase gene of Nilaparvata lugens[D]. Guangzhou:Sun Yat-Sen University, 2010. ( in Chinese)
[21] 唐斌, 沈祺达, 曾伯平, 肖仲久, 邱玲玉, 潘碧莹, 李昆, 张道伟 . 褐飞虱一个新的海藻糖合成酶基因的特性、发育表达及RNAi效果分析. 中国农业科学, 2019,52(3):466-477.
doi: 10.3864/j.issn.0578-1752.2019.03.007
TANG B, SHEN Q D, ZENG B P, XIAO Z J, QIU L Y, PAN B Y, LI K, ZHANG D W . Characteristics, developmental expression and RNAi effect analysis of a novel trehalose-6-phosphate synthase gene in Nilaparvata lugens. Scientia Agricultura Sinica, 2019,52(3):466-477. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.03.007
[22] TANG B, CHEN J, YAO Q, PAN Z Q, XU W H, WANG S G, ZHANG W Q . Characterization of a trehalose-6-phosphate synthase gene from Spodoptera exigua and its function identification through RNA interference. Journal of Insect Physiology, 2010,56(7):813-821.
[23] 张道伟, 陈静, 郭玉双 . 白背飞虱海藻糖合成酶基因的克隆及序列分析. 黑龙江农业科学, 2012(5):14-19.
ZHANG D W, CHEN J, GUO Y S . Cloning and sequence analysis oftrehalose phosphate synthase gene from Sogatella furcifera. Heilongjiang Agricultural Sciences, 2012(5):14-19. (in Chinese)
[24] 张露, 朱世城, 郑好, 沈祺达, 王世贵, 唐斌 . 褐飞虱海藻糖酶基因在表皮几丁质代谢中的调控作用. 中国农业科学, 2017,50(6):1047-1056.
doi: 10.3864/j.issn.0578-1752.2017.06.006
ZHANG L, ZHU S C, ZHENG H, SHEN Q D, WANG S G, TANG B . Regulatory function of trehalase genes on chitin metabolism in the cuticle of Nilaparvata lugens. Scientia Agricultura Sinica, 2017,50(6):1047-1056. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.06.006
[25] 曹传旺, 高彩球 . 昆虫生化与分子生物学实验技术. 哈尔滨: 东北林业大学出版社, 2009: 24-26.
CAO C W, GAO C Q. Experimental Techniques of Insect Biochemistry and Molecular Biology. Harbin: Northeast Forestry University Press, 2009: 24-26. (in Chinese)
[26] LIVAK K J, SCHMITTGEN T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001,25(4):402-408.
[27] WANG Y, FAN H W, HUANG H J, XUE J, WU W J, BAO Y Y, XU H J, ZHU Z R, CHENG J A, ZHANG C X . Chitin synthase 1 gene and its two alternative splicing variants from two sap-sucking insects,Nilaparvata lugens and Laodelphax striatellus(Hemiptera: Delphacidae). Insect Biochemistry and Molecular Biology, 2012,42(9):637-646.
[28] THOMPSON S N . Trehalose - The insect ‘blood’ sugar. Advances in Insect Physiology, 2003,31:205-285.
[29] AVONCE N, MENDOZA-VARGAS A, MORETT E, ITURRIAGA G . Insights on the evolution of trehalose biosynthesis. BMC Evolutionary Biology, 2006,6:109.
[30] LU X Y, LI J Q, YANG J H, LIU X N, MA J . De novo transcriptome of the desert beetle Microdera punctipennis(Coleoptera: Tenebrionidae) using illumine RNA-seq technology. Molecular Biology Reports, 2014,41(11):7293-7303.
[31] FIRE A, XU S Q, MONTGOMERY M K, KOSTAS S A, DRIVER S E, MELLO C C . Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998,391:806-811.
[32] MA Z, ZHU P, SHI H, GUO L, ZHANG Q, CHEN Y, CHEN S, ZHANG Z, PENG J, CHEN J . PTC-bearing mRNA elicits a genetic compensation response via Upf3a and COMPASS components. Nature, 2019,568(7751):259-263.
[33] ZHANG L, QIU L Y, YANG H L, WANG H J, ZHOU M, WANG S G, TANG B . Study on the effect of wing bud chitin metabolism and its developmental network genes in the brown planthopper,Nilaparvata lugens, by knockdown of TRE gene. Frontiers in Physiology, 2017,8:750.
[34] ZHU Q S, ARAKANE Y, BEEMAN R W, KRAMER K J, MUTHUKRISHNAN S . Functional specialization among insect chitinase family genes revealed by RNA interference. Proceedings of the National Academy of Sciences of the United States of America, 2008,105(18):6650-6655.
[35] BELLES X . Beyond Drosophila: RNAi in vivo and functional genomics in insects. Annual Review of Entomology, 2010,55:111-128.
[36] SCOTT J G, MICHEL K, BARTHOLOMAY L C, SIEGFRIED B D, HUNTER W B, SMAGGHE G, ZHU K Y, DOUGLAS A E . Towards the elements of successful insect RNAi. Journal of Insect Physiology, 2013,59(12):1212-1221.
[37] CHEN X F, YANG X, KUMAR N S, TANG B, SUN X J, QIU X M, HU J, ZHANG W Q . The class A chitin synthase gene of Spodoptera exigua: Molecular cloning and expression patterns. Insect Biochemistry and Molecular Biology, 2007,37(5):409-417.
[38] TANG B, YANG M M, SHEN Q D, XU Y X, WANG H J, WANG S G . Suppressing the activity of trehalase with validamycin disrupts the trehalose and chitin biosynthesis pathways in rice brown planthopper,Nilaparvata lugens. Pesticide Biochemistry and Physiology, 2017,137:81-90.
[39] CHEN Q W, JIN S, ZHANG L, SHEN Q D, WEI P, WEI Z M, WANG S G, TANG B . Regulatory functions of trehalose-6-phosphate synthase in the chitin biosynthesis pathway in Tribolium castaneum(Coleoptera: Tenebrionidae) revealed by RNA interference. Bulletin of Entomological Research, 2018,108(3):388-399.
[1] GUAN RuoBing,LI HaiChao,MIAO XueXia. Commercialization Status and Existing Problems of RNA Biopesticides [J]. Scientia Agricultura Sinica, 2022, 55(15): 2949-2960.
[2] YIN Fei,LI ZhenYu,SAMINA Shabbir,LIN QingSheng. Expression and Function Analysis of Cytochrome P450 Genes in Plutella xylostella with Different Chlorantraniliprole Resistance [J]. Scientia Agricultura Sinica, 2022, 55(13): 2562-2571.
[3] WU Wei,XU HuiLi,WANG ZhengLiang,YU XiaoPing. Cloning and Function Analysis of a Serine Protease Inhibitor Gene Nlserpin2 in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2022, 55(12): 2338-2346.
[4] CHEN ErHu,MENG HongJie,CHEN Yan,TANG PeiAn. Cuticle Protein Genes TcCP14.6 and TcLCPA3A are Involved in Phosphine Resistance of Tribolium castaneum [J]. Scientia Agricultura Sinica, 2022, 55(11): 2150-2160.
[5] Xiang XU,Yi XIE,LiYun SONG,LiLi SHEN,Ying LI,Yong WANG,MingHong LIU,DongYang LIU,XiaoYan WANG,CunXiao ZHAO,FengLong WANG,JinGuang YANG. Screening and Large-Scale Preparation of dsRNA for Highly Targeted Degradation of Tobacco Mosaic Virus (TMV) Nucleic Acids [J]. Scientia Agricultura Sinica, 2021, 54(6): 1143-1153.
[6] GE XinZhu,SHI YuXing,WANG ShaSha,LIU ZhiHui,CAI WenJie,ZHOU Min,WANG ShiGui,TANG Bin. Sequence Analysis of Harmonia axyridis Pyruvate Kinase Gene and Its Regulation of Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2021, 54(23): 5021-5031.
[7] ZHANG DaoWei,KANG Kui,YU YaYa,KUANG FuPing,PAN BiYing,CHEN Jing,TANG Bin. Characteristics and Immune Response of Prophenoloxidase Genes in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2020, 53(15): 3108-3119.
[8] LIU XiaoJian,GUO Jun,ZHANG XueYao,MA EnBo,ZHANG JianZhen. Molecular Characteristics and Function Analysis of Nuclear Receptor Gene LmE75 in Locusta migratoria [J]. Scientia Agricultura Sinica, 2020, 53(11): 2219-2231.
[9] YAO LiXiao,FAN HaiFang,ZHANG QingWen,HE YongRui,XU LanZhen,LEI TianGang,PENG AiHong,LI Qiang,ZOU XiuPing,CHEN ShanChun. Function of Citrus Bacterial Canker Resistance-Related Transcription Factor CitMYB20 [J]. Scientia Agricultura Sinica, 2020, 53(10): 1997-2008.
[10] MA Wen,LIU Jiao,ZHANG XueYao,SHEN GuoHua,QIN XueMei,ZHANG JianQin. Enzymatic Characteristics and Metabolic Analysis to Malathion and p,p’-DDT of LmGSTS2 from Locusta migratoria [J]. Scientia Agricultura Sinica, 2019, 52(8): 1389-1399.
[11] DING YanJuan,LIU YongKang,LUO YuJia,DENG YingMei,XU HongXing,TANG Bin,XU CaiDi. Potential Functions of Nilaparvata lugens GSK-3 in Regulating Glycogen and Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2019, 52(7): 1237-1246.
[12] TANG Bin,SHEN QiDa,ZENG BoPing,XIAO ZhongJiu,QIU LingYu,PAN BiYing,LI Kun,ZHANG DaoWei. Characteristics, Developmental Expression and RNAi Effect Analysis of a Novel Trehalose-6-Phosphate Synthase Gene in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2019, 52(3): 466-477.
[13] JunBo PENG,XingHong LI,Wei ZHANG,Ying ZHOU,JinBao HUANG,JiYe YAN. Pathogenicity and Gene Expression Pattern of the Exocrine Protein LtGH61A of Grape Canker Fungus [J]. Scientia Agricultura Sinica, 2019, 52(24): 4518-4526.
[14] LIU FanQi,WAN GuiJun,ZENG LuYing,LI ChunXu,PAN WeiDong,CHEN FaJun. Selection of Stable Internal Reference Genes for Transcript Expression Analyses in Laodelphax striatellus Under Near-Zero Magnetic Field [J]. Scientia Agricultura Sinica, 2019, 52(19): 3346-3356.
[15] Yue CHEN,TianXingZi WANG,Shuo YANG,Tong ZHANG,JinJiao MA,GaoWei YAN,YuQing LIU,Yan ZHOU,JiaNan SHI,JinPing LAN,Jian WEI,ShiJuan DOU,LiJuan LIU,Ming YANG,LiYun LI,GuoZhen LIU. Expression Profiling and Functional Characterization of Rice Transcription Factor OsWRKY68 [J]. Scientia Agricultura Sinica, 2019, 52(12): 2021-2032.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!