Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (8): 1547-1560.doi: 10.3864/j.issn.0578-1752.2023.08.010

• HORTICULTURE • Previous Articles     Next Articles

Population Genomic Structure of Pomelo Germplasm and Fruit Acidity Associated Genes Identification by Genotyping-by-Sequencing Technology

JIANG Dong1(), WANG Xu1, LI RenJing1, ZHAO XiaoDong2, DAI XiangSheng2, LIU ZhengWei3   

  1. 1 Citrus Research Institute, Southwest University, Chongqing 400712
    2 Jinggangshan Agricultural Science and Technology Park Management Committee, Ji’an 343016, Jiangxi
    3 Jianggangshan University, Ji’an 343016, Jiangxi
  • Received:2022-05-25 Accepted:2022-10-08 Online:2023-04-16 Published:2023-04-23

Abstract:

【Objective】 To reveal the phylogeny, population genetic structure and diversity level of pomelo (Citrus grandis (L.) Osbeck) germplasm, and to efficiently utilize them to explore genes related to important fruit quality traits, this research provided an insight into the population genetic structure and phylogeny of pomelo germplasm and facilitated the pomelo varieties innovation.【Method】 A total of 282 pomelo accessions including landraces from different geographical regions and hybrid offspring of kiyomi tangor and pomelo were contained in this study. GBS library was constructed with genomic DNAs digested by EcoR I restriction endonuclease and sequenced on Illumina HiSeq PE150 platform, the clean short reads were then mapped to pomelo reference genome by BWA, and SNPs were called out with SAMTOOLS pipeline. Based on 121 726 SNPs genotyping data, principal component analysis (PCA) and population genetic structure analysis were carried out and phylogenetic trees were constructed with Neighbor-joining method. Furthermore, two sub-populations containing high-acid accessions (32) and low-acid accessions (23) were used to identify candidate genes related to fruit acidity by Fst and XP-CLR selective sweeping analysis. Meanwhile, the genotype data of 282 pomelo accessions and the phenotypic data of titratable acid content in fruit were used for GWAS.【Result】 A total of 201.66 Gb original reads were generated from 282 pomelo germplasm by GBS approach, in average each sample produced 0.72 Gb reads. After the screening conditions of sequencing depth of dp5, the miss less than 0.2 and minor alleles frequency (MAF)>0.01, and a total of 121 726 SNPs were selected out for subsequent analysis. The PCA, structure and phylogenetic analysis all supported that the 282 pomelo germplasm could be divided into 6 subgroups, among which pomelo and kiyomi hybrid population, grapefruits and other pomelo hybrid populations could be obviously different from true-to-type pomelo populations, pomelos originated from different geographical region displayed unique genetic feature. The pomelo germplasm from Thailand and Vietnam formed a relatively unique group different from other domestic groups, such as ShaTian pomelo, Wen Dan pomelo, and Dian Jiang pomelo in China. The genetic introgression from Vietnam pomelos were exhibited in most pomelo germplasm in southern China, suggested that Vietnam was the origin center for pomelo. In addition, some pomelo germplasm with unknown origin have been identified accurately by GBS technology. This study showed that different geographical distribution and artificial selection pressure had great effect on the genomic composition of pomelo. Besides, Fst, XP-CLR selective sweeping analysis revealed a strong selection signal region on chromosome 7 contained genes annotated as dihydrolipoyl transacetylase (DLT-E2) of pyruvate dehydrogenase complex (PDC) and aluminum-activated malate transporter (ALMT9), which involved in the synthesis and transportation of citric acid. In additional GWAS genome-wide association analysis identified another region on chromosome 2, which was also highly associated with fruit acidity. 【Conclusion】GBS technology provided reliable and efficient method for studying the phylogeny and evolution of pomelo. The study showed that artificial cross breeding, long-term artificial selection, geography isolation and domestication were the major driving forces for the formation of different types of pomelo germplasm. In addition, it clearly showed that Southeast Asian was primary center for pomelo origin and China mainland was secondary evolutionary center. Several candidate genes related to citric acid content in pomelo fruits were identified by Fst, XP-CLR selective sweeping and GWAS. This study provided important gene resources for the further genetic improvement and breeding of pomelo fruits.

Key words: GBS, pomelo phylogeny, genes related to fruit acidity, GWAS

Fig. 1

The principal component analysis of 282 pomelos accessions with 121726 SNPs The left image is based on the 1st and 2nd principal components, and the right image is based on the 1st and 3rd principal components. The red circles represent the sample from hybrid of Kiyomi and pomelo, the black circles represent the true-to-type pomelo sample, and the blue and other colored circles represent the grapefruit sample"

Fig. 2

Population genetic structure plot of 282 pomelo accessions determined by K=3 and K=6 using 121726 SNPs"

Table 2

The genetic diversity of 6 sub-population of pomelo germplasm"

亚群
Sub_population
π值范围
Range of π
平均π值
Average value of π
平均Tajima’s D
Average value of Tajima’s D
沙田柚类 Shatian pomelo group 0.04—0.51 0.129 -0.15
文旦柚类 Wendan pomelo group 0.02—0.51 0.130 0.41
垫江柚类 Dianjiang pomelo group 0.03—0.51 0.134 0.45
越南泰国柚类 Vietnam and Thailand pomelo group 0.01—0.50 0.155 0.17
‘清见’杂交柚类 Pomelo and Kiyomi crossing group 0.01—0.50 0.233 1.12
葡萄柚类 Grapefruit group 0.03—0.51 0.259 0.92

Fig. 3

NJ clustering dendrogram generated using 121726 SNPs of 282 pomelo accessions"

Fig. 4

Genome-wide Fst (A) and XP-CLR selective sweep analysis (B) using two high-acid and low-acid pomelo populations The corresponding maximum position of Fst and XP-CLR is on the same location of chromosome 7"

Fig. 5

The Manhattan (A) and QQ plot (B) display significant candidate genes loci related to fruit acidity identified by genome-wide association analysis (GWAS) on 282 pomelo accessions"

[1]
WU G A, TEROL J, IBANEZ V, LÓPEZ-GARCÍA A, PÉREZ- ROMÁN E, BORREDÁ C, DOMINGO C, TADEO F R, CARBONELL- CABALLERO J, ALONSO R, CURK F, DU D L, OLLITRAULT P, ROOSE M L, DOPAZO J, GMITTER F G, ROKHSAR D S, TALON M. Genomics of the origin and evolution of Citrus. Nature, 2018, 554(7692): 311-316.

doi: 10.1038/nature25447
[2]
WANG X, XU Y T, ZHANG S Q, CAO L, HUANG Y, CHENG J F, WU G Z, TIAN S L, CHEN C L, LIU Y, YU H W, YANG X M, LAN H, WANG N, WANG L, XU J D, JIANG X L, XIE Z Z, TAN M L, LARKIN R M, CHEN L L, MA B G, RUAN Y J, DENG X X, XU Q. Genomic analyses of primitive, wild and cultivated citrus provide insights into asexual reproduction. Nature Genetics, 2017, 49(5): 765-772.

doi: 10.1038/ng.3839 pmid: 28394353
[3]
XU Q, CHEN L L, RUAN X A, CHEN D J, ZHU A D, CHEN C L, BERTRAND D, JIAO W B, HAO B H, LYON M P, CHEN J J, GAO S, XING F, LAN H, CHANG J W, GE X H, LEI Y, HU Q, MIAO Y, WANG L, XIAO S X, BISWAS M K, ZENG W F, GUO F, CAO H B, YANG X M, XU X W, CHENG Y J, XU J, LIU J H, LUO O J, TANG Z H, GUO W W, KUANG H H, ZHANG H Y, ROOSE M L, NAGARAJAN N, DENG X X, RUAN Y J. The draft genome of sweet orange (Citrus sinensis). Nature Genetics, 2013, 45(1): 59-66.

doi: 10.1038/ng.2472 pmid: 23179022
[4]
WU G A, SUGIMOTO C, KINJO H, AZAMA C, MITSUBE F, TALON M, GMITTER F G, ROKHSAR D S. Diversification of mandarin citrus by hybrid speciation and apomixis. Nature Communications, 2021, 12(1): 4377.

doi: 10.1038/s41467-021-24653-0 pmid: 34312382
[5]
BARKLEY N A, ROOSE M L, KRUEGER R R, FEDERICI C T. Assessing genetic diversity and population structure in a citrus germplasm collection utilizing simple sequence repeat markers (SSRs). Theoretical and Applied Genetics, 2006, 112(8): 1519-1531.

doi: 10.1007/s00122-006-0255-9 pmid: 16699791
[6]
DEMARCQ B, CAVAILLES M, LAMBERT L, SCHIPPA C, OLLITRAULT P, LURO F. Characterization of odor-active compounds of ichang lemon (Citrus wilsonii Tan.) and identification of its genetic interspecific origin by DNA genotyping. Journal of Agricultural and Food Chemistry, 2021, 69(10): 3175-3188.

doi: 10.1021/acs.jafc.0c07894
[7]
GONZALEZ-IBEAS D, IBANEZ V, PEREZ-ROMAN E, BORREDÁ C, TEROL J, TALON M. Shaping the biology of citrus: II. Genomic determinants of domestication. The Plant Genome, 2021, 14(3): e20133.
[8]
WU G A, PROCHNIK S, JENKINS J, SALSE J, HELLSTEN U, MURAT F, PERRIER X, RUIZ M, SCALABRIN S, TEROL J, et al. Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication. Nature Biotechnology, 2014, 32(7): 656-662.

doi: 10.1038/nbt.2906 pmid: 24908277
[9]
YU H W, YANG X M, GUO F, JIANG X L, DENG X X, XU Q. Genetic diversity and population structure of pummelo (Citrus maxima) germplasm in China. Tree Genetics & Genomes, 2017, 13(3): 58.
[10]
刘勇, 刘德春, 吴波, 孙中海. 利用SSR标记对中国柚类资源及近缘种遗传多样性研究. 农业生物技术学报, 2006, 14(1): 90-95.
LIU Y, LIU D C, WU B, SUN Z H. Genetic diversity of pummelo and their relatives based on SSR markers. Journal of Agricultural Biotechnology, 2006, 14(1): 90-95. (in Chinese)
[11]
ELSHIRE R J, GLAUBITZ J C, SUN Q, POLAND J A, KAWAMOTO K, BUCKLER E S, MITCHELL S E. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE, 2011, 6(5): e19379.

doi: 10.1371/journal.pone.0019379
[12]
ISLAM A S M F, SANDERS D, MISHRA A K, JOSHI V. Genetic diversity and population structure analysis of the USDA olive germplasm using genotyping-by-sequencing (GBS). Genes, 2021, 12(12): 2007.

doi: 10.3390/genes12122007
[13]
王小柯, 江东, 孙珍珠. 利用GBS技术研究240份宽皮柑橘的系统演化. 中国农业科学, 2017, 50(9): 1666-1673. doi: 10.3864/j.issn.0578-1752.2017.09.012.

doi: 10.3864/j.issn.0578-1752.2017.09.012
WANG X K, JIANG D, SUN Z Z. Study on phylogeny of 240 mandarin accessions with genotyping-by-sequencing technology. Scientia Agricultura Sinica, 2017, 50(9): 1666-1673. doi: 10.3864/j.issn.0578-1752.2017.09.012. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2017.09.012
[14]
CHEN W, HOU L, ZHANG Z Y, PANG X M, LI Y Y. Genetic diversity, population structure, and linkage disequilibrium of a core collection of Ziziphus jujuba assessed with genome-wide SNPs developed by genotyping-by-sequencing and SSR markers. Frontiers in Plant Science, 2017, 8: 575.
[15]
BIRD K A, AN H, GAZAVE E, GORE M A, PIRES J C, ROBERTSON L D, LABATE J A. Population structure and phylogenetic relationships in a diverse panel of Brassica rapa L. Frontiers in Plant Science, 2017, 8: 321.
[16]
ELTAHER S, SALLAM A, BELAMKAR V, EMARA H A, NOWER A A, SALEM K F M, POLAND J, BAENZIGER P S. Genetic diversity and population structure of F3:6 Nebraska winter wheat genotypes using genotyping-by-sequencing. Frontiers in Genetics, 2018, 9: 76.

doi: 10.3389/fgene.2018.00076
[17]
ALIPOUR H, BIHAMTA M R, MOHAMMADI V, PEYGHAMBARI S A, BAI G H, ZHANG G R. Genotyping-by-sequencing (GBS) revealed molecular genetic diversity of Iranian wheat landraces and cultivars. Frontiers in Plant Science, 2017, 8: 1293.

doi: 10.3389/fpls.2017.01293 pmid: 28912785
[18]
DELFINI J, MODA-CIRINO V, DOS SANTOS NETO J, RUAS P M, SANT'ANA G C, GEPTS P, GONÇALVES L S A. Population structure, genetic diversity and genomic selection signatures among a Brazilian common bean germplasm. Scientific Reports, 2021, 11(1): 2964.

doi: 10.1038/s41598-021-82437-4 pmid: 33536468
[19]
LUO Z N, BROCK J, DYER J M, KUTCHAN T, SCHACHTMAN D, AUGUSTIN M, GE Y F, FAHLGREN N, ABDEL-HALEEM H. Genetic diversity and population structure of a Camelina sativa spring panel. Frontiers in Plant Science, 2019, 10: 184.

doi: 10.3389/fpls.2019.00184
[20]
HYUN D Y, SEBASTIN R, LEE G A, LEE K J, KIM S H, YOO E, LEE S, KANG M J, LEE S B, JANG I, RO N Y, CHO G T. Genome-wide SNP markers for genotypic and phenotypic differentiation of melon (Cucumis melo L.) varieties using genotyping- by-sequencing. International Journal of Molecular Sciences, 2021, 22(13): 6722.

doi: 10.3390/ijms22136722
[21]
AKRAM S, ARIF M A R, HAMEED A. A GBS-based GWAS analysis of adaptability and yield traits in bread wheat (Triticum aestivum L.). Journal of Applied Genetics, 2021, 62(1): 27-41.

doi: 10.1007/s13353-020-00593-1
[22]
POLAND J, ENDELMAN J, DAWSON J, RUTKOSKI J, WU S Y, MANES Y, DREISIGACKER S, CROSSA J, SÁNCHEZ-VILLEDA H, SORRELLS M, JANNINK J L. Genomic selection in wheat breeding using genotyping-by-sequencing. The Plant Genome, 2012, 5(3): 103-113.
[23]
KAUR G, PATHAK M, SINGLA D, SHARMA A, CHHUNEJA P, SARAO N K. High-density GBS-based genetic linkage map construction and QTL identification associated with yellow mosaic disease resistance in bitter gourd (Momordica charantia L.). Frontiers in Plant Science, 2021, 12: 671620.

doi: 10.3389/fpls.2021.671620
[24]
ABED A, BADEA A, BEATTIE A, KHANAL R, TUCKER J, BELZILE F. A high-resolution consensus linkage map for barley based on GBS-derived genotypes. Genome, 2022, 65(2): 83-94.

doi: 10.1139/gen-2021-0055
[25]
VERMA S, GUPTA S, BANDHIWAL N, KUMAR T, BHARADWAJ C, BHATIA S. High-density linkage map construction and mapping of seed trait QTLs in chickpea (Cicer arietinum L.) using Genotyping-by-Sequencing (GBS). Scientific Reports, 2015, 5(1): 17512.

doi: 10.1038/srep17512
[26]
POLAND J A, BROWN P J, SORRELLS M E, JANNINK J L. Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE, 2012, 7(2): e32253.

doi: 10.1371/journal.pone.0032253
[27]
GAUR R, VERMA S, PRADHAN S, AMBREEN H, BHATIA S. A high-density SNP-based linkage map using genotyping-by-sequencing and its utilization for improved genome assembly of chickpea (Cicer arietinum L.). Functional & Integrative Genomics, 2020, 20(6): 763-773.
[28]
WANG B Y, TAN H W, FANG W P, MEINHARDT L W, MISCHKE S, MATSUMOTO T, ZHANG D P. Developing single nucleotide polymorphism (SNP) markers from transcriptome sequences for identification of Longan (Dimocarpus longan) germplasm. Horticulture Research, 2015, 2: 14065.

doi: 10.1038/hortres.2014.65 pmid: 26504559
[29]
PEMBLETON L W, DRAYTON M C, BAIN M, BAILLIE R C, INCH C, SPANGENBERG G C, WANG J P, FORSTER J W, COGAN N O I. Targeted genotyping-by-sequencing permits cost- effective identification and discrimination of pasture grass species and cultivars. Theoretical and Applied Genetics, 2016, 129(5): 991-1005.

doi: 10.1007/s00122-016-2678-2
[30]
STRAZZER P, SPELT C E, LI S J, BLIEK M, FEDERICI C T, ROOSE M L, KOES R, QUATTROCCHIO F M. Hyperacidification of Citrus fruits by a vacuolar proton-pumping P-ATPase complex. Nature Communications, 2019, 10(1): 744.

doi: 10.1038/s41467-019-08516-3
[31]
LI H, DURBIN R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25(14): 1754-1760.

doi: 10.1093/bioinformatics/btp324 pmid: 19451168
[32]
DANECEK P, AUTON A, ABECASIS G, ALBERS C A, BANKS E, DEPRISTO M A, HANDSAKER R E, LUNTER G, MARTH G T, SHERRY S T, MCVEAN G, DURBIN R, GROUP 1 G P A. The variant call format and VCFtools. Bioinformatics, 2011, 27(15): 2156-2158.

doi: 10.1093/bioinformatics/btr330 pmid: 21653522
[33]
CHANG C C. Data management and summary statistics with PLINK. Methods in Molecular Biology, 2020, 2090: 49-65.

doi: 10.1007/978-1-0716-0199-0_3 pmid: 31975163
[34]
MANICHAIKUL A, MYCHALECKYJ J C, RICH S S, DALY K, SALE M, CHEN W M. Robust relationship inference in genome-wide association studies. Bioinformatics, 2010, 26(22): 2867-2873.

doi: 10.1093/bioinformatics/btq559 pmid: 20926424
[35]
PAN T F, ALI M M, GONG J M, SHE W Q, PAN D M, GUO Z X, YU Y, CHEN F X. Fruit physiology and sugar-acid profile of 24 pomelo (Citrus grandis (L.) osbeck) cultivars grown in subtropical region of China. Agronomy, 2021, 11(12): 2393.

doi: 10.3390/agronomy11122393
[36]
D'AGOSTINO N, TARANTO F, CAMPOSEO S, MANGINI G, FANELLI V, GADALETA S, MIAZZI M M, PAVAN S, DI RIENZO V, SABETTA W, LOMBARDO L, ZELASCO S, PERRI E, LOTTI C, CIANI E, MONTEMURRO C. GBS-derived SNP catalogue unveiled wide genetic variability and geographical relationships of Italian olive cultivars. Scientific Reports, 2018, 8(1): 15877.

doi: 10.1038/s41598-018-34207-y pmid: 30367101
[37]
MEDINA R, WOGAN G O U, BI K, TERMIGNONI-GARCÍA F, BERNAL M H, JARAMILLO-CORREA J P, WANG I J, VÁZQUEZ- DOMÍNGUEZ E. Phenotypic and genomic diversification with isolation by environment along elevational gradients in a neotropical treefrog. Molecular Ecology, 2021, 30(16): 4062-4076.

doi: 10.1111/mec.v30.16
[38]
何天富. 中国柚类栽培. 北京: 中国农业出版社, 1999.
HE T F. Cultivation of Pomelo in China. Beijing: China Agriculture Press, 1999. (in Chinese)
[39]
BAAZAOUI I, MCEWAN J, ANDERSON R, BRAUNING R, MCCULLOCH A, VAN STIJN T, BEDHIAF-ROMDHANI S. GBS data identify pigmentation-specific genes of potential role in skin-photosensitization in two Tunisian sheep breeds. Animals, 2019, 10(1): 5.

doi: 10.3390/ani10010005
[40]
ZHANG M M, YANG L, SU Z C, ZHU M Z, LI W T, WU K L, DENG X M. Genome-wide scan and analysis of positive selective signatures in Dwarf Brown-egg Layers and Silky Fowl chickens. Poultry Science, 2017, 96(12): 4158-4171.

doi: 10.3382/ps/pex239 pmid: 29053852
[41]
NILO-POYANCO R, MORAGA C, BENEDETTO G, ORELLANA A, ALMEIDA A M. Shotgun proteomics of peach fruit reveals major metabolic pathways associated to ripening. BMC Genomics, 2021, 22(1): 17.

doi: 10.1186/s12864-020-07299-y
[42]
ZHENG B B, ZHAO L, JIANG X H, CHERONO S, LIU J J, OGUTU C, NTINI C, ZHANG X J, HAN Y P. Assessment of organic acid accumulation and its related genes in peach. Food Chemistry, 2021, 334: 127567.

doi: 10.1016/j.foodchem.2020.127567
[43]
YE J, WANG X, HU T X, ZHANG F X, WANG B, LI C X, YANG T X, LI H X, LU Y E, GIOVANNONI J J, ZHANG Y Y, YE Z B. An InDel in the promoter of Al-ACTIVATED MALATE TRANSPORTER9 selected during tomato domestication determines fruit malate contents and aluminum tolerance. The Plant Cell, 2017, 29(9): 2249-2268.

doi: 10.1105/tpc.17.00211
[44]
LI C L, DOUGHERTY L, COLUCCIO A E, MENG D, EL-SHARKAWY I, BOREJSZA-WYSOCKA E, LIANG D, PIÑEROS M A, XU K N, CHENG L L. Apple ALMT 9 requires a conserved C-terminal domain for malate transport underlying fruit acidity. Plant Physiology, 2020, 182(2): 992-1006.

doi: 10.1104/pp.19.01300
[45]
DE ANGELI A, BAETZ U, FRANCISCO R, ZHANG J B, CHAVES M M, REGALADO A. The vacuolar channel VvALMT9 mediates malate and tartrate accumulation in berries of Vitis vinifera. Planta, 2013, 238(2): 283-291.

doi: 10.1007/s00425-013-1888-y
[1] SUN YanFa, WU Qiong, LIN RuLong, CHEN HongPing, GAN QiuYun, SHEN Yue, WANG YaRu, XUE PengFei, CHEN FeiFan, LIU JianTao, ZHOU ChenXin, LAN ShiShi, PAN HaoZhe, DENG Fan, YUE Wen, JIANG XiaoBing, LI Yan. Genome-Wide Association Study of Egg Quality Traits in Longyan Shan-Ma Duck [J]. Scientia Agricultura Sinica, 2023, 56(3): 572-586.
[2] PANG HongBo, CHENG Lu, YU MingLan, CHEN Qiang, LI YueYing, WU LongKun, WANG Ze, PAN XiaoWu, ZHENG XiaoMing. Genome-Wide Association Study of Cold Tolerance at the Germination Stage of Rice [J]. Scientia Agricultura Sinica, 2022, 55(21): 4091-4103.
[3] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[4] ZHANG PengXia,ZHOU XiuWen,LIANG Xue,GUO Ying,ZHAO Yan,LI SiShen,KONG FanMei. Genome-Wide Association Analysis for Yield and Nitrogen Efficiency Related Traits of Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2021, 54(21): 4487-4499.
[5] ZHANG Fang,REN Yi,CAO JunMei,LI FaJi,XIA XianChun,GENG HongWei. Genome-wide Association Analysis of Wheat Grain Size Related Traits Based on SNP Markers [J]. Scientia Agricultura Sinica, 2021, 54(10): 2053-2063.
[6] JunYi GAI,JianBo HE. Major Characteristics, Often-Raised Queries and Potential Usefulness of the Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2020, 53(9): 1699-1703.
[7] XiaoShuai HAO,MengMeng FU,ZaiDong LIU,JianBo HE,YanPing WANG,HaiXiang REN,DeLiang WANG,XingYong YANG,YanXi CHENG,WeiGuang DU,JunYi GAI. Genome-Wide QTL-Allele Dissection of 100-Seed Weight in the Northeast China Soybean Germplasm Population [J]. Scientia Agricultura Sinica, 2020, 53(9): 1717-1729.
[8] ZHOU QingYuan, WANG Qian, YE Sang, CUI MinSheng, LEI Wei, GAO HuanHuan, ZHAO YuFeng, XU XinFu, TANG ZhangLin, LI JiaNa, CUI Cui. Genome-Wide Association Analysis of Tribenuron-Methyl Tolerance Related Traits in Brassica napus L. Under Germination [J]. Scientia Agricultura Sinica, 2019, 52(3): 399-413.
[9] WANG XiaoKe, JIANG Dong, SUN ZhenZhu. Study on Phylogeny of 240 Mandarin Accessions with Genotyping-by-Sequencing Technology [J]. Scientia Agricultura Sinica, 2017, 50(9): 1666-1673.
[10] HE YaJun, WU DaoMing, YOU JingCan, QIAN Wei. Genome-Wide Association Analysis of Salt Tolerance Related Traits in Brassica napus and Candidate Gene Prediction [J]. Scientia Agricultura Sinica, 2017, 50(7): 1189-1201.
[11] WEI DaYong, TAN ChuanDong, CUI YiXin, WU DaoMing, LI JiaNa, MEI JiaQin, QIANWei. Genome-Wide Association Study of the Fertility Restorer Loci for pol CMS in Rapeseed (Brassica napus L.) [J]. Scientia Agricultura Sinica, 2017, 50(5): 802-810.
[12] WANG Xiao, ZHANG Qin, YU Ying. Genome-Wide Association Study on Mastitis Resistance Based on Somatic Cell Scores in Chinese Holstein Cows [J]. Scientia Agricultura Sinica, 2017, 50(4): 755-763.
[13] ZHOU Li-Sheng, YANG Jie, LIU Xian-Xian, ZHANG Zhi-Yan, YANG Bin, MA Jun-Wu. Genome-Wide Association Analyses for Musle pH 72 h Value and Meat Color Traits in Sutai Pigs [J]. Scientia Agricultura Sinica, 2014, 47(3): 564-573.
[14] WANG Ji-Ying, WANG Hai-Xia, CHI Rui-Bin, GUO Jian-Feng, WU Ying. Progresses in Research of Genome-Wide Association Studies in Livestock and Poultry [J]. Scientia Agricultura Sinica, 2013, 46(4): 819-829.
[15] ZHANG Lei, ZHENG Mai-Qing, LIU Ran-Ran, WEN Jie, WU Dan, HU Yao-Dong, SUN Yan-Fa, LI Peng, LIU Li, ZHAO Gui-苹. Genome-Wide Association of Thymus and Spleen Mass in Chicken [J]. Scientia Agricultura Sinica, 2012, 45(15): 3165-3175.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!