Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (23): 4215-4227.doi: 10.3864/j.issn.0578-1752.2019.23.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Response and the Expression of Pi-Responsive Genes in Leymus chinensis Under Inorganic Phosphate Treatment

WAN DongLi1,HOU XiangYang1,DING Yong1,REN WeiBo1,WANG Kai1,LI XiLiang1,WAN YongQing2()   

  1. 1 Institute of Grassland Research, Chinese Academy of Agricultural Sciences/Key Laboratory of Grassland Ecology and Restoration, Ministry of Agriculture, Hohhot 010010
    2 College of Life Sciences, Inner Mongolia Agricultural University/Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Hohhot 010011
  • Received:2019-06-04 Accepted:2019-09-19 Online:2019-12-01 Published:2019-12-01
  • Contact: YongQing WAN E-mail:wyq176@imau.edu.cn

Abstract:

【Objective】Phosphorus is the nutrient elements that is essential for plant growth. It would provide the basic data for molecular mechanism investigation of Leymus chinensis responding to inorganic phosphate (Pi) treatment, via analyzing the response under Pi stress in L. chinensis, and selection of the reference genes for qRT-PCR analysis, along with relative expression analysis of Pi-responsive genes. 【Method】Using L. chinensis seedlings as materials, the length of shoots and roots were measured, and the contents of Pi were examined via vanadium molybdenum yellow colorimetric method following different concentration of Pi treatments. Based on transcriptome data of L. chinensis, as well as NCBI nucleic acid sequences database, 7 and 1 candidate reference genes were selected, respectively. Total RNA was isolated from each sample after different concentration of Pi treatment. Expression level of candidate reference genes was examined through qRT-PCR, and the stability was calculated by geNorm, NormFinder and Bestkeeper. According to the most stable reference genes selected, the relative expression of Pi-responsive genes was analyzed according to the qRT-PCR results. 【Result】The phenotype observation showed that both lower and higher concentration of Pi stresses reduced the growth of L. chinensis, and the shoot growth was more sensitive to low Pi (or Pi deficiency) stress, whereas root length was more sensitive to high Pi stress. In addition, the accumulation of Pi was enhanced along with the increased concentration of Pi treatments. The melting curve analysis showed that single peak of every candidate reference gene was observed, and gene expression profiles indicated that their CT values ranged from 17.16 to 26.61, among which LcGAPDH exhibited the highest expression abundance with CT values ranged form 17.16 to 20.22, and Lc18SrRNA showed the lowest expression level with CT values ranged form 23.28 to 26.61. LcARPT (2.09%) showed the smallest expression variation, and LcTUA (6.8%) had the largest expression variation. Finally, according to the stability ranking of geNorm, NormFinder and Bestkeeper, the comprehensive stability ranking of 8 candidate reference genes were obtained via calculation geometric mean, among which the top three stable genes were Lc18SrRNA, LcCAP and LcEF1α, and the most unstable two genes were LcTUA and LcTUB. Using Lc18SrRNA, LcCAP and LcEF1α as reference genes, qRT-PCR results showed that, compared with the control, the expression of LcPHO1-2 was induced by low Pi or complete deprive of Pi, LcPAP2 was induced by high Pi, while the expressions of LcPAP27 was induced by both low and high Pi treatments.【Conclusion】Both lower and higher concentration of Pi stresses blocked the L. chinensis growth, and different responsive patterns were observed between the shoots and roots. Three relatively stable expression genes Lc18SrRNA, LcCAP and LcEF1α were selected and could be used as reference genes for qRT-PCR analysis under Pi stress. LcPHO1-2 and LcPAP2 were involved in the response of L. chinensis to low Pi and high Pi treatment, respectively, while LcPAP27 was participated in the responsive process of both low Pi and high Pi treatments.

Key words: Leymus chinensis, Pi stress, qRT-PCR, reference gene, Pi-responsive gene

Table 1

Genes and characteristics of qRT-PCR primers"

基因名称
Gene name
基因描述
Gene description
引物序列
Primer sequences (5′-3′)
引物扩增效率
Amplification efficiency (%)
产物大小
Amplicon length (bp)
溶解温度
Product melting temperature (℃)
LcTUA α-微管蛋白Alpha-tubulin F: ACGAGGCCATCTACGACATCT 95.0 135 87.6
R: CCACGTTCAGGGCACCAT
LcTUB β-微管蛋白Beta-tubulin F: TCCCTCGCCTCCACTTCTT 107.2 197 88.8
R: CTCCTTTGTGCTCATCTTCCC
LcGAPDH 甘油醛3-磷酸脱氢酶Glyceraldehyde-3-phosphate dehydrogenase F: AAACGCAACGAAGCAACTACA 97.7 105 82.2
R: AGAGCACCAAGCCGCAAG
LcEF1α 延伸因子1-α
Elongation factor 1-alpha
F: CCGCCATCAAGAAGAAATAGG 103.9 98 82.6
R: CGCCGAAGCAGGAATAAAA
Lc18SrRNA 18S核糖体RNA
18S ribosomal RNA
F: TTGAAGCTGATAGGAGGGAGG 96.7 98 82.8
R: CTGAAGGTTGGGCGGAATA
LcCAP 腺苷酰环化酶相关蛋白
Adenylyl cyclase-associated protein
F: AGGACGGGCAGTTCACCA 103.6 114 83.1
R: ACAAGGCAAAGGCAGCATC
LcAPRT 腺嘌呤磷酸核糖转化酶
Adenine phosphoribosyl transferase
F: GAATCCTCTGGCTTCAACACC 101.4 118 83.7
R: GGACATCACAACCTTGCTTCTT
LcACT 肌动蛋白Actin F: ATTGTGCTCAGTGGTGGGTCA 106.5 137 85.5
R: CCAATCCAAACACTGTACTTCCTC
LcPHO1-2 磷酸盐1-2
Phosphate1-2
F: CTCGCCTACTGGATTTCTCCC - 97 82.5
R: CCAACATTGTTCAAGTGTTCGTTC
LcPAP2 紫色酸性磷酸酶2
Purple acid phosphatase2
F: CTCGCGTCCGCACACATAAT - 83 82.9
R: TCCGCTTCCAGCCACTTATA
LcPAP27 紫色酸性磷酸酶27
Purple acid phosphatase27
F: CGACTCCTTCACCATCCACA - 172 88.3
R: TTCACGCACACGAGATTCTTT

Fig. 1

Phenotype analysis of Leymus chinensis under different concentration of Pi treatments A: Phenotype; B: Shoot height measurement; C: Root length measurement. *, ** and *** represent significantly different at levels of P<0.05, P<0.01 and P<0.001 compared with control, respectively. The same as below"

Fig. 2

Pi contents in tissues of Leymus chinensis under different concentration of Pi treatments"

Fig. 3

Melting curves of candidate reference genes"

Fig. 4

Distribution of CT values of candidate reference genes across all samples Boxes represent the first and third quartiles of the data; Red lines across the boxes indicate the median CT values; Short horizontal lines show the maximum and minimum values"

Table2

CT values of candidate reference genes"

基因
Gene
平均数
Mean
标准差
SD
变异系数
CV(%)
LcACT 20.10 0.97 4.82
LcTUA 23.15 1.58 6.80
LcTUB 20.75 1.37 6.60
LcAPRT 23.32 0.49 2.09
LcEF1α 21.11 0.92 4.35
Lc18SrRNA 25.27 0.93 3.68
LcCAP 22.56 0.89 3.95
LcGAPDH 18.61 0.92 4.96

Table 3

Stability analysis of candidate reference genes"

排名
Rank
geNorm NormFinder Bestkeeper
基因Gene M值M value 基因Gene 稳定值Stability value 基因Gene 标准差Std dev (± CP)
1 LcCAP 0.42 Lc18SrRNA 0.138 LcAPRT 0.40
2 Lc18SrRNA 0.42 LcCAP 0.231 Lc18SrRNA 0.73
3 LcEF1α 0.49 LcEF1α 0.255 LcCAP 0.75
4 LcACT 0.52 LcACT 0.342 LcEF1α 0.76
5 LcGAPDH 0.54 LcGAPDH 0.390 LcGAPDH 0.76
6 LcAPRT 0.60 LcTUB 0.457 LcACT 0.81
7 LcTUB 0.68 LcAPRT 0.470 LcTUB 1.04
8 LcTUA 0.78 LcTUA 0.692 LcTUA 1.16

Fig. 5

Pairwise variations (V) analysis of the candidate reference genes"

Table 4

Comprehensive stability ranking of candidate reference genes"

排名Rank 基因Gene 几何平均数Geomean
1 Lc18SrRNA 1.260
2 LcCAP 1.817
3 LcEF1α 3.302
4 LcAPRT 3.476
5 LcACT 4.579
6 LcGAPDH 4.642
7 LcTUB 6.649
8 LcTUA 8.000

Fig. 6

Relative expression of Pi-responsive genes under different concentration of Pi treatments"

[1] 刘公社, 李晓霞, 齐冬梅, 陈双燕, 程丽琴 . 羊草种质资源的评价与利用. 科学通报, 2016,61(2):271-281.
LIU G S, LI X X, QI D M, CHEN S Y, CHENG L Q . Evaluation and utilization of Leymus chinensis germplasm resources. Chinese Science Bulletin, 2016,61(2):271-281. (in Chinese)
[2] 王炜, 梁存柱, 刘钟龄, 郝敦元 . 羊草+大针茅草原群落退化演替机理的研究. 植物生态学报, 2000(4):468-472.
WANG W, LIANG C Z, LIU Z L, HAO D Y . Mechanism of degradation succession in Leymus chinensis + Stipa grandis steppe community. Acta Phytoecologica Sinica, 2000(4):468-472. (in Chinese)
[3] 乌恩, 夏庆梅, 高娃, 邢旗 . 内蒙古天然草地磷素营养问题及其解决途径. 内蒙古草业, 2006(3):4-7.
WU E, XIA Q M, GAO W, XING Q . Phosphorus nutrition problems and solutions in natural grassland of Inner Mongolia. Inner Mongolia Prataculture, 2006(3):4-7. (in Chinese)
[4] 杜青峰 . 内蒙古退化典型草原植被和土壤对氮磷肥配施的响应[D]. 重庆: 西南大学, 2017.
DU Q F . The responses of degraded typical steppe vegetation and soil to nitrogen and phosphorus fertilizations in Inner Mongolia[D]. Chongqing: Southwest University, 2017. (in Chinese)
[5] 董晓兵, 郝明德, 郭胜安, 石学军, 马甜, 刘公社 . 氮磷肥配施对羊草干草产量、养分吸收及品质影响. 草地学报, 2014(6):1232-1238.
doi: 10.11733/j.issn.1007-0435.2014.06.013
DONG X B, HAO M D, GUO S A, SHI X J, MA T, LIU G S . The effects of nitrogen fertilizer and phosphate fertilizer rates on the yield, nutrient uptake and quality of Leymus chinensis. Acta Agrestia Sinica, 2014(6):1232-1238. (in Chinese)
doi: 10.11733/j.issn.1007-0435.2014.06.013
[6] WANG F, DENG M J, XU J M, ZHU X L, MAO C Z . Molecular mechanisms of phosphate transport and signaling in higher plants. Seminars in Cell & Developmental Biology, 2018,74:114-122.
doi: 10.1177/0145561319879245 pmid: 31619067
[7] WU P, MA L G, HOU X L, WANG M Y, WU Y R, LIU F Y, DENG X W . Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves. Plant Physiology, 2003,132(3):1260-1271.
doi: 10.1104/pp.103.021022 pmid: 12857808
[8] POIRIER Y, BUCHER M . Phosphate transport and homeostasis in Arabidopsis. Arabidopsis Book, 2002,1:e0024.
doi: 10.1199/tab.0024 pmid: 22303200
[9] XU L, ZHAO H, WAN R, LIU Y, XU Z, TIAN W, RUAN W, WANG F, DENG M, WANG J, DOLAN L, LUAN S, XUE S, YI K . Identification of vacuolar phosphate efflux transporters in land plants. Nature Plants, 2019,5(1):84-94.
doi: 10.1038/s41477-018-0334-3 pmid: 30626920
[10] 耿燕, 吴漪, 贺金生 . 内蒙古草地叶片磷含量与土壤有效磷的关系. 植物生态学报, 2011,35(1):1-8.
doi: 10.3724/SP.J.1258.2011.00001
GENG Y, WU Y, HE J S . Relationship between leaf phosphorus concentration and soil phosphorus availability across Inner Mongolia grassland. Chinese Journal of Plant Ecology, 2011,35(1):1-8. (in Chinese)
doi: 10.3724/SP.J.1258.2011.00001
[11] HE J S, WANG L, FLYNN D F B, WANG X P, MA W H, FANG J Y . Leaf nitrogen: Phosphorus stoichiometry across Chinese grassland biomes. Oecologia, 2008,155(2):301-310.
doi: 10.1007/s00442-007-0912-y pmid: 18278518
[12] THOMPSON K, PARKINSON J A, BAND S R, SPENCER R E . A comparative study of leaf nutrient concentrations in a regional herbaceous flora. New Phytologist, 1997,136(4):679-689.
doi: 10.1046/j.1469-8137.1997.00787.x
[13] MA W, LI J, JIMOH S O, ZHANG Y, GUO F, DING Y, LI X, HOU X . Stoichiometric ratios support plant adaption to grazing moderated by soil nutrients and root enzymes. PeerJ, 2019,7:e7047.
doi: 10.7717/peerj.7047 pmid: 31218124
[14] 甄莉娜, 王润梅, 周凤, 李侠, 魏玉荣, 张英俊 . 不同施磷水平下AM真菌对羊草生长的影响. 中国草地学报, 2015(6):56-61.
ZHEN L N, WANG R M, ZHOU F, LI X, WEI Y R, ZHANG Y J . Influence of AM fungi on the growth of Leymus chinensis under phosphorus applying at different rate. Chinese Journal of Grassland, 2015(6):56-61. (in Chinese)
[15] 钱洁鑫 . 丛枝菌根对严重退化羊草典型草原植被修复效应的研究[D]. 呼和浩特: 内蒙古农业大学, 2018.
QIAN J X . Research on the restoration effect of arbuscular mycorrhiza in severely degraded Leymus chinensis typical steppe[D]. Huhhot: Inner Mongolia Agricultural University, 2018. (in Chinese)
[16] SECCO D, JABNOUNE M, WALKER H, SHOU H, WU P, POIRIER Y, WHELAN J . Spatio-temporal transcript profiling of rice roots and shoots in response to phosphate starvation and recovery. The Plant Cell, 2013,25(11):4285-4304.
doi: 10.1105/tpc.113.117325 pmid: 24249833
[17] EXPOSITO-RODRIGUEZ M, BORGES A A, BORGES-PEREZ A, PEREZ J A . Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biology, 2008,8:131.
doi: 10.1186/1471-2229-8-131 pmid: 19102748
[18] UDVARDI M K, CZECHOWSKI T, SCHEIBLE W R . Eleven golden rules of quantitative RT-PCR. The Plant Cell, 2008,20(7):1736-1737.
doi: 10.1105/tpc.108.061143 pmid: 18664613
[19] YANG Q, YIN J, LI G, QI L, YANG F, WANG R . Reference gene selection for qRT-PCR in Caragana korshinskii Kom. under different stress conditions. Molecular Biology Reports, 2014,41(4):2325-2334.
doi: 10.1007/s11033-014-3086-9
[20] 胡宁宁, 郭慧琴, 李西良, 孔令琪, 武自念, 张继泽, 常春, 万东莉, 臧辉, 任卫波 . 羊草不同组织实时定量PCR内参基因的筛选. 草业科学, 2017(7):1434-1441.
HU N N, GUO H Q, LI X L, KONG L Q, WU Z N, ZHANG J Z, CHANG C, WAN D L, ZANG H, REN W B . Selection of reference genes for quantitative real-time PCR of Leymus Chinensis in different tissues. Pratacultural Science, 2017(7):1434-1441. (in Chinese)
[21] MISSON J, RAGHOTHAMA K G, JAIN A, JOUHET J, BLOCK M A, BLIGNY R, ORTET P, CREFF A, SOMERVILLE S, ROLLAND N, DOUMAS P, NACRY P, HERRERRA-ESTRELLA L, NUSSAUME L, THIBAUD M C . A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proceedings of the National Academy of Sciences of the United States of America, 2005,102(33):11934-11939.
[22] SUN Y, MU C, CHEN Y, KONG X, XU Y, ZHENG H, ZHANG H, WANG Q, XUE Y, LI Z, DING Z, LIU X . Comparative transcript profiling of maize inbreds in response to long-term phosphorus deficiency stress. Plant Physiology Biochemistry, 2016,109:467-481.
doi: 10.1016/j.plaphy.2016.10.017 pmid: 27825075
[23] LI L, YANG H, PENG L, REN W, GONG J, LIU P, WU X, HUANG F . Comparative study reveals insights of sheepgrass ( Leymus chinensis) coping with phosphate-deprived stress condition. Frontiers in Plant Science, 2019,10:170.
doi: 10.3389/fpls.2019.00170 pmid: 30873190
[24] 万永青, 张杰, 侯向阳, 王照兰, 马玉宝, 万其号, 万东莉 . 羊草DHN3基因的克隆及其逆境响应的表达分析. 西北植物学报, 2018,38(9):1598-1604.
WAN Y Q, ZHANG J, HOU X Y, WANG Z L, MA Y B, WAN Q H, WAN D L . Cloning of LcDHN3 in Leymus chinensis and its expression under abiotic stresses. Acta Botanica Boreali-Qccidentalia Sinica, 2018,38(9):1598-1604. (in Chinese)
[25] VANDESOMPELE J, DE PRETER K, PATTYN F, POPPE B, VAN ROY N, DE PAEPE A, SPELEMAN F . Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 2002, 3(7): research0034.1-research0034.11.
doi: 10.1186/gb-2002-3-7-research0034 pmid: 12184808
[26] ANDERSEN C L, JENSEN J L, ORNTOFT T F . Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research, 2004,64(15):5245-5250.
doi: 10.1158/0008-5472.CAN-04-0496 pmid: 15289330
[27] PFAFFL M W, TICHOPAD A, PRGOMET C, NEUVIANS T P . Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: Best Keeper-Excel-based tool using pair-wise correlations. Biotechnology Letters, 2004,26(6):509-515.
doi: 10.1023/B:BILE.0000019559.84305.47
[28] WAN D, WAN Y, YANG Q, ZOU B, REN W, DING Y, WANG Z, WANG R, WANG K, HOU X . Selection of reference genes for qRT-PCR analysis of gene expression in Stipa grandis during environmental stresses. PLoS ONE, 2017,12(1):e0169465.
doi: 10.1371/journal.pone.0169465 pmid: 28056110
[29] LIVAK K J, SCHMITTGEN T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta CT) method. Methods, 2001,25(4):402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[30] SHANE M W, LAMBERS H . Systemic suppression of cluster-root formation and net P-uptake rates in Grevillea crithmifolia at elevated P supply: A proteacean with resistance for developing symptoms of 'P toxicity'. Journal of Experimental Botany, 2006,57(2):413-423.
doi: 10.1093/jxb/erj004 pmid: 16356944
[31] SHANE M W, MCCULLY M E, LAMBERS H . Tissue and cellular phosphorus storage during development of phosphorus toxicity in Hakea prostrata (Proteaceae). Journal of Experimental Botany, 2004,55(399):1033-1044.
doi: 10.1093/jxb/erh111 pmid: 15047760
[32] DEL-SAZ N F, ROMERO-MUNAR A, CAWTHRAY G R, PALMA F, AROCA R, BARAZA E, FLOREZ-SARASA I, LAMBERS H, RIBAS-CARBO M . Phosphorus concentration coordinates a respiratory bypass, synthesis and exudation of citrate, and the expression of high-affinity phosphorus transporters in Solanum lycopersicum. Plant Cell Environment, 2018,41(4):865-875.
doi: 10.1111/pce.13155 pmid: 29380389
[33] LI Q, FU L, WANG Y, ZHOU D, RITTMANN B E . Excessive phosphorus caused inhibition and cell damage during heterotrophic growth of Chlorella regularis. Bioresource Technology, 2018,268:266-270.
doi: 10.1016/j.biortech.2018.07.148 pmid: 30081286
[34] ZHANG C, FU J, WANG Y, BAO Z, ZHAO H . Identification of suitable reference genes for gene expression normalization in the quantitative real-time PCR analysis of sweet osmanthus ( Osmanthus fragrans Lour.). PLoS ONE, 2015,10(8):e0136355.
doi: 10.1371/journal.pone.0136355 pmid: 26302211
[35] ZHANG Y T, PENG X R, LIU Y, LI Y L, LUO Y, WANG X R, TANG H R . Evaluation of suitable reference genes for qRT-PCR normalization in strawberry ( Fragaria x ananassa) under different experimental conditions. BMC Molecular Biology, 2018,19:8.
doi: 10.1186/s12867-018-0109-4 pmid: 29933763
[36] JAIN M, NIJHAWAN A, TYAGI A K, KHURANA J P . Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochemical and Biophysical Research Communications, 2006,345(2):646-651.
doi: 10.1016/j.bbrc.2006.04.140 pmid: 16690022
[37] YANG Z, CHEN Y, HU B, TAN Z, HUANG B . Identification and validation of reference genes for quantification of target gene expression with quantitative real-time PCR for tall fescue under four abiotic stresses. PLoS ONE, 2015,10(3):e0119569.
doi: 10.1371/journal.pone.0119569 pmid: 25786207
[38] QU R, MIAO Y, CUI Y, CAO Y, ZHOU Y, TANG X, YANG J, WANG F . Selection of reference genes for the quantitative real-time PCR normalization of gene expression in Isatis indigotica fortune. BMC Molecular Biology, 2019,20(1):9.
doi: 10.1186/s12867-019-0126-y pmid: 30909859
[39] STEFANOVIC A, RIBOT C, ROUACHED H, WANG Y, CHONG J, BELBAHRI L, DELESSERT S, POIRIER Y . Members of the PHO1 gene family show limited functional redundancy in phosphate transfer to the shoot, and are regulated by phosphate deficiency via distinct pathways. The Plant Journal, 2007,50(6):982-994.
doi: 10.1111/j.1365-313X.2007.03108.x pmid: 17461783
[1] WANG SiTong,CHEN Yan,LUO YuJia,YANG YuanYuan,JIANG ZhiYang,JIANG XinYi,ZHONG Fan,CHEN Hao,XU HongXing,WU Yan,DUAN HongXia,TANG Bin. Effect of Three Novel Compounds on Trehalose and Chitin Metabolism and Development of Spodoptera frugiperda [J]. Scientia Agricultura Sinica, 2022, 55(8): 1568-1578.
[2] GUO FengHui,DING Yong,JI Lei,LI XianSong,LI XiLiang,HOU XiangYang. The Response of Leymus chinensis Cloned Offspring to Mowing [J]. Scientia Agricultura Sinica, 2022, 55(11): 2257-2264.
[3] XIAO Fang,LI Jun,WANG HaoQian,ZHAI ShanShan,CHEN ZiYan,GAO HongFei,LI YunJing,WU Gang,ZHANG XiuJie,WU YuHua. Establishment and Application of A Duplex ddPCR Method to Quantify the NK603/zSSIIb Copy Number Ratio in Transgenic Maize NK603 [J]. Scientia Agricultura Sinica, 2021, 54(22): 4728-4739.
[4] KANG JunMei,ZHANG QiaoYan,JIANG Xu,WANG Zhen,ZHANG TieJun,LONG RuiCai,CUI HuiTing,YANG QingChuan. Cloning MsSQE1 from Alfalfa and Functional Analysis in Saponin Synthesis [J]. Scientia Agricultura Sinica, 2020, 53(2): 247-260.
[5] ZHANG DaoWei,KANG Kui,YU YaYa,KUANG FuPing,PAN BiYing,CHEN Jing,TANG Bin. Characteristics and Immune Response of Prophenoloxidase Genes in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2020, 53(15): 3108-3119.
[6] YANG YunFei,XIN XiaoPing,LI JianDong. A Discussion on the Diffusion Pathway of Leymus Chinensis in the Natural Grassland of China Based on Differentiation in the Phenotypes and Genotypes [J]. Scientia Agricultura Sinica, 2020, 53(13): 2541-2549.
[7] HOU LuLu,YAN RuiRui,ZHANG Yu,XIN XiaoPing. Effects of Grazing Intensity on Functional Traits of Leymus chinensis in Meadow Steppe [J]. Scientia Agricultura Sinica, 2020, 53(13): 2562-2572.
[8] YAN RuiRui,ZHANG Yu,XIN XiaoPing,WEI ZhiJun,Wuren qiqige,GUO MeiLan. Effects of Mowing Disturbance on Grassland Plant Functional Groups and Diversity in Leymus chinensis Meadow Steppe [J]. Scientia Agricultura Sinica, 2020, 53(13): 2573-2583.
[9] JU PengJu,NING Lei,GE LinHao,XU ChengJie,SHI HuaWei,LIANG KaiGe,MA Liang,LIU TaoRan,CHEN Ming,SUN DaiZhen. Analysis of Foreign Gene Copy Number in Transgenic Wheat by Optimized Digital PCR [J]. Scientia Agricultura Sinica, 2020, 53(10): 1931-1939.
[10] LIU YiRan,ZHANG Hong,JIN JiSu,ZHOU ZhongShi,GUO JianYing. Identification and Expression Analysis of the Halloween Gene Family in Agasicles hygrophila [J]. Scientia Agricultura Sinica, 2020, 53(10): 2009-2019.
[11] DING YanJuan,LIU YongKang,LUO YuJia,DENG YingMei,XU HongXing,TANG Bin,XU CaiDi. Potential Functions of Nilaparvata lugens GSK-3 in Regulating Glycogen and Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2019, 52(7): 1237-1246.
[12] TANG Bin,SHEN QiDa,ZENG BoPing,XIAO ZhongJiu,QIU LingYu,PAN BiYing,LI Kun,ZHANG DaoWei. Characteristics, Developmental Expression and RNAi Effect Analysis of a Novel Trehalose-6-Phosphate Synthase Gene in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2019, 52(3): 466-477.
[13] JunBo PENG,XingHong LI,Wei ZHANG,Ying ZHOU,JinBao HUANG,JiYe YAN. Pathogenicity and Gene Expression Pattern of the Exocrine Protein LtGH61A of Grape Canker Fungus [J]. Scientia Agricultura Sinica, 2019, 52(24): 4518-4526.
[14] YUAN JunHu,DING YiJuan,YANG WenJing,YAN BaoQin,CHAI YaRu,MEI JiaQin,QIAN Wei. Identification of Genes Encoding Secretory Proteins Related to the Pathogenicity of Sclerotinia sclerotiorum Using TRV-HIGS [J]. Scientia Agricultura Sinica, 2019, 52(23): 4274-4284.
[15] LIU FanQi,WAN GuiJun,ZENG LuYing,LI ChunXu,PAN WeiDong,CHEN FaJun. Selection of Stable Internal Reference Genes for Transcript Expression Analyses in Laodelphax striatellus Under Near-Zero Magnetic Field [J]. Scientia Agricultura Sinica, 2019, 52(19): 3346-3356.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!