Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (11): 2047-2063.doi: 10.3864/j.issn.0578-1752.2023.11.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-Wide Association Study of Grain Main Quality Related Traits in Winter Wheat

DONG YiFan1(), REN Yi1, CHENG YuKun1, WANG Rui1, ZHANG ZhiHui1, SHI XiaoLei2, GENG HongWei1()   

  1. 1 College of Agronomy, Xinjiang Agricultural University/Special High Quality Triticeae Crops Engineering and Technology Research Center, Xinjiang Agricultural University/Xinjiang Wheat Industry System Innovation Team, Urumqi 830052
    2 Institute of Crop Germplasm Resources, Xinjiang Academy of Agricultural Sciences, Urumqi 830091
  • Received:2022-12-25 Accepted:2023-02-17 Online:2023-06-01 Published:2023-06-19

Abstract:

【Objective】The quality of wheat grain was an important factor affecting the processing quality and nutritional. Mining loci and candidate genes significantly associated with wheat grain quality traits provided a basis for broadening the understanding of the genetic mechanism of quality traits and molecular marker-assisted quality. 【Method】By measuring five quality traits, including protein content (GPC), wet gluten content (WGC), starch content (GSC), settling value (SV) and grain hardness (GH), in 259 winter wheat varieties (lines) from domestic and abroad, and conducting genome-wide association analysis in combination with 90K SNP chip, the significant association loci located were subjected to haplotype analysis. 【Result】All five traits conformed to normal distribution and showed rich variation among different environments, and the coefficient of variation of sedimentation value was the largest (20.11%-24.42%). All traits have shown highly significant differences (P<0.001) among genotype, environment, and genotype×environment, with a broad-sense heritability of 0.77-0.84. A total of 44 loci significantly associated (P<0.001) with five traits were detected by genome-wide association analysis, distributed in 19 linkage groups other than chromosomes 1D and 3D. Eighteen loci were stable in two or more environments, involving all five traits including protein content (12), wet gluten content (9), starch content (11), sedimentation value (12) and grain hardness (7), explaining 4.27%-10.98% of the genetic variation. Thirteen of them were multi-effect loci, with the largest number of multi-effect loci (7) associated with traits such as protein content, wet gluten content, settling value and starch content. The GENE-0762_631, IAAV7742 and RAC875_c66845_466 loci located on 2B, 2D and 3A chromosomes were detected simultaneously at two environmental and BLUP values with a range of 4.32%-7.07% phenotypic contribution. Through haplotype analysis of multi-effect loci present in multiple environments with high phenotypic contribution, four different haplotypes, Hap1, Hap2, Hap3 and Hap4, which were significantly associated with traits such as protein content, sedimentation value and starch content, were uncovered at the D_GDS7LZN02F4FP5_176 locus of chromosome 5D, among them Hap1 was a high starch content haplotype (P<0.001), while Hap2 and Hap3 were both haplotypes with high protein content and sedimentation value (P<0.05), and the four haplotypes accounted for 74.22%, 16.21%, 6.92% and 2.65%, respectively. The distribution frequencies of haplotypes from different sources of winter wheat were analyzed, in which the distribution frequencies of haplotype Hap2 with high protein content and sedimentation value were from high to low in the Huanghuai winter wheat regions>northern winter wheat region>abroad varieties>middle and lower reaches of the Yangtze River winter wheat region>southwest winter wheat region. Candidate genes were mined for stable genetic loci, and 10 candidate genes that might be related to wheat grain quality were screened. 【Conclusion】In the study, 18 stable loci significantly associated with grain quality traits were detected, 4 different haplotypes were identified, and 10 candidate genes related to grain quality were screened.

Key words: winter wheat, quality, SNP marker, GWAS, haplotype, candidate genes

Table 1

Statistical analysis of wheat grain quality traits in 259 natural population"

性状
Traits
环境
Environment
范围
Range
平均值±标准差
Mean±SD
变异系数
CV (%)
偏度
Ske.
峰度
Kur.
FF value 遗传力
h2
基因型
Genotype
环境
Environment
基因型×环境
G×E
蛋白质含量
GPC (%)
E1 13.52—19.22 16.38±1.15 7.01 -0.10 -0.70 16.96*** 3101.12*** 4.29*** 0.79
E2 12.77—18.67 15.55±1.21 7.77 0.40 -0.26
湿面筋含量
WGC (%)
E1 24.78—37.93 31.75±2.88 9.07 -0.03 -0.76 17.50*** 2995.32*** 4.38*** 0.79
E2 22.58—38.28 28.98±2.87 9.91 0.60 0.29
沉降值
SV (mL)
E1 24.05—68.55 48.18±9.69 20.11 -0.11 -0.80 13.10*** 4212.30*** 3.67*** 0.77
E2 16.95—67.50 40.27±9.83 24.42 0.50 0.01
淀粉含量
GSC (%)
E1 57.89—62.94 60.88±0.79 1.29 -0.64 1.10 17.84*** 2858.98*** 4.39*** 0.79
E2 59.94—64.14 62.40±0.75 1.20 -0.42 0.13
籽粒硬度
GH (%)
E1 41.22—77.87 65.21±7.28 11.17 -0.62 -0.18 17.10*** 7352.58*** 3.03*** 0.84
E2 36.07—76.42 59.20±8.12 13.71 -0.16 -0.31

Table 2

Statistical analysis of domestic and abroad winter wheat varieties (lines) for grain quality traits based on BLUP values"

性状
Traits
统计参数
Statistical parameters
国内品种Domestic varieties 国外品种
Abroad varieties
黄淮冬麦区
Huanghuai winter wheat region
北部冬麦区
Northern winter wheat region
长江中下游冬麦区
Middle and lower reaches of the Yangtze River winter wheat region
西南冬麦区
Southwest winter wheat region
蛋白质含量
GPC (%)
平均值±标准差 Mean±SD 16.17±0.78 16.06±0.95 15.87±0.77 15.54±0.65 15.69±0.93
范围Range 13.94—18.15 14.46—17.98 14.32—17.10 14.62—16.89 13.61—17.6
变异系数CV (%) 4.85 5.93 4.86 4.16 5.91
湿面筋含量
WGC (%)
平均值±标准差 Mean±SD 31.58±3.66 30.91±4.35 29.56±3.75 28.03±2.63 28.73±4.04
范围Range 19.66—41.18 23.93—39.74 19.02—35.89 24.26—34.83 21.01—38.15
变异系数CV (%) 11.60 14.09 12.69 9.37 14.05
沉降值
SV (mL)
平均值±标准差 Mean±SD 46.18±6.98 44.38±7.50 43.98±6.27 40.84±4.63 41.55±8.21
范围Range 29.26—61.74 29.81—62.44 30.68—53.98 34.6—51.71 24.07—61.02
变异系数CV (%) 15.11 16.91 14.26 11.33 19.76
淀粉含量
GSC (%)
平均值±标准差 Mean±SD 61.55±0.59 61.68±0.64 61.77±0.42 62.12±0.43 61.56±0.51
范围Range 60.17—62.80 60.07—62.8 60.89—62.76 61.20—62.89 60.01—62.78
变异系数CV (%) 0.95 1.04 0.67 0.69 0.83
籽粒硬度
GH (%)
平均值±标准差 Mean±SD 63.67±4.41 62.38±5.33 60.21±4.64 58.41±4.77 61.47±5.37
范围Range 50.49—73.57 52.04—74.33 51.44—70.51 50.91—69.03 44.95—73.44
变异系数CV (%) 6.92 8.55 7.71 8.17 8.74

Fig. 1

Population structure analysis of 259 wheat varieties (lines) A: Estimation of ∆K value in population; B: Group structure diagram; C: Principal component analysis"

Fig. 2

Manhattan and Q-Q plots of wheat grain quality traits based on BLUP values A: Grain protein content; B: Wet gluten content; C: Sedimentation value; D: Grain starch content; E: Grain hardness"

Table 3

Stable loci significantly associated with wheat grain quality traits"

性状
Trait
标记
Marker
染色体
Chr.
位置
Position (Mb)
P
P-value
表型贡献率
R2
环境
Environment
蛋白质含量
GPC (%)
BobWhite_c1027_1127 1A 586.91—590.20 1.26E-04-7.47E-04 4.89—7.32 E2/E3
wsnp_Ex_c5740_10081171 2B 733.71—742.81 4.60E-04-8.98E-04 4.63—5.14 E1/E3
GENE-0762_631 2B 790.44—790.76 5.76E-05-8.35E-04 4.57—6.55 E1/E2/E3
IAAV7742 2D 645.61 4.41E-05-9.28E-04 4.63—7.07 E2/E3
RAC875_c66845_466 3A 54.46—61.31 1.47E-04-9.65E-04 4.32—5.78 E1/E2/E3
wsnp_Ex_c8360_14085858 3B 5.67—5.95 6.13E-04-8.42E-04 4.55—7.67 E2/E3
Excalibur_rep_c102020_253 4A 631.90—631.92 4.96E-05-9.82E-04 4.42—7.18 E1/E3
Tdurum_contig33737_157 4B 37.69 3.04E-04-7.19E-04 4.59—5.02 E1/E3
BS00077733_51 5B 693.87 3.25E-04-9.88E-04 4.27—5.82 E2/E3
D_GDS7LZN02F4FP5_176 5D 559.92—562.12 2.12E-04-8.58E-04 4.53—6.26 E2/E3
Kukri_c74599_85 7A 14.19—19.97 6.81E-05-9.21E-04 4.64—6.40 E1/E3
RAC875_c80504_487 7A 30.09—35.60 8.05E-04-9.89E-04 5.61—8.55 E2/E3
湿面筋含量
WGC (%)
BobWhite_c1027_1127 1A 586.91 4.09E-05-7.87E-04 5.23—6.79 E2/E3
wsnp_Ex_c5740_10081171 2B 742.81 5.86E-04-9.77E-04 4.46—5.02 E1/E3
GENE-0762_631 2B 790.44—790.76 5.76E-05-7.62E-04 4.89—5.45 E1E3
RAC875_c66845_466 3A 54.46 3.75E-04-6.06E-04 4.32—4.79 E1/E2/E3
wsnp_Ex_c8360_14085858 3B 5.67—5.95 7.23E-04-8.04E-04 5.62—8.91 E2/E3
Excalibur_rep_c102020_253 4A 631.90—631.92 3.35E-04-7.28E-04 4.69—6.36 E1/E3
Tdurum_contig33737_157 4B 37.69 3.04E-04-6.37E-04 4.78—5.21 E1/E3
BS00077733_51 5B 693.87 4.66E-04-6.03E-04 4.70—5.17 E2/E3
Kukri_c74599_85 7A 14.19—19.97 4.02E-04-6.23E-04 4.74—5.08 E1/E3
沉降值
SV (mL)
BobWhite_c1027_1127 1A 586.91—593.30 5.25E-04-5.79E-04 4.66—7.36 E2/E3
wsnp_Ex_c5740_10081171 2B 733.71—742.81 4.60E-04-8.23E-04 4.78—5.14 E1/E3
GENE-0762_631 2B 790.44—790.76 6.26E-04-7.09E-04 5.02—6.19 E1/E2
IAAV7742 2D 645.61 8.84E-05-6.72E-04 5.81—7.04 E1/E3
RAC875_c66845_466 3A 54.46—61.31 4.03E-04-9.58E-04 4.25—5.02 E1/E3
wsnp_Ex_c8360_14085858 3B 5.67—5.95 6.66E-04-8.40E-04 5.69—7.21 E2/E3
Excalibur_rep_c102020_253 4A 631.90—631.92 5.30E-04-6.78E-04 4.66—5.19 E1/E3
Tdurum_contig33737_157 4B 37.69 6.22E-04-7.00E-04 4.59—5.10 E1/E3
BS00077733_51 5B 693.87 5.22E-04-7.28E-04 4.63—5.24 E2/E3
D_GDS7LZN02F4FP5_176 5D 559.92—562.12 2.55E-04-7.63E-04 4.53—5.32 E2/E3
Kukri_c67_1504 6A 73.72—75.02 2.86E-04-9.14E-04 4.44—5.44 E1/E3
RAC875_c80504_487 7A 30.09—35.60 8.05E-04-8.69E-04 5.82—8.06 E2/E3
淀粉含量
GSC (%)
BobWhite_c1027_1127 1A 593.3 5.62E-05-2.71E-04 5.06—7.59 E2/E3
wsnp_Ex_c5740_10081171 2B 733.71—742.81 4.60E-04-7.67E-04 4.46—5.11 E1/E3
GENE-0762_631 2B 790.44—790.76 9.23E-05-6.26E-04 4.57—6.02 E2/E3
IAAV7742 2D 645.61 7.78E-05-4.36E-04 5.03—6.58 E1/E2/E3
RAC875_c66845_466 3A 54.46—61.31 2.06E-04-7.26E-04 4.65—5.28 E2/E3
Excalibur_rep_c102020_253 4A 631.90—631.92 6.15E-04-8.62E-04 4.89—6.69 E1/E3
Tdurum_contig33737_157 4B 37.69 5.32E-04-5.98E-04 4.63—5.63 E1/E3
BS00077733_51 5B 693.87 4.24E-04-6.06E-04 4.27—5.82 E2/E3
D_GDS7LZN02F4FP5_176 5D 559.92—562.12 4.62E-04-7.31E-04 5.26—7.08 E2/E3
Kukri_c67_1504 6A 73.72—75.02 4.26E-04-6.26E-04 4.87—5.02 E1/E3
RAC875_c80504_487 7A 35.6 8.05E-04-9.08E-04 6.23—7.03 E2/E3
籽粒硬度
GH (%)
GENE-1019_96 2A 2.48 1.51E-04-4.90E-04 4.96—5.83 E1/E2/E3
BobWhite_c2002_100 2A 535.72 5.67E-04-7.71E-04 4.66—4.99 E1/E3
BS00081871_51 2B 12.08—17.39 6.81E-05-9.21E-04 5.08—6.40 E1/E3
wsnp_Ex_c8360_14085858 3B 5.67—5.95 6.18E-04-6.41E-04 5.60—7.99 E2/E3
BS00000020_51 5D 3.61 4.06E-07-1.82E-05 7.75—10.98 E1/E2/E3
Kukri_c74599_85 7A 14.19—19.97 5.22E-05-7.26E-04 5.02—6.21 E1/E3
Kukri_c34147_152 7A 689.95—690.05 2.81E-04-5.26E-04 6.08—6.78 E2/E3

Table 4

Stable loci significantly associated with two or more grain quality traits"

性状
Trait
标记
Marker
染色体
Chr.
位置
Position (Mb)
P
P-value
表型贡献率
R2
环境
Environment
蛋白质含量、湿面筋含量、沉降值、淀粉含量
GPC, WGC, SV, GSC
BobWhite_c1027_1127 1A 586.91—593.30 4.09E-05-7.87E-04 4.66—7.59 E2/E3
蛋白质含量、湿面筋含量、沉降值、淀粉含量
GPC, WGC, SV, GSC
wsnp_Ex_c5740_10081171 2B 733.71—742.81 4.60E-04-9.77E-04 4.46—5.14 E1/E3
蛋白质含量、湿面筋含量、沉降值、淀粉含量
GPC, WGC, SV, GSC
GENE-0762_631 2B 790.44—790.76 5.76E-05-8.35E-04 4.57—6.55 E1/E2/E3
蛋白质含量、沉降值、淀粉含量 GPC, SV, GSC IAAV7742 2D 645.61 4.41E-05-9.28E-04 4.63—7.07 E1/E2/E3
蛋白质含量、湿面筋含量、沉降值、淀粉含量
GPC, WGC, SV, GSC
RAC875_c66845_466 3A 54.46—61.31 1.47E-04-9.65E-04 4.32—5.78 E1/E2/E3
蛋白质含量、湿面筋含量、沉降值、籽粒硬度
GPC, WGC, SV, GH
wsnp_Ex_c8360_14085858 3B 5.67—5.95 6.13E-04-8.42E-04 4.55—8.91 E2/E3
蛋白质含量、湿面筋含量、沉降值、淀粉含量
GPC, WGC, SV, GSC
Excalibur_rep_c102020_253 4A 631.90—631.92 4.96E-05-9.82E-04 4.42—7.18 E1/E3
蛋白质含量、湿面筋含量、沉降值、淀粉含量
GPC, WGC, SV, GSC
Tdurum_contig33737_157 4B 37.69 3.04E-04-7.19E-04 4.60—5.21 E1/E3
蛋白质含量、湿面筋含量、沉降值、淀粉含量
GPC, WGC, SV, GSC
BS00077733_51 5B 693.87 3.25E-04-9.88E-04 4.27—5.82 E2/E3
蛋白质含量、沉降值、淀粉含量 GPC, SV, GSC D_GDS7LZN02F4FP5_176 5D 559.92—562.12 2.12E-04-8.58E-04 4.53—7.08 E2/E3
沉降值、淀粉含量SV, GSC Kukri_c67_1504 6A 73.72—75.02 2.86E-04-9.14E-04 4.44—5.44 E1/E3
蛋白质含量、湿面筋含量、籽粒硬度
GPC, WGC, GH
Kukri_c74599_85 7A 14.19—19.97 6.81E-05-9.21E-04 4.64—6.40 E1/E3
蛋白质含量、沉降值、淀粉含量 GPC, SV, GSC RAC875_c80504_487 7A 30.09—35.60 8.05E-04-9.89E-04 5.61—8.55 E2/E3

Fig. 3

Haplotype analysis of the D_GDS7LZN02F4FP5_176 locus A: LD Block analysis of the D_GDS7LZN02F4FP5_176 locus; B: Four haplotypes with different alleles; C: Quality phenotypic differences of different haplotype varieties (lines)"

Fig. 4

Distribution frequencies of haplotypes at the D_GDS7LZN02F4FP5_176 locus in winter wheat from different sources"

Table 5

Screening for candidate gene information"

性状
Trait
位点
Marker
染色体
Chr.
物理位置
Position (Mb)
基因
Gene
基因注释或编码蛋白
Gene annotation or coding protein
籽粒硬度GH BobWhite_c2002_100 2A 535.72 TraesCS2A02G312200 锌指蛋白 Zinc finger protein
蛋白质含量、湿面筋含量、沉降值、淀粉含量
GPC, WGC, SV, GSC
GENE-0762_631 2B 790.44—790.76 TraesCS2B02G630000 激酶家族蛋白
Kinase family protein
籽粒硬度GH BS00081871_51 2B 12.08—17.39 TraesCS2B02G027900 糖基转移酶 Glycosyltransferase
蛋白质含量、沉降值、淀粉含量
GPC, SV, GSC
IAAV7742 2D 645.61 TraesCS2D02G587400 LRR受体样激酶家族蛋白
LRR receptor-like kinase family protein
蛋白质含量、湿面筋含量、沉降值、淀粉含量
GPC, WGC, SV, GSC
RAC875_c66845_466 3A 54.46—61.31 TraesCS3A02G084800 细胞色素P450家族蛋白
Cytochrome P450 family protein
蛋白质含量、湿面筋含量、沉降值、淀粉含量
GPC, WGC, SV, GSC
Excalibur_rep_c102020_253 4A 631.90—631.92 TraesCS4A02G360000 磷酸转运蛋白
Phosphate transporter protein
蛋白质含量、沉降值、淀粉含量
GPC, SV, GSC
D_GDS7LZN02F4FP5_176 5D 559.92—562.12 TraesCS5D02G558100 糖转运蛋白,推定
Sugar transporter, putative
籽粒硬度GH BS00000020_51 5D 3.61 TraesCS5D02G004900 细胞色素P450家族蛋白
Cytochrome P450 family protein
蛋白质含量、沉降值、淀粉含量
GPC, SV, GSC
RAC875_c80504_487 7A 30.09—35.60 TraesCS7A02G061400 F-box家族蛋白
F-box protein
蛋白质含量、湿面筋含量、籽粒硬度
GPC, WGC, GH
Kukri_c74599_85 7A 14.19—19.97 TraesCSU02G168200 天冬氨酸蛋白酶
Aspartic proteinase
[1]
贾光锋, 范丽霞, 王金水. 小麦面筋蛋白结构、功能性及应用. 粮食加工, 2004, 29(2): 11-13, 22.
JIA G F, FAN L X, WANG J S. The structure, functional properties and using of wheat gluten protein. Grain Processing, 2004, 29(2): 11-13, 22. (in Chinese)
[2]
王一杰, 辛岭, 胡志全, 安晓宁. 我国小麦生产、消费和贸易的现状分析. 中国农业资源与区划, 2018, 39(5): 36-45.
WANG Y J, XIN L, HU Z Q, AN X N. Current sittuation of production, consumption and trade of wheat in China. Chinese Journal of Agricultural Resources and Regional Planning, 2018, 39(5): 36-45. (in Chinese)
[3]
张爱民, 李欣, 刘冬成, 孙家柱, 阳文龙. 品质支撑农作物产业与未来发展. 中国农业科学, 2016, 49(22): 4265-4266.

doi: 10.3864/j.issn.0578-1752.2016.22.001
ZHANG A M, LI X, LIU D C, SUN J Z, YANG W L. Quality-The future of crop production. Scientia Agricultura Sinica, 2016, 49(22): 4265-4266. (in Chinese)
[4]
赵新, 王步军. 小麦蛋白质和淀粉性状与面包品质关系研究进展. 中国农学通报, 2008, 24(12): 124-127.
ZHAO X, WANG B J. Advances in relationship of bread quality and characteristics of protein and starch of wheat. Chinese Agricultural Science Bulletin, 2008, 24(12): 124-127. (in Chinese)
[5]
刘建军, 何中虎, 赵振东, 宋建民, 刘爱峰. 小麦面条加工品质研究进展. 麦类作物学报, 2001, 21(2): 81-84.
LIU J J, HE Z H, ZHAO Z D, SONG J M, LIU A F. Review of noodle industrial quality of wheat. Journal of Triticeae Crops, 2001, 21(2): 81-84. (in Chinese)
[6]
杜巍, 魏益民, 张国权, 欧阳韶辉, 胡新中. 小麦品质与面条品质关系的研究. 西北农林科技大学学报(自然科学版), 2001, 29(3): 24-28.
DU W, WEI Y M, ZHANG G Q, OUYANG S H, HU X Z. Study on the relation of wheat property and noodle quality. Journal of Northwest A&F University (Natural Science Edition), 2001, 29(3): 24-28. (in Chinese)
[7]
陈锋, 陈东升, 钱森和, 张艳, 夏先春, 何中虎. Puroindoline基因对春小麦磨粉及馒头、面条品质的影响. 作物学报, 2006, 32(7): 980-986.
CHEN F, CHEN D S, QIAN S H, ZHANG Y, XIA X C, HE Z H. Influence of Puroindoline gene on milling performance steamed bread and noodle qualities in spring wheat. Acta Agronomica Sinica, 2006, 32(7): 980-986. (in Chinese)
[8]
周艳华, 何中虎, 阎俊, 张艳, 王德森. 中国小麦品种磨粉品质研究. 中国农业科学, 2003, 36(6): 615-621.
ZHOU Y H, HE Z H, YAN J, ZHANG Y, WANG D S. Characterization of milling quality in Chinese common wheat. Scientia Agricultura Sinica, 2003, 36(6): 615-621. (in Chinese)
[9]
WANG D W, ZHANG K P, DONG L L, DONG Z Y, LI Y W, HUSSAIN A, ZHAI H J. Molecular genetic and genomic analysis of wheat milling and end-use traits in China: Progress and perspectives. The Crop Journal, 2018, 6(1): 68-81.

doi: 10.1016/j.cj.2017.10.001
[10]
严勇亮, 时晓磊, 张金波, 耿洪伟, 肖菁, 路子峰, 倪中福, 丛花. 春小麦籽粒主要品质性状的全基因组关联分析. 中国农业科学, 2021, 54(19): 4033-4047.

doi: 10.3864/j.issn.0578-1752.2021.19.001
YAN Y L, SHI X L, ZHANG J B, GENG H W, XIAO J, LU Z F, NI Z F, CONG H. Genome-wide association study of grain quality related characteristics of spring wheat. Scientia Agricultura Sinica, 2021, 54(19): 4033-4047. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2021.19.001
[11]
关二旗, 魏益民, 张波. 小麦籽粒品质与基因型及环境条件的关系. 麦类作物学报, 2010, 30(5): 963-969.
GUAN E Q, WEI Y M, ZHANG B. Relationships between wheat kernel quality and genotype as well as environmental conditions. Journal of Triticeae Crops, 2010, 30(5): 963-969. (in Chinese)
[12]
ROZBICKI J, CEGLIŃSKA A, GOZDOWSKI D, JAKUBCZAK M, CACAK-PIETRZAK G, MĄDRY W, GOLBA J, PIECHOCIŃSKI M, SOBCZYŃSKI G, STUDNICKI M, DRZAZGA T. Influence of the cultivar, environment and management on the grain yield and bread-making quality in winter wheat. Journal of Cereal Science, 2015, 61: 126-132.

doi: 10.1016/j.jcs.2014.11.001
[13]
PU Z E, YE X L, LI Y, SHI B X, GUO Z, DAI S F, MA J, LIU Z H, JIANG Y F, LI W, JIANG Q T, CHEN G Y, WEI Y M, ZHENG Y L. Identification and validation of novel loci associated with wheat quality through a genome-wide association study. Journal of Integrative Agriculture, 2022, 21(11): 3131-3147.

doi: 10.1016/j.jia.2022.08.085
[14]
CHEN F, ZHANG F Y, LI H H, MORRIS C F, CAO Y Y, SHANG X L, CUI D Q. Allelic variation and distribution independence of Puroindoline b-B2 variants and their association with grain texture in wheat. Molecular Breeding, 2013, 32(2): 399-409.

doi: 10.1007/s11032-013-9879-z
[15]
GIROUX M J, MORRIS C F. Wheat grain hardness results from highly conserved mutations in the friabilin components puroindoline a and b. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(11): 6262-6266.
[16]
MORRIS C F. Puroindolines: The molecular genetic basis of wheat grain hardness. Plant Molecular Biology, 2002, 48(5): 633-647.

doi: 10.1023/A:1014837431178
[17]
胡文静, 张晓, 刘巧, 方正武, 高德荣. 普通小麦籽粒硬度的全基因组关联分析. 麦类作物学报, 2021, 41(2): 157-163.
HU W J, ZHANG X, LIU Q, FANG Z W, GAO D R. Genome-wide association study of grain hardness in common wheat. Journal of Triticeae Crops, 2021, 41(2): 157-163. (in Chinese)
[18]
LOU H Y, ZHANG R Q, LIU Y T, GUO D D, ZHAI S S, CHEN A Y, ZHANG Y F, XIE C J, YOU M S, PENG H R, LIANG R Q, NI Z F, SUN Q X, LI B Y. Genome-wide association study of six quality-related traits in common wheat (Triticum aestivum L.) under two sowing conditions. Theoretical and Applied Genetics, 2021, 134(1): 399-418.

doi: 10.1007/s00122-020-03704-y
[19]
黄奇鹏, 武文斌, 李聪, 孟乐, 林冬华. 中国小麦供需形势分析与对策. 现代面粉工业, 2018, 32(5): 39-42.
HUANG Q P, WU W B, LI C, MENG L, LIN D H. Analysis and countermeasures of wheat supply and demand situation in China. Modern Flour Milling Industry, 2018, 32(5): 39-42. (in Chinese)
[20]
马冬云, 朱云集, 郭天财, 王晨阳. 基因型和环境及其互作对河南省小麦品质的影响及品质稳定性分析. 麦类作物学报, 2002, 22(4): 13-18.
MA D Y, ZHU Y J, GUO T C, WANG C Y, Effects of genotype, environment and G×E interaction on wheat quality of Henan province and the stability analysis. Journal of Triticeae Crops, 2002, 22(4): 13-18. (in Chinese)
[21]
张萮, 张海涛, 王伟. 不同储藏方式对小麦品质的影响. 粮食科技与经济, 2017, 42(2): 68-70.
ZHANG Y, ZHANG H T, WANG W. Effects of different storage methods on wheat quality. Grain Science and Technology and Economy, 2017, 42(2): 68-70. (in Chinese)
[22]
吴新元, 芦静, 张新忠, 黄天荣, 李建疆, 周安定, 梁晓东, 曹俊梅, 高永红, 曾潮武. 新疆小麦品质生态区划研究. 新疆农业科学, 2017, 54(8): 1373-1383.

doi: 10.6048/j.issn.1001-4330.2017.08.001
WU X Y, LU J, ZHANG X Z, HUANG T R, LI J J, ZHOU A D, LIANG X D, CAO J M, GAO Y H, ZENG C W. Study of ecological division for wheat quality in Xinjiang. Xinjiang Agricultural Sciences, 2017, 54(8): 1373-1383. (in Chinese)

doi: 10.6048/j.issn.1001-4330.2017.08.001
[23]
李鸿恩, 张玉良, 吴秀琴, 李宗智. 我国小麦种质资源主要品质特性鉴定结果及评价. 中国农业科学, 1995, 28(5): 29-37.
LI H E, ZHANG Y L, WU X Q, LI Z Z. Determination and evaluation on the main quality characters of wheat germplasm resources in China. Scientia Agricultura Sinica, 1995, 28(5): 29-37. (in Chinese)
[24]
孟智鹏, 张靖卓. 优质专用强筋和弱筋小麦生产现状、问题和对策: 基于河南等省调研分析. 农学学报, 2019, 9(3): 89-94.

doi: 10.11923/j.issn.2095-4050.cjas18120012
MENG Z P, ZHANG J Z. Current situation, problems and countermeasures of high-gluten and low-gluten wheat with premium quality for special purposes: An investigation in Henan and other provinces. Journal of Agriculture, 2019, 9(3): 89-94. (in Chinese)
[25]
关二旗, 魏益民, 张波, 郭进考, 张国权, 刘彦军, 罗勤贵, 班进福. 黄淮冬麦区部分区域小麦品种构成及品质性状分析. 中国农业科学, 2012, 45(6): 1159-1168.

doi: 10.3864/j.issn.0578-1752.2012.06.014
GUAN E Q, WEI Y M, ZHANG B, GUO J K, ZHANG G Q, LIU Y J, LUO Q G, BAN J F. Analysis of the variety composition and quality properties of wheat in a part of the Yellow-Huai river zone. Scientia Agricultura Sinica, 2012, 45(6): 1159-1168. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2012.06.014
[26]
CHEN J H, ZHANG F Y, ZHAO C J, G G, SUN C W, PAN Y B, GUO X Y, CHEN F. Genome-wide association study of six quality traits reveals the association of the TaRPP13L1gene with flour colour in Chinese bread wheat. Plant Biotechnology Journal, 2019, 17(11): 2106-2122.

doi: 10.1111/pbi.v17.11
[27]
HAO S Y, LOU H Y, WANG H W, SHI J H, LIU D, BAOGERILE, TAO J G, MIAO S M, PEI Q C, YU L L, WU M, GAO M, ZHAO N H, DONG J C, YOU M S, XIN M M. Genome-wide association study reveals the genetic basis of five quality traits in Chinese wheat. Frontiers in Plant Science, 2022, 13: 835306.

doi: 10.3389/fpls.2022.835306
[28]
RATHAN N D, KRISHNA H, ELLUR R K, SEHGAL D, GOVINDAN V, AHLAWAT A K, KRISHNAPPA G, JAISWAL J P, SINGH J B, SV S, AMBATI D, SINGH S K, BAJPAI K, MAHENDRU-SINGH A. Genome-wide association study identifies loci and candidate genes for grain micronutrients and quality traits in wheat (Triticum aestivum L.). Scientific Reports, 2022, 12(1): 1-15.

doi: 10.1038/s41598-021-99269-x
[29]
MASSA A N, MORRIS C F. Molecular evolution of the puroindoline-a, puroindoline-b, and grain softness protein-1 genes in the tribe triticeae. Journal of Molecular Evolution, 2006, 63(5): 718.

doi: 10.1007/s00239-006-8292-1
[30]
MUQADDASI Q H, BRASSAC J, EBMEYER E, KOLLERS S, KORZUN V, ARGILLIER O, STIEWE G, PLIESKE J, GANAL M W, RÖDER M S. Prospects of GWAS and predictive breeding for European winter wheat's grain protein content, grain starch content, and grain hardness. Scientific Reports, 2020, 10(1): 12541.

doi: 10.1038/s41598-020-69381-5 pmid: 32719416
[31]
YANG Y, CHAI Y M, ZHANG X, LU S, ZHAO Z C, WEI D, CHEN L, HU Y G. Multi-locus GWAS of quality traits in bread wheat: Mining more candidate genes and possible regulatory network. Frontiers in Plant Science, 2020, 11: 1091.

doi: 10.3389/fpls.2020.01091 pmid: 32849679
[32]
LI C L, BAI G H, CHAO S, CARVER B, WANG Z H. Single nucleotide polymorphisms linked to quantitative trait loci for grain quality traits in wheat. The Crop Journal, 2016, 4(1): 1-11.

doi: 10.1016/j.cj.2015.10.002
[33]
WANG J Y, YANG C K, ZHAO W J, WANG Y, QIAO L, WU B B, ZHAO J J, ZHENG X W, WANG J L, ZHENG J. Genome-wide association study of grain hardness and novel Puroindoline alleles in common wheat. Molecular Breeding, 2022, 42(7): 40.

doi: 10.1007/s11032-022-01303-x
[34]
陈玲玲, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 大豆叶柄夹角相关基因GmILPA1单倍型分析. 植物遗传资源学报, 2021, 22(6): 1698-1707.

doi: 10.13430/j.cnki.jpgr. 20210419003
CHEN L L, LIU T X, GU Y Z, SONG J, WANG J, QIU L J. Haplotype analysis of petiole angle related gene GmILPA1 in soybean. Journal of Plant Genetic Resources, 2021, 22(6): 1698-1707. (in Chinese)
[35]
刘国圣, 张大乐. 功能性分子标记在小麦育种中的应用. 生物技术通报, 2016, 32(11): 18-29.

doi: 10.13560/j.cnki.biotech.bull.1985.2016.11.003
LIU G S, ZHANG D L. The application of the functional molecular marker in wheat breeding. Biotechnology Bulletin, 2016, 32(11): 18-29. (in Chinese)
[36]
JIN X F, FENG B, XU Z B, FAN X L, LIU J, LIU Q, ZHU P, WANG T. TaAAP6-3B, a regulator of grain protein content selected during wheat improvement. BMC Plant Biology, 2018, 18(1): 71.

doi: 10.1186/s12870-018-1280-y pmid: 29685104
[37]
何中虎, 庄巧生, 程顺和, 于振文, 赵振东, 刘旭. 中国小麦产业发展与科技进步. 农学学报, 2018, 8(1): 99-106.
HE Z H, ZHUANG Q S, CHENG S H, YU Z W, ZHAO Z D, LIU X. Wheat production and technology improvement in China. Journal of Agriculture, 2018, 8(1): 99-106. (in Chinese)
[38]
何中虎, 夏先春, 陈新民, 庄巧生. 中国小麦育种进展与展望. 作物学报, 2011, 37(2): 202-215.
HE Z H, XIA X C, CHEN X M, ZHUANG Q S. Progress of wheat breeding in China and the future perspective. Acta Agronomica Sinica, 2011, 37(2): 202-215. (in Chinese)

doi: 10.3724/SP.J.1006.2011.00202
[39]
李琳, 丁峰, 潘介春, 张树伟, 黄幸, 王金英, 王颖, 李浩然, 徐炯志, 彭宏祥, 何新华. 植物锌指蛋白转录因子家族研究进展. 热带农业科学, 2020, 40(2): 65-75.
LI L, DING F, PAN J C, ZHANG S W, HUANG X, WANG J Y, WANG Y, LI H R, XU J Z, PENG H X, HE X H. Research progress on family of plant zinc-finger protein transcription factors. Chinese Journal of Tropical Agriculture, 2020, 40(2): 65-75. (in Chinese)
[40]
MIZUTANI M, SATO F. Unusual P450 reactions in plant secondary metabolism. Archives of Biochemistry and Biophysics, 2011, 507(1): 194-203.

doi: 10.1016/j.abb.2010.09.026 pmid: 20920462
[41]
冯蕾, 张海文, 黄荣峰. 植物LRR类受体蛋白激酶的研究进展. 中国农业科技导报, 2012, 14(6): 43-48.
FENG L, ZHANG H W, HUANG R F. Research progress on LRR receptor-like protein kinase in plant. Journal of Agricultural Science and Technology, 2012, 14(6): 43-48. (in Chinese)
[42]
JIA Q, XIAO Z X, WONG F L, SUN S, LIANG K J, LAM H M. Genome-wide analyses of the soybean F-box gene family in response to salt stress. International Journal of Molecular Sciences, 2017, 18(4): 818.

doi: 10.3390/ijms18040818
[43]
杨乐, 齐妍, 刘生祥, 张双喜, 李连城, 陈明, 徐兆师, 马有志. 植物抗逆相关蛋白激酶的结构与功能. 植物遗传资源学报, 2013, 14(4): 659-667.
YANG L, QI Y, LIU S X, ZHANG S X, LI L C, CHEN M, XU Z S, MA Y Z. Structure and function of stress-related protein kinases in plants. Journal of Plant Genetic Resources, 2013, 14(4): 659-667. (in Chinese)
[44]
胡梦芸, 张正斌, 徐萍. 植物光合产物转运蛋白及其生物学功能. 植物生理学通讯, 2008, 44(1): 1-6.
HU M Y, ZHANG Z B, XU P. Photoassimilate transport proteins and biology function in plant. Plant Physiology Communications, 2008, 44(1): 1-6. (in Chinese)
[45]
KEEGSTRA K, RAIKHEL N. Plant glycosyltransferases. Current Opinion in Plant Biology, 2001, 4(3): 219-224.

pmid: 11312132
[46]
SOSSO D, LUO D P, LI Q B, SASSE J, YANG J L, GENDROT G, SUZUKI M, KOCH K E, MCCARTY D R, CHOUREY P S, ROGOWSKY P M, ROSS-IBARRA J, YANG B, FROMMER W B. Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport. Nature Genetics, 2015, 47(12): 1489-1493.

doi: 10.1038/ng.3422
[1] REN ZhiQiang, WANG ChenYang, KOU ZhongYun, CAI Rui, YANG GongShe, PANG WeiJun. In Vivo Estimation of Lean Percentage, Fat Percentage, and Intramuscular Fat Content of Boars by Computed Tomography [J]. Scientia Agricultura Sinica, 2023, 56(9): 1787-1799.
[2] JU XiaoJun, ZHANG Ming, SHAN YanJu, JI GaiGe, TU YunJie, LIU YiFan, ZOU JianMin, SHU JingTing. Chicken Quality Analysis and Screening of Key Flavor Substances and Genes [J]. Scientia Agricultura Sinica, 2023, 56(9): 1813-1826.
[3] WEI YongKang, YANG TianCong, ZANG ShaoLong, HE Li, DUAN JianZhao, XIE YingXin, WANG ChenYang, FENG Wei. Monitoring Wheat Lodging Based on UAV Multi-Spectral Image Feature Fusion [J]. Scientia Agricultura Sinica, 2023, 56(9): 1670-1685.
[4] JIANG Dong, WANG Xu, LI RenJing, ZHAO XiaoDong, DAI XiangSheng, LIU ZhengWei. Population Genomic Structure of Pomelo Germplasm and Fruit Acidity Associated Genes Identification by Genotyping-by-Sequencing Technology [J]. Scientia Agricultura Sinica, 2023, 56(8): 1547-1560.
[5] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[6] NAN Rui, YANG YuCun, SHI FangHui, ZHANG LiNing, MI TongXi, ZHANG LiQiang, LI ChunYan, SUN FengLi, XI YaJun, ZHANG Chao. Identification of Excellent Wheat Germplasms and Classification of Source-Sink Types [J]. Scientia Agricultura Sinica, 2023, 56(6): 1019-1034.
[7] CHANG ChunYi, CAO Yuan, GHULAM Mustafa, LIU HongYan, ZHANG Yu, TANG Liang, LIU Bing, ZHU Yan, YAO Xia, CAO WeiXing, LIU LeiLei. Effects of Powdery Mildew on Photosynthetic Characteristics and Quantitative Simulation of Disease Severity in Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1061-1073.
[8] WANG XiaoXuan, ZHANG Min, ZHANG XinYao, WEI Peng, CHAI RuShan, ZHANG ChaoChun, ZHANG LiangLiang, LUO LaiChao, GAO HongJian. Effects of Different Varieties of Phosphate Fertilizer Application on Soil Phosphorus Transformation and Phosphorus Uptake and Utilization of Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1113-1126.
[9] WANG Mai, DONG QingFeng, GAO ShenAo, LIU DeZheng, LU Shan, QIAO PengFang, CHEN Liang, HU YinGang. Genome-Wide Association Studies and Mining for Favorable Loci of Root Traits at Seedling Stage in Wheat [J]. Scientia Agricultura Sinica, 2023, 56(5): 801-820.
[10] GUO Yan, JING YuHang, WANG LaiGang, HUANG JingYi, HE Jia, FENG Wei, ZHENG GuoQing. UAV Multispectral Image-Based Nitrogen Content Prediction and the Transferability Analysis of the Models in Winter Wheat Plant [J]. Scientia Agricultura Sinica, 2023, 56(5): 850-865.
[11] WANG ZiDun, WANG Hui, FENG YuChen, ZHANG XueLiang, YAN LeiYu, LIU XiaoJie, ZHAO ZhengYang. Effects of Different Color Fruit Bags on Quality of Ruixue Apple Fruits [J]. Scientia Agricultura Sinica, 2023, 56(4): 729-740.
[12] DING JinFeng, XU DongYi, DING YongGang, ZHU Min, LI ChunYan, ZHU XinKai, GUO WenShan. Effects of Cultivation Patterns on Grain Yield, Nitrogen Uptake and Utilization, and Population Quality of Wheat Under Rice-Wheat Rotation [J]. Scientia Agricultura Sinica, 2023, 56(4): 619-634.
[13] ZHU YouYun, ZENG YuLing, LI Bo, YUAN YuJie, ZHOU Xing, LI QiuPing, HE ChenYan, CHEN Yong, WANG Li, CHENG Hong, ZHOU Wei, TAO YouFeng, LEI XiaoLong, REN WanJun, DENG Fei. Effect of Post-Anthesis Shading Stress on Eating Quality of Indica Rice in Chengdu Plain [J]. Scientia Agricultura Sinica, 2023, 56(3): 430-440.
[14] LIU MingHui, TIAN HongYu, LIU ZhiGuang, GONG Biao. Effects of Urea Slow-Release Functional Fertilizer Containing Melatonin on Growth, Yield and Phosphorus Use Efficiency of Tomato Under Reduced Phosphorus Application Conditions [J]. Scientia Agricultura Sinica, 2023, 56(3): 519-528.
[15] WANG XiuJuan, GAO Han, LI HaiPeng, GAO Xue, SUN BaoZhong, CHENG Qiang, XU Lei, ZHANG YaPeng, LEI YuanHua, WEI Meng, LI SanLu, HU JunWei, ZHANG ChangQing, GAO HuiJiang, LI JunYa, ZHANG LuPei, CHEN Yan. Analysis of Growth Performance as well as Carcass and Meat Quality Traits in Pingliang Red Cattle [J]. Scientia Agricultura Sinica, 2023, 56(3): 559-571.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!