Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (11): 2064-2077.doi: 10.3864/j.issn.0578-1752.2023.11.003

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Analysis of Common Characteristics of Widely Adaptation Wheat Cultivars

LÜ LiHua1(), HAN JiangWei2(), ZHANG JingTing1, DONG ZhiQiang1, MENG Jian3, JIA XiuLing1()   

  1. 1 Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences/Scientific Observing and Experimental Station of Crop Cultivation in North China, Ministry of Agriculture and Rural Affairs/Key Laboratory of Crop Cultivation Physiology and Green Production in Hebei Province, Shijiazhuang 050035
    2 Shijiazhuang Seed Management Station, Shijiazhuang 050000
    3 Hebei Agricultural Technology Extension Station, Shijiazhuang 050000
  • Received:2022-08-24 Accepted:2022-10-13 Online:2023-06-01 Published:2023-06-19

Abstract:

【Objective】 The objective of this study was to provide simple detection indicators for the screening of stress resistant and widely adapted cultivars under the background of frequent meteorological disasters in the North HuangHuaiHai Plain, through to screen drought resistant, heat-resistant and cold resistant winter wheat cultivars, and to clarify the yield composition, plant type structure and physiological characteristics of stress resistant and widely suitable cultivars.【Method】A field and a greenhouse experiments (experiment 1 and experiment 2, respectively) were carried out in Gaocheng of Hebei province from Autumn 2017 to Summer 2020, and using 16 winter wheat cultivars as experimental material. For experiment 1, three treatments were set up, i.e., 0 irrigation, 1 irrigation (jointing) and 2 irrigation (jointing and flowering). For experiment 2, two treatments were set up at the late stage of filling, i.e., normal temperature treatment (CK) and warming temperature treatment. At the same time, the cold resistance test was conducted using the natural low temperature in the spring of 2018 and 2020. The stress resistance evaluation index, yield formation index, plant type structure index and leaf physiological index were determined.【Result】Five winter wheat cultivars were screened out by comprehensively considering yield, drought resistance index, yield heat sensitivity index and grade of freeze injury, and these cultivars included Jimai 23, Shannong 30, Jimai 325, Jimai 22 and Pinyu 8012. These cultivars had strong drought, heat and cold resistance, and had high and stable yield. By analyzing the correlation between yield and yield formation index, plant type index and leaf physiological index, it was found that 1000-grain weight, harvest index and biomass production were positively correlated with yield; the width of flag leaf, stem diameter and spike length were significantly or extremely significantly positively correlated with yield, while angle of stem and flag leaf was significantly negatively correlated with yield; relative chlorophyll value (SPAD value) and relative water content of flag leaf were positively correlated with yield, and the canopy temperature was negatively correlated with yield. Compared with other cultivars, the 1000-grain weight, harvest index and biomass production of the stress resistant cultivars increased by 12.9%, 5.2% and 3.4%, respectively. For stress resistant wheat cultivars, the width of flag leaf, angle of stem and flag leaf, diameter of basal stem, ear length and plant height were (16.2 ± 0.4) mm, (18.2 ± 3.2)°, (4.0 ± 0.3) mm, (7.5 ± 0.14) cm and (80.3 ± 1.3) cm, respectively. Compared with other cultivars, the SPAD value and relative water content in flag leaves of these five cultivars increased by 9.8% and 4.2% respectively, and the canopy temperature decreased by 1.9 ℃ at the late stage of filling.【Conclusion】The optimized plant type of the stress resistant wheat cultivars, namely “compact in the upper part and flat in the lower part”, was defined. The quantitative indexes were put forward, including width of flag leaf, angle of stem and flag leaf, diameter of basal stem and ear length; the physiological characteristics were put forward, including higher leaf SPAD value and relative water content of flag, and lower canopy temperature; the yield characteristics were identified, including higher 1000-grain weight, harvest index and biomass production.

Key words: winter wheat, cultivar selection, plant type characteristics, physiological characteristics, characteristics of yield components

Fig. 1

Temperature and humidity inside and outside the greenhouse under field conditions"

Fig. 2

Minimum temperature in the early April 2018 and late April 2020"

Fig. 3

Distribution of precipitation in winter wheat season"

Table 1

Analysis of stress resistance of different winter wheat cultivars"

品种
Cultivars
产量Grain yield (kg·hm-2) 抗旱指数
DRI
产量热感指数
YHSI
冻害级别
GFI
平均WUE
Average WUE
(kg·m-3)
0水
0 irrigation
1水
1 irrigation
2水
2 irrigation
增温
Warming
平均
Average
2017-2018
H4444 7909.7ab 7946.2c 8624.9ab 6144.5d 7656.3 1.03ab 2.01a 2 2.16a
JM22 7873.7ab 8456.2ab 8816.5a 7692.6ab 8209.8 1.00b 0.80f 1 2.22a
JM23 8188.4a 8739.2a 8932.2a 7990.1a 8462.5 1.07a 0.76g 2 2.28a
JM325 7965.4ab 8413.1ab 8967.9a 7990.8a 8334.3 1.02ab 0.44i 2 2.23a
KN2009 7561.3c 7700.3cd 8387.5b 7582.8b 7808.0 1.01b 0.14j 3 2.10ab
PY8012 8091.3a 8197.6b 8931.0a 7492.8b 8178.2 1.04ab 0.76g 1-2 2.22a
SN28 8047.6a 8712.8a 8579.7ab 7367.0b 8176.8 1.07a 1.37c 1-2 2.23a
SN30 8140.4a 8681.3a 8565.1ab 7961.3a 8337.0 1.10a 0.73g 2 2.24a
SL02-1 7631.1c 8211.5b 8294.4b 7023.8c 7790.2 1.00b 1.28d 2-3 2.13ab
SM22 8143.6a 8667.0a 8710.2ab 7436.7b 8239.3 1.08a 1.26d 2 2.25a
SM1718 6935.0d 7215.8e 7926.9c 6670.0c 7186.9 0.86d 0.67h 3 1.95d
YN1212 7954.7ab 8181.8b 8483.3b 7055.7bc 7918.9 1.06a 1.22de 2 2.17a
ZM36 7488.6c 7606.1cd 7915.9c 4933.6e 6986.0 1.01b 0.93e 2 2.02c
ZXM9 7855.0ab 8030.5c 9016.0a 6591.1c 7873.1 0.97c 1.59b 2 2.19a
平均Average 7841.8 8197.1 8582.3 7138.1 7939.8 - - - -
2018-2019
H4444 8828.3a 8689.0b 9494.5c 6267.8c 8319.9 1.42a 1.19c 2-3 2.21a
JM22 7690.7c 8618.0b 10210.2ab 6741.0b 8315.0 1.00e 0.93e 1 2.13b
JM23 8340.5ab 9099.2a 10208.3ab 7118.1a 8691.5 1.18c 0.93e 2 2.23a
JM325 8795.1a 8413.9b 9769.6abc 6538.3b 8379.2 1.37ab 0.95e 2 2.20a
KN2009 7289.2d 7296.4e 9255.1cd 5298.7e 7284.8 0.99e 1.17c 3 1.92c
PY8012 7895.0c 8272.9bc 10048.7ab 6490.5b 8176.5 1.07d 0.88f 1-2 2.17ab
SN28 8675.2a 9308.4a 9645.9c 6257.8c 8471.8 1.35ab 1.40b 1-2 2.25a
SN30 8907.5a 8964.4a 10514.4a 7286.8a 8918.3 1.30ab 0.80f 2 2.30a
SL02-1 7613.7c 7746.3d 8305.0e 5670.9d 7334.0 1.20c 1.15c 3 1.93c
SM22 8465.8ab 8850.7ab 9667.8c 6202.9c 8296.8 1.28ab 1.28bc 2 2.22a
SM1718 7308.3d 7270.7e 8984.4d 5921.5cd 7371.2 1.03de 0.79f 3 1.91c
YN1212 8114.8b 8159.9bc 9823.7abc 5239.8e 7834.5 1.16c 1.53a 2 2.11b
ZM36 - 7763.1d 9472.4c 6528.3b 7921.5 - 0.68g 2 2.13b
ZXM9 7815.3c 8503.4b 9929.3ab 6832.7ab 8270.2 1.06d 0.84f 2 2.12b
GY5218 7449.7d 7353.6e 9327.2cd 6092.1c 7555.7 1.03de 0.73g 2 1.95c
JM418 8248.1b 8241.8bc 9684.4c 7013.3a 8296.9 1.21c 0.64g 2-3 2.12b
平均Average 8095.8 8284.5 9646.3 6343.8 8089.9 - - - -

Fig. 4

Correlation between yield and yield components"

Fig. 5

Yield components characteristics of test cultivars Different letters in the figure mean significant differences among different cultivars (P<0.05). The same as below"

Table 2

Correlation between plant type structure index and yield"

指标
Index
旗叶
Flag leaf
倒2叶
Top second leaf
倒3叶
Top third leaf
倒4叶
Top fourth leaf
倒5叶
Top fifth leaf
单株
Per plant
叶长Leaf length -0.388 -0.428 -0.319 -0.448 -0.329 -0.429
叶宽Leaf width 0.472* 0.623** 0.471* 0.441 0.507* 0.542*
叶面积Leaf area 0.056 0.148 0.148 0.045 0.186 0.122
茎叶夹角Angle of stem and leaf -0.517* -0.126 0.075 0.172 0.446 -
茎粗Stem diameter - - - - - 0.473*
株高 Plant height - - - - - 0.375
穗长Spike length - - - - - 0.644**
茎长Stem length 0.039 -0.195 0.138 0.174 -0.082 0.047

Fig. 6

Characteristics of plant type structure of test cultivars"

Fig. 7

Correlation between yield and physiological indexes"

Fig. 8

SPAD value, relative water content, and canopy temperature of test cultivars"

[1]
张秀云, 王鹤龄, 雷俊. 气候暖干化对半干旱区春小麦产量形成的影响. 生态环境学报, 2015, 24(4): 569-574.

doi: 10.16258/j.cnki.1674-5906.2015.04.004
ZHANG X Y, WANG H L, LEI J. Impacts of climate warming and drying on spring wheat yield in a semi-arid region. Ecology and Environment Sciences, 2015, 24(4): 569-574. (in Chinese)
[2]
林作楫, 吴政卿. 面向21世纪小麦育种若干问题探讨(一): 育种目标. 作物杂志, 2004(5): 49-51.
LIN Z J, WU Z Q. Discussion on some problems of wheat breeding facing the 21st century (1) - Breeding objectives. Crops, 2004(5): 49-51. (in Chinese)
[3]
苗青霞, 方燕, 陈应龙. 小麦根系特征对干旱胁迫的响应. 植物学报, 2019, 54(5): 652-661.

doi: 10.11983/CBB19089
MIAO Q X, FANG Y, CHEN Y L. Studies in the responses of wheat root traits to drought stress. Bulletin of Botany, 2019, 54(5): 652-661. (in Chinese)

doi: 10.11983/CBB19089
[4]
OUTOUKARTE I, BELAQZIZ M, PRICE A, NSARELLAH N, EL HADRAMI I. Durum wheat root distribution and agronomical performance as influenced by soil properties. Crop Science, 2010, 50(3): 803-807.

doi: 10.2135/cropsci2009.04.0190
[5]
方燕, 闵东红, 高欣, 王中华, 王军, 刘萍, 刘霞. 不同抗旱性冬小麦根系时空分布与产量的关系. 生态学报, 2019, 39(8): 2922-2934.
FANG Y, MIN D H, GAO X, WANG Z H, WANG J, LIU P, LIU X. Relationship between spatiotemporal distribution of roots and grain yield of winter wheat varieties with differing drought tolerance. Acta Ecologica Sinica, 2019, 39(8): 2922-2934. (in Chinese)
[6]
李朴芳, 程正国, 赵鸿, 张小丰, 李冀南, 王绍明, 熊友才. 旱地小麦理想株型研究进展. 生态学报, 2011, 31(9): 2631-2640.
LI P F, CHENG Z G, ZHAO H, ZHANG X F, LI J N, WANG S M, XIONG Y C. Currentprogress in plant ideotype research of dryland wheat (Triticum aestivum L.). Acta Ecologica Sinica, 2011, 31(9): 2631-2640. (in Chinese)
[7]
AUSTIN R B, MORGAN C L, FORD M A, BHAGWAT S G. Flag leaf photosynthesis of Triticum aestivum and related diploid and tetraploid species. Annals of Botany, 1982, 49(2): 177-189.

doi: 10.1093/oxfordjournals.aob.a086238
[8]
任婕, 孙敏, 任爱霞, 林文, 薛建福, 仝锦, 王文翔, 高志强. 不同抗旱性小麦品种耗水量及产量形成的差异. 中国生态农业学报, 2020, 28(2): 211-220.
REN J, SUN M, REN A X, LIN W, XUE J F, TONG J, WANG W X, GAO Z Q. Difference in water consumption and yield among different drought-resistant wheat cultivars. Chinese Journal of Eco-Agriculture, 2020, 28(2): 211-220. (in Chinese)
[9]
李瑞奇, 卜冬宁, 张晓, 李雁鸣. 河北省冬小麦丰产抗旱性表型鉴定指标分析. 植物遗传资源学报, 2012, 13(2) : 233-238.
LI R Q, BU D N, ZHANG X, LI Y M. Phenotypic indexes for identification of high yield and drought resistance of winter wheat varieties in Hebei Province. Journal of Plant Genetic Resources, 2012, 13(2): 233-238. (in Chinese)
[10]
张荣芝, 卢建祥. 旱地冬小麦抗旱性的形态特征及生理特性的初步研究. 河北农业大学学报, 1991, 14(2): 10-14.
ZHANG R Z, LU J X. On morphological and physiological characters for drought resistance in rainfed wheat. Journal of Agricultural University of Hebei, 1991, 14(2): 10-14. (in Chinese)
[11]
陈翔, 林涛, 林非非, 张妍, 苏慧, 胡燕美, 宋有洪, 魏凤珍, 李金才. 黄淮麦区小麦倒春寒危害机理及防控措施研究进展. 麦类作物学报, 2020, 40(2): 243-250.
CHEN X, LIN T, LIN F F, ZHANG Y, SU H, HU Y M, SONG Y H, WEI F Z, LI J C. Research progress on damage mechanism and prevention and control measures of late spring coldness of wheat in Huanghuai region. Journal of Triticeae Crops, 2020, 40(2): 243-250. (in Chinese)
[12]
耿晓丽, 张月伶, 臧新山, 赵月, 张金波, 尤明山, 倪中福, 姚颖垠, 辛明明. 北方冬麦区与黄淮北片优良小麦品种(系)耐热性评价. 麦类作物学报, 2016, 36(2): 172-181.
GENG X L, ZHANG Y L, ZANG X S, ZHAO Y, ZHANG J B, YOU M S, NI Z F, YAO Y Y, XIN M M. Evaluation the thermotolerance of the wheat (Triticum aestivum L.) cultivars and advanced lines collected from the Northern China and north area of Huanghuai winter wheat regions. Journal of Triticeae Crops, 2016, 36(2): 172-181. (in Chinese)
[13]
刘萍, 郭文善, 浦汉春, 封超年, 朱新开, 彭永欣. 灌浆期高温对小麦剑叶抗氧化酶及膜脂过氧化的影响. 中国农业科学, 2005, 38(12): 2403-2407.
LIU P, GUO W S, PU H C, FENG C N, ZHU X K, PENG Y X. Effects of high temperature during grain filling period on antioxidant enzymes and lipid peroxidation in flag leaves of wheat. Scientia Agricultura Sinica, 2005, 38(12): 2403-2407. (in Chinese)

doi: 10.3864/j.issn.0578-1752.at-2005-5315
[14]
崔桂宾, 雷楠, 王勇锋, 李毛, 谢坤良, 孙风丽, 张超, 刘曙东, 奚亚军. 黄淮流域部分小麦种质材料抗旱和品质特性的评价及筛选. 麦类作物学报, 2017, 37(11): 1409-1418.
CUI G B, LEI N, WANG Y F, LI M, XIE K L, SUN F L, ZHANG C, LIU S D, XI Y J. Evaluation and screening of drought resistance and grain quality of wheat germplasms in yellow-huai river basin. Journal of Triticeae Crops, 2017, 37(11): 1409-1418. (in Chinese)
[15]
MU Q, CAI H J, SUN S K, WEN S S, XU J, DONG M Q, SADDIQUE Q. The physiological response of winter wheat under short-term drought conditions and the sensitivity of different indices to soil water changes. Agricultural Water Management, 2021, 243: 106475.

doi: 10.1016/j.agwat.2020.106475
[16]
胡阳阳, 卢红芳, 刘卫星, 康娟, 马耕, 李莎莎, 褚莹莹, 王晨阳. 灌浆期高温与干旱胁迫对小麦籽粒淀粉合成关键酶活性及淀粉积累的影响. 作物学报, 2018, 44(4): 591-600.
HU Y Y, LU H F, LIU W X, KANG J, MA G, LI S S, CHU Y Y, WANG C Y. Effects of high temperature and water deficiency during grain filling on activities of key starch synthesis enzymes and starch accumulation in wheat. Acta Agronomica Sinica, 2018, 44(4): 591-600. (in Chinese)

doi: 10.3724/SP.J.1006.2018.00591
[17]
王小波, 关攀锋, 辛明明, 汪永法, 陈希勇, 赵爱菊, 刘曼双, 李红霞, 张明义, 逯腊虎, 魏亦勤, 刘旺清, 张金波, 倪中福, 姚颖垠, 胡兆荣, 彭惠茹, 孙其信. 小麦种质资源耐热性评价. 中国农业科学, 2019, 52(23): 4191-4200.

doi: 10.3864/j.issn.0578-1752.2019.23.001
WANG X B, GUAN P F, XIN M M, WANG Y F, CHEN X Y, ZHAO A J, LIU M S, LI H X, ZHANG M Y, LU L H, WEI Y Q, LIU W Q, ZHANG J B, NI Z F, YAO Y Y, HU Z R, PENG H R, SUN Q X. Evaluation of heat tolerance in wheat germplasm resources. Scientia Agricultura Sinica, 2019, 52(23): 4191-4200. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2019.23.001
[18]
刘万代, 常明娟, 史校艳, 谷庆昊, 辛泽毓. 花后高温胁迫对小麦灌浆特性及产量的影响. 麦类作物学报, 2019, 39(5): 581-588.
LIU W D, CHANG M J, SHI X Y, GU Q H, XIN Z Y. Effect of high temperature stress after anthesis on grain filling characteristics and yield. Journal of Triticeae Crops, 2019, 39(5): 581-588. (in Chinese)
[19]
王士强, 胡银岗, 佘奎军, 周琳璘, 孟凡磊. 小麦抗旱相关农艺性状和生理生化性状的灰色关联度分析. 中国农业科学, 2007, 40(11): 2452-2459.
WANG S Q, HU Y G, SHE K J, ZHOU L L, MENG F L. Gray relational grade analysis of agronomical and physi-biochemical traits related to drought tolerance in wheat. Scientia Agricultura Sinica, 2007, 40(11): 2452-2459. (in Chinese)
[20]
YAO Y R, L H, ZHANG L H, YAO H P, DONG Z Q, ZHANG J T, JI J J, JIA X L, WANG H J. Genetic gains in grain yield and physiological traits of winter wheat in Hebei Province of China, from 1964 to 2007. Field Crops Research, 2019, 239: 114-123.

doi: 10.1016/j.fcr.2019.03.011
[21]
白云飞, 孙贵先, 李珊珊, 刘昊东, 赵思航, 张树华, 赵勇, 杨学举. 不同小麦品种(系)的抗旱性评价. 河北农业大学学报, 2019, 42(5): 1-7.
BAI Y F, SUN G X, LI S S, LIU H D, ZHAO S H, ZHANG S H, ZHAO Y, YANG X J. Comprehensive evaluation of drought resistance of different wheat varieties (lines). Journal of Hebei Agricultural University, 2019, 42(5): 1-7. (in Chinese)
[22]
IQBAL M, MOAKHAR N P, STRENZKE K, HAILE T, POZNIAK C, HUCL P, SPANER D. Genetic improvement in grain yield and other traits of wheat grown in western Canada. Crop Science, 2016, 56(2): 613-624.

doi: 10.2135/cropsci2015.06.0348
[23]
QIN X L, ZHANG F X, LIU C, YU H, CAO B G, TIAN S Q, LIAO Y C, SIDDIQUE K H M. Wheat yield improvements in China: Past trends and future directions. Field Crops Research, 2015, 177: 117-124.

doi: 10.1016/j.fcr.2015.03.013
[24]
SUN Y Y, WANG X L, WANG N, CHEN Y L, ZHANG S Q. Changes in the yield and associated photosynthetic traits of dry-land winter wheat (Triticumae stivum L.) from the 1940s to the 2010s in Shaanxi Province of China. Field Crops Research, 2014, 167: 1-10.

doi: 10.1016/j.fcr.2014.07.002
[25]
柴守玺. 小麦抗旱生态分类中的主要农艺性状. 甘肃农业大学学报, 2001, 36(1): 112-118.
CHAI S X. A study of major agronomic traits for classification of drought resistance ecotypes in wheat. Journal of Gansu Agricultural University, 2001, 36(1): 112-118. (in Chinese)
[26]
柴守玺, 王德轩, 柴守诚. 水分亏缺条件下冬小麦几个抗旱性状的应用价值. 华北农学报, 1993, 8(1): 1-6.

doi: 10.3321/j.issn:1000-7091.1993.01.001
CHAI S X, WANG D X, CHAI S C. Application value of several drought-resistant characters of winter wheat under water deficit condition. Acta Agriculturae Boreali-Sinica, 1993, 8(1): 1-6. (in Chinese)
[27]
刘桂茹, 张荣芝, 卢建祥, 谷俊涛. 小麦品种抗旱性鉴定指标与产量性状关系的探讨. 河北农业大学学报, 1995, 18(1): 10-14.
LIU G R, ZHANG R Z, LU J X, GU J T. Relationship between yield and indices determining drought-resistance in winter wheat. Journal of Hebei Agricultural University, 1995, 18(1): 10-14. (in Chinese)
[28]
田梦雨, 李丹丹, 戴廷波, 姜东, 荆奇, 曹卫星. 水分胁迫下不同基因型小麦苗期的形态生理差异. 应用生态学报, 2010, 21(1): 41-47.
TIAN M Y, LI D D, DAI T B, JIANG D, JING Q, CAO W X. Morphological and physiological differences of wheat genotypes at seedling stage under water stress. Chinese Journal of Applied Ecology, 2010, 21(1): 41-47. (in Chinese)
[29]
王士红, 荆奇, 戴廷波, 姜东, 曹卫星. 不同年代冬小麦品种旗叶光合特性和产量的演变特征. 应用生态学报, 2008, 19(6): 1255-1260.
WANG S H, JING Q, DAI T B, JIANG D, CAO W X. Evolution characteristics of flag leaf photosynthesis and grain yield of wheat cultivars bred in different years. Chinese Journal of Applied Ecology, 2008, 19(6): 1255-1260. (in Chinese)
[30]
关雅楠, 黄正来, 张文静, 石小东, 张裴裴. 低温胁迫对不同基因型小麦品种光合性能的影响. 应用生态学报, 2013, 24(7): 1895-1899.
GUAN Y N, HUANG Z L, ZHANG W J, SHI X D, ZHANG P P. Effects of low temperature stress on photosynthetic performance of different genotypes wheat cultivars. Chinese Journal of Applied Ecology, 2013, 24(7): 1895-1899. (in Chinese)
[31]
吕丽华, 李谦, 雷明帅, 姚艳荣, 贾秀领. 耐热小麦生理特征分析. 华北农学报, 2020, 35(S1): 138-144.

doi: 10.7668/hbnxb.20191560
L H, LI Q, LEI M S, YAO Y R, JIA X L. Analysis of physiological characteristics of heat resistant wheat. Acta Agriculturae Boreali- Sinica, 2020, 35(S1): 138-144. (in Chinese)
[32]
XU Q A, PAULSEN A Q, GUIKEMA J A, PAULSEN G M. Functional and ultrastructural injury to photosynthesis in wheat by high temperature during maturation. Environmental and Experimental Botany, 1995, 35(1): 43-54.

doi: 10.1016/0098-8472(94)00030-9
[33]
肖世和, 阎长生, 张秀英, 张文祥. 冬小麦耐热灌浆与气—冠温差的关系. 作物学报, 2000, 26(6): 972- 974.
XIAO S H, YAN C S, ZHANG X Y, ZHANG W X. Relationship between grain filling under heat stress and canopy temperature depression in winter wheat. Acta Agronomica Sinica, 2000, 26(6): 972-974. (in Chinese)
[1] WEI YongKang, YANG TianCong, ZANG ShaoLong, HE Li, DUAN JianZhao, XIE YingXin, WANG ChenYang, FENG Wei. Monitoring Wheat Lodging Based on UAV Multi-Spectral Image Feature Fusion [J]. Scientia Agricultura Sinica, 2023, 56(9): 1670-1685.
[2] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[3] CHANG ChunYi, CAO Yuan, GHULAM Mustafa, LIU HongYan, ZHANG Yu, TANG Liang, LIU Bing, ZHU Yan, YAO Xia, CAO WeiXing, LIU LeiLei. Effects of Powdery Mildew on Photosynthetic Characteristics and Quantitative Simulation of Disease Severity in Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1061-1073.
[4] WANG XiaoXuan, ZHANG Min, ZHANG XinYao, WEI Peng, CHAI RuShan, ZHANG ChaoChun, ZHANG LiangLiang, LUO LaiChao, GAO HongJian. Effects of Different Varieties of Phosphate Fertilizer Application on Soil Phosphorus Transformation and Phosphorus Uptake and Utilization of Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1113-1126.
[5] GUO Yan, JING YuHang, WANG LaiGang, HUANG JingYi, HE Jia, FENG Wei, ZHENG GuoQing. UAV Multispectral Image-Based Nitrogen Content Prediction and the Transferability Analysis of the Models in Winter Wheat Plant [J]. Scientia Agricultura Sinica, 2023, 56(5): 850-865.
[6] DONG YiFan, REN Yi, CHENG YuKun, WANG Rui, ZHANG ZhiHui, SHI XiaoLei, GENG HongWei. Genome-Wide Association Study of Grain Main Quality Related Traits in Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(11): 2047-2063.
[7] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[8] YI YingJie,HAN Kun,ZHAO Bin,LIU GuoLi,LIN DianXu,CHEN GuoQiang,REN Hao,ZHANG JiWang,REN BaiZhao,LIU Peng. The Comparison of Ammonia Volatilization Loss in Winter Wheat- Summer Maize Rotation System with Long-Term Different Fertilization Measures [J]. Scientia Agricultura Sinica, 2022, 55(23): 4600-4613.
[9] XU Ke,FAN ZhiLong,YIN Wen,ZHAO Cai,YU AiZhong,HU FaLong,CHAI Qiang. Coupling Effects of N-fertilizer Postponing Application and Intercropping on Maize Photosynthetic Physiological Characteristics [J]. Scientia Agricultura Sinica, 2022, 55(21): 4131-4143.
[10] LIU Feng,JIANG JiaLi,ZHOU Qin,CAI Jian,WANG Xiao,HUANG Mei,ZHONG YingXin,DAI TingBo,CAO WeiXing,JIANG Dong. Analysis of American Soft Wheat Grain Quality and Its Suitability Evaluation According to Chinese Weak Gluten Wheat Standard [J]. Scientia Agricultura Sinica, 2022, 55(19): 3723-3737.
[11] HAN ShouWei,SI JiSheng,YU WeiBao,KONG LingAn,ZHANG Bin,WANG FaHong,ZHANG HaiLin,ZHAO Xin,LI HuaWei,MENG Yu. Mechanisms Analysis on Yield Gap and Nitrogen Use Efficiency Gap of Winter Wheat in Shandong Province [J]. Scientia Agricultura Sinica, 2022, 55(16): 3110-3122.
[12] GAO RenCai,CHEN SongHe,MA HongLiang,MO Piao,LIU WeiWei,XIAO Yun,ZHANG Xue,FAN GaoQiong. Straw Mulching from Autumn Fallow and Reducing Nitrogen Application Improved Grain Yield, Water and Nitrogen Use Efficiencies of Winter Wheat by Optimizing Root Distribution [J]. Scientia Agricultura Sinica, 2022, 55(14): 2709-2725.
[13] MENG Yu,WEN PengFei,DING ZhiQiang,TIAN WenZhong,ZHANG XuePin,HE Li,DUAN JianZhao,LIU WanDai,FENG Wei. Identification and Evaluation of Drought Resistance of Wheat Varieties Based on Thermal Infrared Image [J]. Scientia Agricultura Sinica, 2022, 55(13): 2538-2551.
[14] LU Peng,LI WenHai,NIU JinCan,BATBAYAR Javkhlan,ZHANG ShuLan,YANG XueYun. Phosphorus Availability and Transformation of Inorganic Phosphorus Forms Under Different Organic Carbon Levels in a Tier Soil [J]. Scientia Agricultura Sinica, 2022, 55(1): 111-122.
[15] GAO ZhiYuan,XU JiLi,LIU Shuo,TIAN Hui,WANG ZhaoHui. Variations of Winter Wheat Nitrogen Harvest Index in Field Wheat Population [J]. Scientia Agricultura Sinica, 2021, 54(3): 583-595.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!