Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (12): 2249-2261.doi: 10.3864/j.issn.0578-1752.2023.12.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Construction of DNA Molecular Identity Card of Core Germplasm of Broomcorn Millet in China Based on Fluorescence SSR

XUE YaPeng1(), DING YiBing1, WANG YuZhuo1, WANG XiaoDan1, CAO XiaoNing2, SANTRA Dipak K3, CHEN Ling2, QIAO ZhiJun2(), WANG RuiYun1,2()   

  1. 1 College of Agronomy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
    2 Center for Agricultural Genetic Resources Research, Shanxi Agricultural University/Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture and Rural Affairs/Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, Shanxi, China
    3 Panhandle Research & Extension Center, Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Scottsbluff, 69361, Nebraska, USA
  • Received:2023-02-01 Accepted:2023-04-01 Online:2023-06-16 Published:2023-06-27

Abstract:

【Objective】As an ancient minor grain crop, broomcorn millet ( Panicum miliaceum L. ) is abundant in germplasm. The construction of their DNA molecular identity based on fluorescent SSR markers would provide theoretical basis and molecular detection tool for digital management of resources. 【Method】Two hundred and thirty five broomcorn millet core accessions from China were used as experimental material, polymerase chain reaction were conducted several times using the broomcorn millet specific SSR markers which developed previously by the Broomcorn Millet Crop Molecular Breeding Research Group of the Agronomy College in Shanxi Agricultural University, core markers were obtained. With the given reference genome information of broomcorn millet, the core markers were mapped on chromosomes through BLAST sequence alignment. Fluorescence (FAM/HEX) was labeled on the 5' end of the SSR primer, the genotype of the material was given by capillary electrophoresis. Using binary coding means of expression, “0, 1” was written representing the presence or absence of amplified bands, and the discrimination of the material was detected by the software ID Analysis 4.0. Decimal (0-9) coding methods were used to calculate the size of the amplified fragments so as to obtain the character string molecular identity card of the accession. Genetic diversity, genetic clustering and principal component analysis were performed using the softwares Popgene, Powermarker, MEGA and NTSYS. The two-dimensional code DNA molecular identity card of the accession was given using the two-dimensional code online software (https://cli.im/). 【Result】PCR amplification results showed that all the 235 accessions could be separated by 7 fluorescent SSR markers (RYW3, RYW6, RYW11, RYW18, RYW37, RYW43 and RYW125) combined together. BLAST results showed that RYW18 and RYW37 were distributed on Chromosome 2, located at 0.60 cM and 0.80 cM, respectively. RYW125 is located on Chromosome 4 at 10.40 cM. RYW43 and RYW6 were distributed on Chromosome 5, located at 52.80 cM and 53.00 cM, respectively. RYW11 and RYW3 were located on Chromosome 6 at 2.10 cM and 20.70 cM, respectively. Genetic diversity analysis showed that 87 alleles were detected at 7 loci among all accessions, 3 (RYW11)-25 (RYW6) alleles were detected at each locus, with an average of 12.4286. Shannon diversity index (I) was detected and ranged from 0.2055 (RYW18) to 2.0587 (RYW6), with an average of 1.1398. The observed heterozygosity (Ho) was 0.0086 (RYW11)-0.9455 (RYW18). The expected observed heterozygosity (He) was 0.0795 (RYW18)-0.7469 (RYW11). Nei’s gene diversity index (Nei) was 0.0793 (RYW18)-0.7452 (RYW6). The polymorphism information content (PIC) was 0.0334 (RYW11)-0.8071 (RYW6), with an average of 0.5185. The results of cluster analysis and principal component analysis showed that 235 accessions were classified into 8 groups. The electrophoretic bands were number coding, and 7 marker combinations were used to construct the character string and two-dimensional code DNA molecular ID of all the accessions.【Conclusion】Two hundred and thirty five broomcorn millet core germplasms from China were used as material, polymerase chain reaction and capillary electrophoresis were conducted, 7 core SSR markers were screened. With the given reference genome information of broomcorn millet, the above markers were mapped on 4 chromosomes. Used the above SSR markers, genetic diversity analysis of all accessions was conducted and genetic diversity parameters were obtained. Based on Cluster analysis, all accessions were classified into 8 groups. Principal component analysis result resolved the deviation occured in Cluster analysis. According to the principle of most accessions were tell apart using the least markers, decimal (0-9) coding methods were used to calculate the size of the amplified fragments so as to obtain the character string molecular identity card of the accession. Combined the phenotype data with the above character string, two-dimensional code DNA molecular ID of all the accessions were developed.

Key words: broomcorn millet, capillary electrophoresis, fluorescent SSR, DNA molecular identification

Table 1

Information of 14 accessions of broomcorn millet in this experiment"

材料编号
Serial number
统一编号
Unicode
名称
Name
来源
Source
备注
Remark
1 00000082 黄糜子Huangmeizi 中国黑龙江Heilongjiang, China 地方品种Landrace
2 00000840 六十天小红黍60-day Xiaohongshu 中国山西Shanxi, China 地方品种Landrace
3 00000710 皋兰鸭蛋青Gaolanyadanqing 中国甘肃Gansu, China 地方品种Landrace
4 00003117 黄糜Huangmei 中国新疆Xinjiang, China 地方品种Landrace
5 00006438 乌克兰黍Ukraine shu 中国内蒙古Inner Mongolia, China 地方品种Landrace
6 00004198 金守黍Jinshoushu 中国广东Guangdong, China 地方品种Landrace
7 00007131 白黍子Baishuzi 中国河北Hebei, China 地方品种Landrace
8 00006681 札达糜Zhadamei 中国西藏Tibet, China 地方品种Landrace
9 00007258 黄糜子Huangmeizi 中国辽宁Liaoning, China 地方品种Landrace
10 00007375 790035 印度India 地方品种Landrace
11 00005191 塞盖德斯Saigaidesi 中国山东Shandong, China 地方品种Landrace
12 00005671 扶余白糜子Fuyubaimeizi 中国吉林Jilin, China 地方品种Landrace
13 00005452 夯糜子Hangmeizi 中国陕西Shaanxi, China 地方品种Landrace
14 00002641 西吉小黄糜Xijixiaohuangmei 中国宁夏Ningxia, China 地方品种Landrace

Table 2

Information of 15 fluorescently labeled SSR primers"

位点
Locus
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
5′端修饰
5′ end modification
重复序列
Repeated motif
退火温度
Tm (℃)
RYW3 GGAGGCGTGACAATAAAAC GGCGTGAGGTGTTGTTTTT 5′6-FAM (CTGCAA)5 48.90
RYW5 GACGATGCTCTTGACCTTGT CACCGTGAAATGTCTCTGCT 5′6-FAM (CCTTT)5 51.80
RYW6 AGCCGATTTGCTGTGGAGT CTGCCTCCGATGAGTTGGT 5′6-FAM (ACACC)5 52.15
RYW11 TGCTCGTCTTCTCGCTTCG AGTAGTCCTCCACCGCCATCT 5′6-FAM (GGTA)5 54.75
RYW14 CGCACAACGACCACAAGAG ATACACCAGAGGAGCACGC 5′6-FAM (GGCC)5 57.35
RYW18 CTCCCTCTTTGTCCTCGTT GCTGCCTCTTCGCTATCTT 5′6-FAM (AGTT)6 51.10
RYW20 ACCTCTTGCCGCACACTAC TTCTACATCCCCGAACCAC 5′6-FAM (TTGG)6 52.15
RYW35 ATTAGCATCCCCCTCCAC ATCCGCTTTCCCAACCAC 5′6-FAM (CGTGC)5(GGA)6 50.30
RYW37 CATTCCGTTCCTTGTCTTCC CAGTCTCACTCCTGCGATGT 5′6-FAM (GCGAT)5 52.80
RYW40 TGCTCTTCGGCTCTTCTCC ATCAGCTCATCGTGACCCC 5′6-FAM (CAGC)6 53.20
RYW43 GGAGATGCTTGCTTGGTTG CAGGAATCGCAAGGAACAG 5′HEX (GGAG)5 54.00
RYW54 GCACTTGCTCCTGCTTCTC GACCTTGCCGATGTTGTTG 5′HEX (CCTC)5 55.65
RYW124 CCACAAAGCGAAAGAACC GAGTCCAAGCCCTCATCC 5′6-FAM (TCG)6 53.65
RYW125 TTGACGACGACTGTGTGC TGTTGGTGGAGTTGAGGAC 5′6-FAM (GGC)5 55.10
RYW146 TGATGCTTCTTGGGTTCG CGCCGTCCACTTCTGTAT 5′6-FAM (GCG)6 53.60

Fig. 1

The site of 7 markers located on the chromosome of broomcorn millet"

Fig. 2

Electrophoregrams of capillary polymorphism in some accessions amplyfied by RYW43"

Table 3

Amplification results and code typing of 7 pairs of core primers detected with capillary electrophoresis"

引物
Primer
荧光基团
Fluorescent group
电泳条带数目
Polymorphism bands
电泳片段长度及编码
Length and code of electrophoresis fragments (bp)
RYW3 6-羧基荧光素
FAM (blue)
19 149(01),440(02),132/149(03),132/149/156(04),138/149/178(05),143/149/156(06),143/149(07),143/149/178(08),143/149/216(09),149/156(10),149/156/216(11),149/169/198(12),149/178(13),149/211/216(14),149/216(15),156/169(16),272/344/440/474(17),440/474(18),143/149/184(19)
RYW6 6-羧基荧光素
FAM (blue)
38 242(01),255(02),262(03),300(04),308(05),323(06),333(07),387(08),444(09),452(10),174/195/242/372(11),187/195/242/372(12),195/202/242(13),195/202/242/372(14),195/242(15),195/242/267/372(16),195/242/347/372(17),195/242/372(18),195/242/387(19),195/242/401(20),202/333(21),211/242/372(22),211/333(23),242/323(24),242/333(25),242/387(26),242/425(27),252/257(28),255/267(29),296/308(30),300/308(31),323/328(32),323/333(33),323/338(34),328/333(35),333/338(36),387/425(37),444/452(38)
RYW11 6-羧基荧光素FAM (blue) 3 180(01),222(02),213/222(03)
RYW18 6-羧基荧光素FAM (blue) 5 376(01),369/381(02),376/381(03),381/386(04),381(05)
RYW37 6-羧基荧光素 FAM (blue) 6 203(01),209(02),196/203(03),196/203/209(04),196/203/209/216(05),203/209(06)
RYW125 6-羧基荧光素
FAM (blue)
24 196(01),202(02),207(03),292(04),333(05),105/202/323(06),122/211/292(07),130/151/202/333(08),130/202/219/339(09),130/202/323/333(10),130/323(11),141/259/292/372(12),141/299/323(13),196/202(14),196/219(15),202/207(16),202/211(17),202/227(18),219/223(19),259/323/333/393(20),292/333(21),299/339(22),323/339(23),323/402(24)
RYW43 六氯-6-甲基荧光素
HEX (green)
30 109(01),120(02),128(03),181(04),204(05),109/115(06),109/115/181(07),109/120/128/147(08),109/128/181/204(09),109/128(10),109/128/181(11),109/138(12),109/138/181(13),109/155/181(14),109/181(15),109/181/204(16),109/181/226/293(17),109/181/293(18),109/181/293/405 (19),109/226/293(20),109/226/293/491(21),109/226/483(22),109/226/491(23),109/293(24),128/181(25),138/181(26),170/181(27),181/204(28),103/109/181/204(29),109/204(30)

Table 4

Genetic parameters of the 7 fluorescently labeled SSR markers used in the study"

引物
Primer
观测等位变异
Observed number of alleles (Na)
Shannon 多样性指数
Shannon’s diversity index(I)
观测杂合度
Observed heterozygosity (Ho)
期望杂合度
Expected heterozygosity (He)
Nei’s 基因多样性指数
Nei's expected heterozygosity (Nei)
多态性信息含量Polymorphism information content (PIC)
RYW3 15.0000 0.9874 0.8136 0.4114 0.4105 0.5073
RYW6 25.0000 2.0587 0.5238 0.7469 0.7452 0.8071
RYW11 3.0000 0.7178 0.0086 0.5053 0.5043 0.0334
RYW18 4.0000 0.2055 0.9455 0.0795 0.0793 0.2103
RYW37 4.0000 1.1777 0.3376 0.6700 0.6686 0.6495
RYW125 16.0000 1.6084 0.4414 0.6940 0.6916 0.7681
RYW43 20.0000 1.2230 0.5399 0.5161 0.5149 0.6540
合计Total 87.0000 - - - - -
平均Mean 12.4286 1.1398 0.5158 0.5176 0.5163 0.5185

Table 5

Discrimination of broomcorn millet accessions by 7 pairs of primer and their combinations"

引物/组合
Primer/Combination
区分种质数
No. of germplasm distinguished
区分率
Rate of discrimination (%)
RYW3 10 4.26
RYW6 17 7.23
RYW11 2 0.85
RYW18 0 0.00
RYW37 2 0.85
RYW43 16 6.81
RYW125 16 6.81
RYW3+RYW6 46 19.57
RYW3+RYW6+RYW11 48 20.42
RYW3+RYW6+RYW11+RYW18 62 26.38
RYW3+RYW6+RYW11+RYW18+RYW37 88 37.45
RYW3+RYW6+RYW11+RYW18+RYW37+RYW43 161 68.51
RYW3+RYW6+RYW11+RYW18+RYW37+RYW43+RYW125 235 100.00

Fig. 3

Cluster map of 235 broomcorn millet accessions based on UPGMA The accession number is the same as the Supplemental Table 1"

Fig. 4

Principal component analysis of 235 broomcorn millet accessions based on SSR"

Fig. 5

Two-dimensional code DNA molecular identification of broomcorn millet accessions of No. 1-No. 12"

[1]
王星玉, 王纶. 黍稷种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006.
WANG X Y, WANG L. Descriptors and Data Standard for Broomcorn Millet (Panicum miliaceum L.). Beijing: China Agriculture Press, 2006. (in Chinese)
[2]
CRAWFORD G W. Agricultural origins in North China pushed back to the Pleistocene-Holocene boundary. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(18): 7271-7272.
[3]
LU H Y, ZHANG J P, LIU K B, WU N Q, LI Y M, ZHOU K S, YE M L, ZHANG T Y, ZHANG H J, YANG X Y, SHEN L C, XU D K, LI Q. Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10000 years ago. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(18): 7367-7372.
[4]
MARTIN J H, LEONARD W H, STAMP D L. Principles of Field Crop Production. 3rd ed. New York: MacMillan Press, 1976: 415-429.
[5]
乔治军. 糜子产业发展现状与思路. 作物杂志, 2013(5): 25-27.
QIAO Z J. Present situation and developing thought of broomcorn millet industry. Crops, 2013(5): 25-27. (in Chinese)
[6]
柴岩, 冯佰利, 王宏岩. 中国黄米食品. 杨凌: 西北农林科技大学出版社, 2012.
CHAI Y, FENG B L, WANG H Y. Food of Proso Millet in China. Yangling: Northwest A & Forestry University Press, 2012. (in Chinese)
[7]
王瑞云, 杨阳, 王海岗, 陈凌, 王纶, 陆平, 刘敏轩, 乔治军. 糜子PmNCED1的克隆及其对PEG胁迫的响应. 核农学报, 2018, 32(2): 244-256.

doi: 10.11869/j.issn.100-8551.2018.02.0244
WANG R Y, YANG Y, WANG H G, CHEN L, WANG L, LU P, LIU M X, QIAO Z J. Cloning of gene PmNCED1 and its response to PEG stress in common millet. Journal of Nuclear Agricultural Sciences, 2018, 32(2): 244-256. (in Chinese)
[8]
王瑞云. 糜子遗传多样性及进化研究进展. 北京: 中国农业出版社, 2017.
WANG R Y. Genetic Diversity and Evolution Advancement in Common Millet (Panicum miliaceum L.). Beijing: China Agriculture Press, 2017. (in Chinese)
[9]
王纶, 王星玉. 中国黍稷种质资源研究. 北京: 中国农业科学技术出版社, 2018.
WANG L, WANG X Y. Study on Common Millet Germplasm Resources in China. Beijing: China Agricultural Science and Technology Press, 2018. (in Chinese)
[10]
陈小红, 何杰丽, 石甜甜, 邵欢欢, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于转录组测序开发糜子SSR标记. 中国农业科学, 2020, 53(10): 1940-1949.

doi: 10.3864/j.issn.0578-1752.2020.10.002
CHEN X H, HE J L, SHI T T, SHAO H H, WANG H G, CHEN L, GAO Z J, WANG R Y, QIAO Z J. Developing SSR markers of proso millet based on transcriptome sequencing. Scientia Agricultura Sinica, 2020, 53(10): 1940-1949. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2020.10.002
[11]
薛延桃, 陆平, 乔治军, 刘敏轩, 王瑞云. 基于SSR标记的黍稷种质资源遗传多样性及亲缘关系研究. 中国农业科学, 2018, 51(15): 2846-2859.

doi: 10.3864/j.issn.0578-1752.2018.15.002
XUE Y T, LU P, QIAO Z J, LIU M X, WANG R Y. Genetic diversity and genetic relationship of broomcorn millet (Panicum miliaceum L.) germplasm based on SSR markers. Scientia Agricultura Sinica, 2018, 51(15): 2846-2859. (in Chinese)
[12]
石甜甜, 何杰丽, 高志军, 陈凌, 王海岗, 乔治军, 王瑞云. 利用EST-SSR评估糜子资源遗传差异. 中国农业科学, 2019, 52(22): 4100-4109.

doi: 10.3864/j.issn.0578-1752.2019.22.014
SHI T T, HE J L, GAO Z J, CHEN L, WANG H G, QIAO Z J, WANG R Y. Genetic diversity of common millet resources assessed with EST-SSR markers. Scientia Agricultura Sinica, 2019, 52(22): 4100-4109. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2019.22.014
[13]
连帅, 陆平, 乔治军, 张琦, 张茜, 刘敏轩, 王瑞云. 利用SSR分子标记研究国内外黍稷地方品种和野生资源的遗传多样性. 中国农业科学, 2016, 49(17): 3264-3275.

doi: 10.3864/j.issn.0578-1752.2016.17.002
LIAN S, LU P, QIAO Z J, ZHANG Q, ZHANG Q, LIU M X, WANG R Y. Genetic diversity in broomcorn millet (Panicum miliaceum L.) from China and abroad by using SSR markers. Scientia Agricultura Sinica, 2016, 49(17): 3264-3275. (in Chinese)
[14]
TIAN H L, WANG F G, ZHAO J R, YI H M, WANG L, WANG R, YANG Y, SONG W. Development of maize SNP3072, a high- throughput compatible SNP array, for DNA fingerprinting identification of Chinese maize varieties. Molecular Breeding, 2015, 35(6): 136.

doi: 10.1007/s11032-015-0335-0
[15]
王凤格, 杨扬, 易红梅, 赵久然, 任洁, 王璐, 葛建镕, 江彬, 张宪晨, 田红丽, 侯振华. 中国玉米审定品种标准SSR指纹库的构建. 中国农业科学, 2017, 50(1): 1-14.
WANG F G, YANG Y, YI H M, ZHAO J R, REN J, WANG L, GE J R, JIANG B, ZHANG X C, TIAN H L, HOU Z H. Construction of an SSR-based standard fingerprint database for corn variety authorized in China. Scientia Agricultura Sinica, 2017, 50(1): 1-14. (in Chinese)
[16]
赵艳杰, 冯艳芳, 黄思思, 马莹雪, 李嫒嫒, 张蝶, 邓超, 韩瑞玺, 唐浩. 182份东北地区受保护大豆品种DNA指纹库的构建及分析. 中国种业, 2019(11): 43-47.
ZHAO Y J, FENG Y F, HUANG S S, MA Y X, LI A A, ZHANG D, DENG C, HAN R X, TANG H. Construction and analysis of DNA fingerprint database of 182 protected soybean varieties in Northeast China. China Seed Industry, 2019(11): 43-47. (in Chinese)
[17]
李清, 罗永坚, 吴柔贤, 贾俊婷, 张文虎, 宋松泉, 刘军. 广东省大豆种质资源遗传多样性分析及DNA分子身份证构建. 广东农业科学, 2020, 47(12): 221-228.
LI Q, LUO Y J, WU R X, JIA J T, ZHANG W H, SONG S Q, LIU J. Analysis on genetic diversity and construction of DNA molecular identity card of soybean germplasm resources in Guangdong Province. Guangdong Agricultural Sciences, 2020, 47(12): 221-228. (in Chinese)
[18]
樊晓静, 于文涛, 蔡春平, 林浥, 王泽涵, 房婉萍, 张见明, 叶乃兴. 利用SNP标记构建茶树品种资源分子身份证. 中国农业科学, 2021, 54(8): 1751-1760.

doi: 10.3864/j.issn.0578-1752.2021.08.014
FAN X J, YU W T, CAI C P, LIN Y, WANG Z H, FANG W P, ZHANG J M, YE N X. Construction of molecular ID for tea cultivars by using of single nucleotide polymorphism (SNP) markers. Scientia Agricultura Sinica, 2021, 54(8): 1751-1760. (in Chinese)
[19]
张枭, 杜潇, 孙馨宇, 王键, 董文轩. 利用SSR标记构建部分山楂资源的基因身份证. 沈阳农业大学学报, 2021, 52(2): 153-159.
ZHANG X, DU X, SUN X Y, WANG J, DONG W X. Construction of molecular identity for partial Crataegus resources based on SSR markers. Journal of Shenyang Agricultural University, 2021, 52(2): 153-159. (in Chinese)
[20]
刘晓鑫, 谢传晓, 赵琦, 路明, 曲延英, 张滨, 梁业红, 张世煌. 基于SSR荧光标记技术的玉米群体混合样本基因频率分析方法. 中国农业科学, 2008, 41(12): 3991-3998.
LIU X X, XIE C X, ZHAO Q, LU M, QU Y Y, ZHANG B, LIANG Y H, ZHANG S H. Establishment of fluorescent SSR technique on detecting allelic frequency in maize (Zea mays L.) populations with bulk sampling strategy. Scientia Agricultura Sinica, 2008, 41(12): 3991-3998. (in Chinese)
[21]
王瑞云, 季煦, 陆平, 刘敏轩, 许月, 王纶, 王海岗, 乔治军. 利用荧光SSR分析中国糜子遗传多样性. 作物学报, 2017, 43(4): 530-548.
WANG R Y, JI X, LU P, LIU M X, XU Y, WANG L, WANG H G, QIAO Z J. Analysis of genetic diversity in common millet (Panicum miliaceum L.) using fluorescent SSR in China. Acta Agronomica Sinica, 2017, 43(4): 530-548. (in Chinese)

doi: 10.3724/SP.J.1006.2017.00530
[22]
冉昆, 隋静, 王宏伟, 魏树伟, 张勇, 董冉, 董肖昌, 王少敏. 利用SSR荧光标记构建山东地方梨种质资源分子身份证. 果树学报, 2018, 35(S1): 71-78.
RAN K, SUI J, WANG H W, WEI S W, ZHANG Y, DONG R, DONG X C, WANG S M. Using the fluorescent labeled SSR markers to establish the molecular ID of pear germplasm resources in Shandong. Journal of Fruit Science, 2018, 35(S1): 71-78. (in Chinese)
[23]
郭艳春, 张力岚, 陈思远, 祁建民, 方平平, 陶爱芬, 张列梅, 张立武. 黄麻应用核心种质的DNA分子身份证构建. 作物学报, 2021, 47(1): 80-93.

doi: 10.3724/SP.J.1006.2021.04022
GUO Y C, ZHANG L L, CHEN S Y, QI J M, FANG P P, TAO A F, ZHANG L M, ZHANG L W. Establishment of DNA molecular fingerprint of applied core germplasm in jute (Corchorus spp.). Acta Agronomica Sinica, 2021, 47(1): 80-93. (in Chinese)

doi: 10.3724/SP.J.1006.2021.04022
[24]
郑永胜, 张晗, 王东建, 孙加梅, 王雪梅, 段丽丽, 李华, 王玮, 李汝玉. 基于荧光检测技术的小麦品种SSR鉴定体系的建立. 中国农业科学, 2014, 47(19): 3725-3735.

doi: 10.3864/j.issn.0578-1752.2014.19.001
ZHENG Y S, ZHANG H, WANG D J, SUN J M, WANG X M, DUAN L L, LI H, WANG W, LI R Y. Development of a wheat variety identification system based on fluorescently labeled SSR markers. Scientia Agricultura Sinica, 2014, 47(19): 3725-3735. (in Chinese)
[25]
连帅. 黍稷种质资源遗传多样性研究及微核心种质的构建[D]. 太谷: 山西农业大学, 2017.
LIAN S. Genetic diversity assessment of broomcorn millet (Panicum miliaceum L.) and construction of a mini core collection in China[D]. Taigu: Shanxi Agricultural University, 2022. (in Chinese)
[26]
EDWARDS K, JOHNSTONE C, THOMPSON C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Research, 1991, 19(6): 1349.

doi: 10.1093/nar/19.6.1349 pmid: 2030957
[27]
王瑞云, 刘笑瑜, 王海岗, 陆平, 刘敏轩, 陈凌, 乔治军. 用高基元微卫星标记分析中国糜子遗传多样性. 中国农业科学, 2017, 50(20): 3848-3859.

doi: 10.3864/j.issn.0578-1752.2017.20.002
WANG R Y, LIU X Y, WANG H G, LU P, LIU M X, CHEN L, QIAO Z J. Evaluation of genetic diversity of common millet (Panicum miliaceum L.) germplasm available in China using high motif nucleotide repeat SSR markers. Scientia Agricultura Sinica, 2017, 50(20): 3848-3859. (in Chinese)
[28]
何杰丽, 石甜甜, 陈凌, 王海岗, 高志军, 杨美红, 王瑞云, 乔治军. 糜子EST-SSR分子标记的开发及种质资源遗传多样性分析. 植物学报, 2019, 54(6): 723-732.

doi: 10.11983/CBB19037
HE J L, SHI T T, CHEN L, WANG H G, GAO Z J, YANG M H, WANG R Y, QIAO Z J. The genetic diversity of common millet (Panicum miliaceum L.) germplasm resources based on the EST-SSR markers. Chinese Bulletin of Botany, 2019, 54(6): 723-732. (in Chinese)
[29]
薛亚鹏, 李元阳, 陈凌, 王海岗, 王瑞云, 乔治军. 山西省糜子DNA分子身份证的构建. 山西农业大学学报(自然科学版), 2022, 42(1): 19-25.
XUE Y P, LI Y Y, CHEN L, WANG H G, WANG R Y, QIAO Z J. Construction of DNA molecular identity card of broomcorn millet germplasm in Shanxi Province. Journal of Shanxi Agricultural University (Natural Science Edition), 2022, 42(1): 19-25. (in Chinese)
[30]
LIU K J, MUSE S V. PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics, 2005, 21(9): 2128-2129.

doi: 10.1093/bioinformatics/bti282 pmid: 15705655
[31]
YEH F C. Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belgian Journal of Botany, 1997, 129: 157.
[32]
TAMURA K, PETERSON D, PETERSON N, STECHER G, NEI M, KUMAR S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 2011, 28(10): 2731-2739.

doi: 10.1093/molbev/msr121 pmid: 21546353
[33]
寇淑君, 霍阿红, 付国庆, 纪军建, 王瑶, 左振兴, 刘敏轩, 陆平. 利用荧光SSR分析中国糜子的遗传多样性和群体遗传结构. 中国农业科学, 2019, 52(9): 1475-1487.

doi: 10.3864/j.issn.0578-1752.2019.09.001
KOU S J, HUO A H, FU G Q, JI J J, WANG Y, ZUO Z X, LIU M X, LU P. Genetic diversity and population structure of broomcorn millet in China based on fluorescently labeled SSR. . Scientia Agricultura Sinica, 2019, 52(9): 1475-1487. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2019.09.001
[34]
SUN Y L, LIU Y, SHI J F, WANG L, LIANG C Z, YANG J, CHEN J F, CHEN M S. Biased mutations and gene losses underlying diploidization of the tetraploid broomcorn millet genome. The Plant Journal, 2023, 113, 787-801.

doi: 10.1111/tpj.v113.4
[35]
丁敏, 段政勇, 王宇卓, 薛亚鹏, 王海岗, 陈凌, 王瑞云, 乔治军. 糜子GBSSI基因功能标记的开发与验证. 作物学报, 2023, 49(3): 703-718.

doi: 10.3724/SP.J.1006.2023.24028
DING M, DUAN Z Y, WANG Y Z, XUE Y P, WANG H G, CHEN L, WANG R Y, QIAO Z J. Development and validation of functional markers of GBSSI gene in proso millet. Acta Agronomica Sinica, 2023, 49(3): 703-718. (in Chinese)

doi: 10.3724/SP.J.1006.2023.24028
[36]
沈群. 杂粮与科学的美味邂逅. 北京: 中国农业大学出版社, 2022.
SHEN Q. Delicious Encounters Between Grains and Science. Beijing: Chinese Agricultural University Press, 2022. (in Chinese)
[37]
郝晨阳, 王兰芬, 贾继增, 董玉琛, 张学勇. SSR荧光标记和银染技术的比较分析. 作物学报, 2005, 31(2): 144-149.
HAO C Y, WANG L F, JIA J Z, DONG Y C, ZHANG X Y. Comparison of fluorescence and silver-staining detection systems of microsatellite markers. Acta Agronomica Sinica, 2005, 31(2): 144-149. (in Chinese)
[38]
陈小红, 林元香, 王倩, 丁敏, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于高基元SSR构建黍稷种质资源的分子身份证. 作物学报, 2022, 48(4): 908-919.

doi: 10.3724/SP.J.1006.2022.14034
CHEN X H, LIN Y X, WANG Q, DING M, WANG H G, CHEN L, GAO Z J, WANG R Y, QIAO Z J. Development of DNA molecular ID card in hog millet germplasm based on high motif SSR. Acta Agronomica Sinica, 2022, 48(4): 908-919. (in Chinese)

doi: 10.3724/SP.J.1006.2022.14034
[39]
林元香. 山西糜子核心种质分子身份证的构建[D]. 太谷: 山西农业大学, 2022.
LIN Y X. Construction of molecular ID card of core germplasm of common millet (Panicum miliaceum L.) in Shanxi[D]. Taigu: Shanxi Agricultural University, 2022. (in Chinese)
[1] WANG LuWei,SHEN ZhiJun,LI HeHuan,PAN Lei,NIU Liang,CUI GuoChao,ZENG WenFang,WANG ZhiQiang,LU ZhenHua. Analysis of Genetic Diversity of 79 Cultivars Based on SSR Fluorescence Markers for Peach [J]. Scientia Agricultura Sinica, 2022, 55(15): 3002-3017.
[2] WANG JunJie,TIAN Xiang,QIN HuiBin,WANG HaiGang,CAO XiaoNing,CHEN Ling,LIU SiChen,QIAO ZhiJun. Regulation Effects of Photoperiod on Growth and Leaf Endogenous Hormones in Broomcorn Millet [J]. Scientia Agricultura Sinica, 2021, 54(2): 286-295.
[3] WANG JunJie,WANG HaiGang,CAO XiaoNing,CHEN Ling,LIU SiChen,TIAN Xiang,QIN HuiBin,QIAO ZhiJun. Comprehensive Evaluation of Photoperiod Sensitivity Based on Different Traits of Broomcorn Millet [J]. Scientia Agricultura Sinica, 2020, 53(3): 474-485.
[4] CHEN Ling,WANG JunJie,WANG HaiGang,CAO XiaoNing,LIU SiChen,TIAN Xiang,QIN HuiBin,QIAO ZhiJun. Screening of Broomcorn Millet Varieties Tolerant to Low Nitrogen Stress and the Comprehensive Evaluation of Their Agronomic Traits [J]. Scientia Agricultura Sinica, 2020, 53(16): 3214-3224.
[5] KOU ShuJun, HUO AHong, FU GuoQing, JI JunJian, WANG Yao, ZUO ZhenXing, LIU MinXuan, LU Ping. Genetic Diversity and Population Structure of Broomcorn Millet in China Based on Fluorescently Labeled SSR [J]. Scientia Agricultura Sinica, 2019, 52(9): 1475-1477.
[6] YUAN YuHao, YANG QingHua, DANG Ke, YANG Pu, GAO JinFeng, GAO XiaoLi, WANG PengKe, LU Ping, LIU MinXuan, FENG BaiLi. Salt-Tolerance Evaluation and Physiological Response of Salt Stress of Broomcorn Millet (Panicum miliaceum L.) [J]. Scientia Agricultura Sinica, 2019, 52(22): 4066-4078.
[7] DIAO XianMin. Progresses in Stress Tolerance and Field Cultivation Studies of Orphan Cereals in China [J]. Scientia Agricultura Sinica, 2019, 52(22): 3943-3949.
[8] WANG JunJie,CHEN Ling,WANG HaiGang,CAO XiaoNing,LIU SiChen,TIAN Xiang,QIN HuiBin,QIAO ZhiJun. Effects of Hyperspectral Prediction on Leaf Nitrogen Content and the Grain Protein Content of Broomcorn Millet [J]. Scientia Agricultura Sinica, 2019, 52(15): 2593-2603.
[9] GONG XiangWei, HAN HaoKun, ZHANG DaZhong, LI Jing, WANG Meng, XUE ZhiHe, YANG Pu, GAO XiaoLi, FENG BaiLi. Effects of Nitrogen Fertilizer on Dry Matter Accumulation, Transportation and Nitrogen Metabolism in Functional Leaves of Broomcorn Millet at Late Growth Stage [J]. Scientia Agricultura Sinica, 2018, 51(6): 1045-1056.
[10] GAO Yuan, WANG Kun, WANG DaJiang, ZHAO JiRong, ZHANG CaiXia, CONG PeiHua, LIU LiJun, LI LianWen, PIAO JiCheng. The Genetic Diversity and Population Structure Analysis on   Malus baccata (L.) Borkh from 7 Sources [J]. Scientia Agricultura Sinica, 2018, 51(19): 3766-3777.
[11] LI Yi, MA XianFeng, TANG Hao, LI Na, JIANG Dong, LONG GuiYou, LI DaZhi, NIU Ying, HAN RuiXi, DENG ZiNiu. SSR Markers Screening for Identification of Citrus Cultivar and Construction of DNA Fingerprinting Library [J]. Scientia Agricultura Sinica, 2018, 51(15): 2969-2979.
[12] XUE YanTao, LU Ping, QIAO ZhiJun, LIU MinXuan, WANG RuiYun. Genetic Diversity and Genetic Relationship of Broomcorn Millet (Panicum miliaceum L.) Germplasm Based on SSR Markers [J]. Scientia Agricultura Sinica, 2018, 51(15): 2846-2859.
[13] DONG KongJun, LIU TianPeng, HE JiHong, REN RuiYu, ZHANG Lei, XU Yan, YANG TianYu. Effects of Different Film Mulching-Patterns on Soil Thermal-Moisture and Broomcorn Millet Water Consumption Characteristics in Semiarid Region on Northwest Loess Plateau [J]. Scientia Agricultura Sinica, 2018, 51(12): 2274-2287.
[14] WANG FengGe, LI Xin, YANG Yang, YI HongMei, JIANG Bin, ZHANG XianChen, HUO YongXue, ZHU Li, GE JianRong, WANG Rui, REN Jie, WANG Lu, TIAN HongLi, ZHAO JiuRan. SSR Analyser:A Special Software Suitable for SSR Fingerprinting of Plant Varieties [J]. Scientia Agricultura Sinica, 2018, 51(12): 2248-2262.
[15] LIU Huan, ZHANG XinQuan, MA Xiao, ZHANG RuiZhen, HE GuangWu, PAN Ling, JIN MengYa. Construction of EST-SSR Fingerprinting Based on Fluorescence Detection Technology for Italian Ryegrass [J]. Scientia Agricultura Sinica, 2017, 50(3): 437-450.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!