Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (22): 4906-4916.doi: 10.3864/j.issn.0578-1752.2021.22.016

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Effects of Dietary Supplemental Pattern of Trace Eloments on the Growth Performance, Carcass Traits and Meat Quality of Broilers

ZHANG Lan1(),WANG LiangZhi1,2,HUANG YanLing1(),LIAO XiuDong2,ZHANG LiYang2,LÜ Lin2(),LUO XuGang3   

  1. 1Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Reservation and Utilization of Ministry of Education Southwest Minzu University, Chengdu 610041
    2Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193
    3Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, Jiangsu
  • Received:2020-10-13 Accepted:2021-04-12 Online:2021-11-16 Published:2021-11-19
  • Contact: YanLing HUANG,Lin LÜ E-mail:1820528476@qq.com;swunylh@163.com;lvlin1225@163.com

Abstract:

【Objective】 This experiment was conducted to determine the effects of dietary supplemental pattern of trace elements on growth performance, carcass traits and meat quality of broiler chicks, so as to provide the experimental basis for the reasonable addition of trace elements to broiler diets.【Method】 A single-factor completely randomized design was adopted in this experiment. A total of 240 one-day-old Arbor Acres (AA) broiler chicks were randomly allotted by body weight to 1 of 5 treatments with 6 replicate cages of 8 birds per cage. The trace elements were added to the corn-soybean basal diet as follows: the inorganic trace elements according to NRC (1994) recommendation for broiler chicks (T1: the added levels of copper (Cu), Iron (Fe), manganese (Mn), zine (Zn) and selenium (Se) were 8, 80, 60, 40 and 0.15 mg·kg-1 during 1-42 days, respectively), the inorganic trace elements according to the recommendation for broiler chicks in Chinese Feeding Standard of Chicken (NY/T 33-2004) (T2: the added levels of Cu, Fe, Mn, Zn and Se were 8, 100, 120, 100 and 0.3 mg·kg-1 for 1-21 days old, respectively; and 8, 80, 120, 80 and 0.3 mg·kg-1 for 22-42 days old, respectively), the inorganic trace elements according to the previous results of trace elements requirements from our lab (T3: the added levels of Cu, Fe, Mn, Zn and Se were 4, 40, 110, 60 and 0.35 mg·kg-1 during 1-21 days, respectively; and 0, 30, 80, 40 and 0.35 mg·kg-1 during 22-42 days, respectively), the decrement levels of organic trace elements according to the previous results of from our lab (T4: the added levels of Cu, Fe, Mn, Zn and Se were 2, 30, 80, 40 and 0.25 mg·kg-1 during 1-21 days, respectively; and 0, 30, 80, 40 and 0.25 mg·kg-1 during 22-42 days, respectively), and the organic trace elements according to the recommendation for broiler chicks in NY/T 33-2004 (T5: the added levels of Cu, Fe, Mn, Zn and Se during 1-21 and 22-42 days were the same as those in T2), respectively. The inorganic trace element sources (feed grade) were Cu sulfate pentahydrate, Fe sulfate monohydrate, Mn sulfate monohydrate, Zn sulphate monohydrate and sodium selenite, and the organic trace element sources (feed grade) were Cu mothionine, Fe glycine, Mn methionine, Zn glycinate and Se yeast, respectively. The experiment lasted for 42 days.【Result】The results showed that those different supplemental patterns of trace elements had no significant effects (P>0.05) on the average daily feed intake and average daily gain. Broilers from T2 had higher (P<0.05) feed to gain ratio during 22-42 days than those from T1, T4 and T5, and no difference was detected between T2 and T3 (P>0.05). Broilers from T2 had higher (P<0.05) feed to gain ratio during 1-42 days than those from other groups, and there were no differences (P>0.05) among other groups. The different supplemental patterns of trace elements had no significant effects on (P>0.05) the carcass traits, L* and a* values, pH values and drip losses of breast and thigh muscles. The breast muscle b* value of broilers from T5 was higher (P<0.05) than that of broilers from T1 and T3, and no difference was observed (P>0.05) between T5 and T4. The shear force of thigh muscle from T4 was lower (P<0.05) than that from T1 or T5, and the muscle tenderness was relatively well. 【Conclusion】Under this experimental conditions, the group with decrement supplement of organic trace elements based on our previous results (T4: the added levels of Cu, Fe, Mn, Zn and Se were 2, 30, 80, 40 and 0.25 mg·kg-1 during 1-21 days, and 0, 30, 80, 40 and 0.25 mg·kg-1 during 22-42 days, respectively) was better than other groups in improving the growth performance and meat quality of broiler chicks.

Key words: dietary supplemental pattern of trace elements, growth performance, carcass traits, meat quality, broiler

Table 1

Composition and nutrition levels of basal diets (as-fed basis)"

原料Ingredients 1-21 d (%) 22-42 d (%) 营养水平Nutrient levels 1-21 d 22-42 d
玉米 Corn 52.64 53.39 代谢能 ME(Kcal·kg-1)3) 3008 3062
豆粕 Soybean meal 38.79 36.40 粗蛋白 CP4) 21.60 19.69
大豆油 Soybeal oil 4.80 6.60 能蛋比 E/P(Kcal·g-1)3) 139.30 155.50
磷酸氢钙 CaHPO41) 1.52 1.36 赖氨酸 Lys3) 1.15 1.04
石粉 Limestone1) 1.40 1.35 蛋氨酸 Met3) 0.59 0.45
食盐 NaCl1) 0.30 0.30 蛋氨酸+胱氨酸 Met+Cys3) 0.82 0.75
D-蛋氨酸 DL-Met1) 0.30 0.14 钙 Ca4) 0.98 0.90
预混料 Premix2) 0.25 0.16 非植酸磷 NP3) 0.39 0.31
玉米淀粉 Corn starch 0.30 0.30
合计 Total 100 100

Table 2

Added levels and analyzed levels of trace elements in the experimental diets"

处理组 Treatment 微量元素来源
Trace element sources
添加水平 Added levels (mg·kg-1) 实测水平1) Analyzed levels (mg·kg-1)
1-21 d 22-42 d 1-21 d 22-42 d
T1 五水硫酸铜 (Cu sulfate pentahydrate) 8 8 11.99 10.97
一水硫酸亚铁 (Fe sulfate monohydrate) 80 80 229.41 192.76
一水硫酸锰 (Mn sulfate monohydrate) 60 60 80.54 80.36
一水硫酸锌 (Zn sulphate monohydrate) 40 40 77.85 73.26
亚硒酸钠 (Sodium selenite) 0.15 0.15 0.24 0.22
T2 五水硫酸铜 (Cu sulfate pentahydrate) 8 8 13.93 11.19
一水硫酸亚铁 (Fe sulfate monohydrate) 80 80 233.71 193.74
一水硫酸锰 (Mn sulfate monohydrate) 120 120 139.42 139.56
一水硫酸锌 (Zn sulphate monohydrate) 100 80 139.33 117.54
亚硒酸钠 (Sodium selenite) 0.30 0.30 0.35 0.38
T3 五水硫酸铜 (Cu sulfate pentahydrate) 4 0 8.41 3.16
一水硫酸亚铁 (Fe sulfate monohydrate) 40 30 181.51 143.79
一水硫酸锰 (Mn sulfate monohydrate) 110 80 137.05 99.37
一水硫酸锌 (Zn sulphate monohydrate) 60 40 100.34 71.58
亚硒酸钠 (Sodium selenite) 0.35 0.35 0.41 0.42
T4 蛋氨酸铜 (Cu mothionine) 2 0 6.21 3.16
甘氨酸铁 (Fe glycine) 30 15 165.29 130.26
蛋氨酸锰 (Mn methionine) 80 50 109.82 76.97
甘氨酸锌 (Zn glycinate) 40 30 81.45 64.73
酵母硒 (Se yeast) 0.25 0.25 0.31 0.33
T5 蛋氨酸铜 (Cu mothionine) 8 8 12.67 11.41
甘氨酸铁 (Fe glycine) 100 80 250.81 192.88
蛋氨酸锰 (Mn methionine) 120 120 146.68 149.22
甘氨酸锌 (Zn glycinate) 100 80 142.29 114.94
酵母硒 (Se yeast) 0.30 0.30 0.38 0.37

Table 3

Effect of supplemental pattern of trace elements on growth performance of broilers1)"

处理
Treatment
1-21 d 22-42 d 1-42 d
ADG
(g·d-1)
ADFI
(g·d-1)
F/G
ADG
(g·d-1)
ADFI
(g·d-1)
F/G
ADG
(g·d-1)
ADFI
(g·d-1)
F/G
T1 44.74 34.84 1.28 142.67 81.39 1.75b 93.71 58.11 1.61b
T2 42.77 33.33 1.28 149.92 79.27 1.90a 96.34 56.30 1.71a
T3 42.44 35.65 1.19 142.54 79.85 1.79ab 92.49 57.75 1.60b
T4 40.85 33.82 1.21 139.84 80.62 1.74b 90.34 57.22 1.58b
T5 42.15 34.36 1.23 146.36 82.22 1.78b 94.25 58.29 1.62b
集合标准误 Pooled SE 1.70 0.70 0.04 3.02 2.20 0.04 1.90 1.20 0.03
P P value 0.5855 0.2120 0.4404 0.1855 0.8882 0.0481 0.2683 0.7924 0.0098

Table 4

Effect of supplemental pattern of trace elements on carcass traits of broilers (%)"

处理
Treatment
屠宰率
Carcass rate
全净膛率
Full evisceration rate
腹脂率
Abdominal fat rate
胸肌率
Breast rate
腿肌率
Thigh rate
T1 92.66 74.85 1.23 27.98 22.93
T2 92.75 74.64 1.36 27.64 22.88
T3 93.23 74.24 1.57 27.20 23.17
T4 93.11 74.98 1.30 26.36 22.72
T5 93.69 73.96 1.34 25.85 23.87
集合标准误 Pooled SE 0.33 0.44 0.10 0.58 0.60
P P value 0.2055 0.4572 0.3897 0.0789 0.7450

Table 5

Effect of supplemental pattern of trace elements on breast muscle quality of broilers"

处理
Treatment
pH45min pH24h 亮度
L*
红度
a*
黄度
b*
剪切力
Shear force (N)
滴水损失
Drip loss (%)
T1 6.55 6.09 35.92 7.63 5.02bc 43.97 19.20
T2 6.55 6.12 34.36 8.88 6.58ab 39.19 16.54
T3 6.62 6.11 34.62 7.42 4.49bc 40.51 12.85
T4 6.48 6.16 34.36 8.50 5.94abc 44.14 12.33
T5 6.50 6.14 33.19 9.38 6.75a 39.88 15.12
集合标准误 Pooled SE 0.04 0.06 2.42 0.61 0.53 3.66 1.92
PP value 0.2468 0.9484 0.9557 0.1556 0.0215 0.7983 0.1062

Table 6

Effect of supplemental pattern of trace elements on thigh muscle quality of broilers"

处理
Treatment
pH45min pH24h 亮度
L*
红度
a*
黄度
b*
剪切力
Shear force (N)
滴水损失
Drip loss (%)
T1 6.53 5.66 33.43 8.97 6.42 37.36ab 12.22
T2 6.27 5.65 36.07 8.24 5.86 29.86bc 12.10
T3 6.56 5.67 35.16 8.38 5.40 35.02abc 12.82
T4 6.51 5.70 35.53 8.44 6.09 26.18c 9.35
T5 6.50 5.72 36.35 9.41 7.23 40.67a 11.02
集合标准误 Pooled SE 0.092 0.035 2.542 0.540 0.538 3.354 1.909
PP value 0.1995 0.7189 0.9337 0.5252 0.1996 0.0377 0.7272
[1] SAMANTA B, GHOSH P R, BISWAS A, DAS SK. The effects of copper supplementation on the performance and hematological parameters of broiler chickens. Asian Australasian Journal of Animal Sciences, 2011, 24(7): 1001-1006. doi: 10.5713/ajas.2011.10394.
doi: 10.5713/ajas.2011.10394
[2] 吴信, 孟田田, 万丹, 谢春艳, 印遇龙. 硒在畜禽养殖中的应用研究进展. 生物技术进展, 2017, 7(5): 428-432. doi: 10.19586/j.2095-2341.2017.0092.
doi: 10.19586/j.2095-2341.2017.0092
WU X, MENG T T, WAN D, XIE C Y, YIN Y L. Advance on application of selenium in livestock and poultry. Progress in Biotechnology, 2017, 7(5): 428-432. doi: 10.19586/j.2095-2341.2017.0092. (in Chinese)
doi: 10.19586/j.2095-2341.2017.0092
[3] ROYCHOUDHURY S, NATH S, MASSANYI P, STAWARZ R, KACANIOVA M, KOLESAROVA A. Copper-induced changes in reproductive functions: in vivo and in vitro effects. Physiological Research, 2016, 65(1): 11-22. doi: 10.33549/physiolres.933063.
doi: 10.33549/physiolres.933063
[4] 吴小玲, 石建凯, 张攀, 吴徳, 徐盛玉. 硒对母猪繁殖性能的影响及其作用机制. 动物营养学报, 2018, 30(2): 444-450. doi: 10.3969/j.issn.1006-267x.2018.02.006.
doi: 10.3969/j.issn.1006-267x.2018.02.006
WU X L, SHI J K, ZHANG P, WU D, XU S Y. Effects of Selenium on reproductive performance of sows and its mechanism. Chinese Journal of Animal Nutrition, 2018, 30(2): 444-450. doi: 10.3969/j.issn.1006-267x.2018.02.006. (in Chinese)
doi: 10.3969/j.issn.1006-267x.2018.02.006
[5] OGNIK K, SEMBRATOWICZ I, CHOLEWIŃSKA E, JANKOWSKI J, KOZŁOWSKI K, JUŚKIEWICZ J, ZDUŃCZYK Z. The effect of administration of copper nanoparticles to chickens in their drinking water on the immune and antioxidant status of the blood. Animal Science Journal, 2018, 89(3): 579-588. doi: 10.1111/asj.12956.
doi: 10.1111/asj.12956
[6] LINDER M C. Ceruloplasmin and other copper binding components of blood plasma and their functions: an update. Metallomics, 2016, 8(9): 887-905. doi: 10.1039/c6mt00103c.
doi: 10.1039/c6mt00103c
[7] YAMADA H, YASUNOBU K T. Monoamine oxidase. II. Copper, one of the prosthetic groups of plasma monoamine oxidase. Journal of Biological Chemistry, 1962, 237(10): 3077-3082.
doi: 10.1016/S0021-9258(18)50124-1
[8] WANG W, DI X, D'AGOSTINO R B, TORTI S V, TORTI F M. Excess capacity of the iron regulatory protein system. The Journal of Biological Chemistry, 2007, 282(34): 24650-24659. doi: 10.1074/jbc.m703167200.
doi: 10.1074/jbc.m703167200
[9] CRICHTON R R, CHARLOTEAUX W M. Iron transport and storage. European Jounal of Biochemity, 1987, 164(3), 485-506. doi: 10.1146/annurev.bi.49.070180.002041.
doi: 10.1146/annurev.bi.49.070180.002041
[10] COLEMAN J E. Zinc proteins: enzymes, storage proteins, transcription factors, and replication proteins. Canada Communicable Disease Report, 1992, 61: 897-946. doi: 10.1146/annurev.bi.61.070192.004341.
doi: 10.1146/annurev.bi.61.070192.004341
[11] 李琳, 丁峰, 潘介春, 张树伟, 黄幸, 王金英, 王颖, 李浩然, 徐炯志, 彭宏祥, 何新华. 植物锌指蛋白转录因子家族研究进展. 热带农业科学, 2020, 40(2): 65-75. doi: 10.12008/j.issn.1009-2196.2020.02.011.
doi: 10.12008/j.issn.1009-2196.2020.02.011
LI L, DING F, PAN J C, ZHANG S W, HUANG X, WANG J Y, WANG Y, LI H R, XU J Z, PENG H X, HE X H. Research progress on family of plant zinc-finger protein transcription factors. Chinese Journal of Tropical Agriculture, 2020, 40(2): 65-75. doi: 10.12008/j.issn.1009-2196.2020.02.011(in Chinese)
doi: 10.12008/j.issn.1009-2196.2020.02.011
[12] BOGENHAGEN D F, WORMINGTON W M, BROWN D D. Stable transcription complexes of Xenopus 5S RNA genes: a means to maintain the differentiated state. Molecular Plant Pathology, 1982, 28(2): 413-421. doi: 10.1016/0092-8674(82)90359-2.
doi: 10.1016/0092-8674(82)90359-2
[13] LABUNSKYY V M, HATFIELD D L, GLADYSHEV V N. Selenoproteins: Molecular pathways and physiological roles. Physiological Reviews, 2014, 94(3): 739-777. doi: 10.1152/physrev.00039.2013.
doi: 10.1152/physrev.00039.2013
[14] 雷新根, 赵华, 周继昌. 哺乳动物硒蛋白研究进展//中国畜牧兽医学会动物营养学分会学术研讨会, 2008: 23-32. doi: 0.19586/j.2095-2341.2017.0092.
doi: 0.19586/j.2095-2341.2017.0092
LEI X G, ZHAO H, ZHOU J C. Research advances on mammalian selenoproteins//Animal Nutrition Branch of China Institute of Animal Husbandry and Veterinary Medicine, 2008: 23-32. doi: 0.19586/j.2095-2341.2017.0092. (in Chinese)
doi: 0.19586/j.2095-2341.2017.0092
[15] 汤小朋, 陈磊, 熊康宁, 杭红涛. 硒蛋白—哺乳动物谷胱甘肽过氧化物酶家族研究进展. 生命的化学, 2019(6): 1076-1081. doi: 10.13488/j.smhx.20190168.
doi: 10.13488/j.smhx.20190168
TANG X P, CHEN L, XIONG K N, HANG H T. Research progress of selenoprotein-mammalian glutathione peroxidases family. Chemistry of Life, 2019(6): 1076-1081. doi: 10.13488/j.smhx.20190168. (in Chinese)
doi: 10.13488/j.smhx.20190168
[16] 任孝军, 刘若兰, 牛欢, 李艳纯, 谭国强, 吕建新. 锌的生物学功能及高浓度锌对铁硫蛋白的影响. 中国细胞生物学学报, 2017(5): 639-648.
REN X J, LIU R L, NIU H, LI Y C, TAN G Q, (LÜ/LV/LU/LYU) J X. Biological functions of zinc and the impact of high zinc levels on iron-sulfur proteins. Chinese Journal of Cell Biology, 2017(5): 639-648. (in Chinese)
[17] 高庆, 张克英, 陈代文. 日粮微量元素对基因表达的影响. 中国畜牧兽医, 2004, 31(3): 12-15. doi: 10.3969/j.issn.1671-7236.2004.03.005.
doi: 10.3969/j.issn.1671-7236.2004.03.005
GAO Q, ZHANG K Y, CHEN D W. Influence of trace minerals in ration on gene expression. China Animal Husbandry & Veterinary Medicine, 2004, 31(3): 12-15. doi: 10.3969/j.issn.1671-7236.2004.03.005. (in Chinese)
doi: 10.3969/j.issn.1671-7236.2004.03.005
[18] 朱志兀, 姚琳. 铜离子稳态平衡分子机理研究进展. 生命科学, 2012(8): 847-857. doi: 10.13376/j.cbls/2012.08.022.
doi: 10.13376/j.cbls/2012.08.022
ZHU Z W, YAO L. Research progress in investigating the molecular mechanism of copper homeostasis. Chinese Bulletin of Life Sciences, 2012(8): 847-857. doi: 10.13376/j.cbls/2012.08.022. (in Chinese)
doi: 10.13376/j.cbls/2012.08.022
[19] NACAMULLI D, MIAN C, PETRICCA D, LAZZAROTTO F, BAROLLO S, POZZA D, MASIERO S, FAGGIAN D, PLEBANI M, GIRELLI M E, MANTERO F, BETTERLE C. Influence of physiological dietary selenium supplementation on the natural course of autoimmune thyroiditis. Clinical Endocrinology, 2010, 73(4): 535-539.
[20] ZHAO C Y, TAN S X, XIAO X Y, QIU X S, PAN J Q, TANG Z X. Effects of dietary zinc oxide nanoparticles on growth performance and antioxidative status in broilers. Biological Trace Element Research, 2014, 160(3): 361-367. doi: 10.1007/s12011-014-0052-2.
doi: 10.1007/s12011-014-0052-2
[21] 薛梅, 昝林森. 日粮中锌含量和来源对肉鸡生产性能、氧化还原和免疫状态的影响. 中国饲料, 2019(20): 75-80. doi: 10.15906/j.cnki.cn11-2975/s.20192017.
doi: 10.15906/j.cnki.cn11-2975/s.20192017
XUE M, ZAN L S. Effects of dietary zinc contents and sources on growth performance, oxidation-reduction and immune status of broilers. China Feed, 2019(20): 75-80. doi: 10.15906/j.cnki.cn11-2975/s.20192017. (in Chinese)
doi: 10.15906/j.cnki.cn11-2975/s.20192017
[22] DOZIER W A, DAVIS A J, FREEMAN M E, WARD T L. Early growth and environmental implications of dietary zinc and copper concentrations and sources of broiler chicks. British Poultry Science, 2003, 44(5): 726-731. doi: 10.1080/00071660310001643714.
doi: 10.1080/00071660310001643714
[23] BURRELL A L, DOZIER W A, DAVIS A J, COMPTON M M, FREEMAN M E, VENDRELL P F, WARD T L. Responses of broilers to dietary zinc concentrations and sources in relation to environmental implications. British Poultry Science, 2004, 45(2): 255-263. doi: 10.1080/00071660410001715867.
doi: 10.1080/00071660410001715867
[24] 符臻鸣, 杨海明, 顾海洋, 刘金河. 锌在蛋鸡生产中的研究进展. 家畜生态学报, 2019(11): 6-11, 44. doi: 10.3969/j.issn.1673-1182.2019.11.002.
doi: 10.3969/j.issn.1673-1182.2019.11.002
FU Z M, YANG H M, GU H Y, LIU J H. Research progress on zinc in laying hens production. Journal of Domestic Animal Ecology, 2019(11): 6-11, 44. doi: 10.3969/j.issn.1673-1182.2019.11.002. (in Chinese)
doi: 10.3969/j.issn.1673-1182.2019.11.002
[25] STANDISH J F, AMMERMAN C B, PALMER A Z, SIMPSON C F. Influence of dietary iron and phosphorus on performance, tissue mineral composition and mineral absorption in steers. Journal of Animal Science, 1971, 33(1): 171-178. doi: 10.2527/jas1971.331171x.
doi: 10.2527/jas1971.331171x
[26] 方升林. 过量铁对机体损伤效应及其诱导细胞死亡的机制研究[D]. 杭州: 浙江大学, 2018.
FANG S L. The damage effects of excessive Iron and the mechanism of iron-induced cell death[D]. Hangzhou: Zhejiang University, 2018. (in Chinese)
[27] WANG Z N, CERRATE S, YAN F L, SACAKLI P, WALDROUP P. Comparison of different concentrations of inorganic trace minerals in broiler diets on live performance and mineral excretion. International Journal of Poultry Science, 2008, 7(7): 625-629.
doi: 10.3923/ijps.2008.625.629
[28] 田佳, 刘国华, 蔡辉益, 常文环, 张姝, 刘伟. 22~42日龄肉鸡铜、铁、锌、锰不同用量组合的研究. 动物营养学报, 2016, 28(11): 3660-3668. doi: 10.3969/j.issn.1006-267x.2016.11.036.
doi: 10.3969/j.issn.1006-267x.2016.11.036
TIAN J, LIU G H, CAI H Y, CHANG W H, ZHANG S, LIU W. Research on different combination contents of Cu, Fe, Zn and Mn for boilers aged from 22 to 42 days. Chinese Journal of Animal Nutrition, 2016, 28(11): 3660-3668. doi: 10.3969/j.issn.1006-267x.2016.11.036. (in Chinese)
doi: 10.3969/j.issn.1006-267x.2016.11.036
[29] ZHOU D M, HAO X Z, WANG Y J, DONG Y H, CANG L. Copper and Zn uptake by radish and pakchoi as affected by application of livestock and poultry manures. Chemosphere, 2005, 59(2): 167-175. doi: 10.1016/j.chemosphere.2004.11.008.
doi: 10.1016/j.chemosphere.2004.11.008
[30] ZHUO Z, FANG S L, HU Q L, HUANG D, FENG J. Digital gene expression profiling analysis of duodenum transcriptomes in SD rats administered ferrous sulfate or ferrous glycine chelate by gavage. Scientific Reports, 2016, 6: 37923. doi: 10.1038/srep37923.
doi: 10.1038/srep37923
[31] 沐建煜. 铁在动物生产中的应用进展. 饲料研究, 2020, 43(2): 119-123. doi: 10.13557/j.cnki.issn1002-2813.2020.02.030.
doi: 10.13557/j.cnki.issn1002-2813.2020.02.030
MU J Y. Application progress of iron in animal production. Feed Research, 2020, 43(2): 119-123. doi: 10.13557/j.cnki.issn1002-2813.2020.02.030. (in Chinese)
doi: 10.13557/j.cnki.issn1002-2813.2020.02.030
[32] XIE C, ELWAN H A M, ELNESR S S, DONG X, FENG J, ZOU X T. Effects of iron Glycine chelate on laying performance, antioxidant activities, serum biochemical indices, iron concentrations and transferrin mRNA expression in laying hens. Journal of Animal Physiology and Animal Nutrition, 2019, 103(2): 547-554. doi: 10.1111/jpn.13061.
doi: 10.1111/jpn.13061
[33] VIEIRA R, FERKET P, MALHEIROS R, HANNAS M, CRIWELLARI R, MORAES V, ELLIOTT S. Feeding low dietary levels of organic trace minerals improves broiler performance and reduces excretion of minerals in litter. British Poultry Science, 2020, undefined: 1-9. doi: 10.1080/00071668.2020.1764908.
doi: 10.1080/00071668.2020.1764908
[34] NRC. Nutrient requirements of poultry (9th Ed). Washington, DC: National Academy Press, 1994.
[35] BAO Y M, CHOCT P, BRUERTON K I. Effect of organically complexed copper, iron, manganese, and zinc on broiler performance, mineral excretion, and accumulation in tissues. Journal of Applied Poultry Research, 2007, 16: 448-455. doi: 10.1093/japr/16.3.448.
doi: 10.1093/japr/16.3.448
[36] 中华人民共和国农业部. 鸡饲养标准(NY/T 33-2004). 北京: 中国农业出版社, 2004.
The Ministry of Agriculture of the People's Republic of China. Breeding standard of chicken (NY/T 33-2004). Beijing: China Agriculture Press, 2004. (in Chinese)
[37] 中华人民共和国农业部. 中华人民共和国农业行业标准NY/T823-2004《家禽生产性能名词术语和度量统计方法》. 中国禽业导刊, 2006, 23(15): 45-46.
The Ministry of Agriculture of the People's Republic of China. Agricultural standards of the People's Republic of China. Terms and methods of measurement and statistics for poultry production performance (NY/T823-2004). Beijing: China Agriculture Press, 2005. (in Chinese)
[38] 胡新旭, 范仕苓, 张建云, 陈文雅, 马秋刚, 计成. 生长前后期日粮添加肌肽对肉仔鸡生产性能、屠宰性能、肉品质和抗氧化性能的影响. 第十四届全国家禽科学学术讨论会论文集, 北京: 中国农业科学技术出版社, 2009, 876-886.
HU X X, FAN S L, ZHANG J Y, CHEN W Y, MA Q G, JI C. Effect of dietary supplement of carnosine on the production performance, carcass traits, meat quality and antioxidative property of broiler chicks during the starter and grower period. Proceedings of the 14th National Symposium on Poultry Science. Beijing: China Agricultural Science and Technology Press, 2009, 876-886. (in Chinese)
[39] 濮振宇, 辛洪亮, 余超, 王砀砀, 雷新宇, 姚军虎, 杨小军. 微量元素添加模式对肉鸡生长性能、微量元素代谢和血浆抗氧化性能的影响. 动物营养学报, 2016, 28(8): 2367-2377. doi: 10.3969/j.issn.1006-267x.2016.08.007.
doi: 10.3969/j.issn.1006-267x.2016.08.007
PU Z Y, XIN H L, YU C, WANG D D, LEI X Y, YAO J H, YANG X J. Effects of supplemental patterns of trace minerals on growth performance, trace mineral metabolism and plasma antioxidant ability in broilers. Chinese Journal of Animal Nutrition, 2016, 28(8): 2367-2377. doi: 10.3969/j.issn.1006-267x.2016.08.007. (in Chinese)
doi: 10.3969/j.issn.1006-267x.2016.08.007
[40] LI S, LUO X, LIU B, YU S, KUANG X, SHAO X, CRENSHAW T D. Use of chemical characteristics to predict the relative bioavailability of supplemental organic manganese sources for broilers. Journal of Animal Science, 2004, 82: 2352-2363. doi: 10.2527/2004.8282352x.
doi: 10.2527/2004.8282352x
[41] GUO R, HENRY P R, HOLWERDA R A, CAO J, LITTELL R C, MILES R D, AMMERMAN C B. Chemical characteristics and relative bioavailability of supplemental organic copper sources for poultry. Journal of Animal Science, 2001, 79(5): 1132-1141. doi: 10.2527/2001.7951132x.
doi: 10.2527/2001.7951132x
[42] CAO J, HENRY P R, GUO R, HOLWERDA R A, TOTH J P, LITTELL R C, MILES R D, AMMERMAN C B. Chemical characteristics and relative bioavailability of supplemental organic zinc sources for poultry and ruminants. Journal of Animal Science, 2000, 78(8): 2039-2054. doi: 10.2527/2000.7882039x.
doi: 10.2527/2000.7882039x
[43] M'SADEQ S A, WU S B, CHOCT M, SWICK R A. Influence of trace mineral sources on broiler performance, lymphoid organ weights, apparent digestibility, and bone mineralization. Poultry Science, 2018, 97(9): 3176-3182. doi: 10.3382/ps/pey197.
doi: 10.3382/ps/pey197
[44] ZHU Z, YAN L, HU S, AN S, LV Z, WANG Z, WU Y, ZHU Y, ZHAO M, GU C, ZHANG A. Effects of the different levels of dietary trace elements from organic or inorganic sources on growth performance, carcass traits, meat quality, and faecal mineral excretion of broilers. Archives of Animal Nutrition, 2019, 73(4): 324-337. doi: 10.1080/1745039x.2019.1620050.
doi: 10.1080/1745039x.2019.1620050
[45] MILES R D, HENRY P R. Relative trace mineral bioavailability. Ciência Animal Brasileira, 2006, 1(2): 73-93.
[46] SIRRI F, MAIORANO G, TAVANIELLO S, CHEN J, PETRACCI M, MELUZZI A. Effect of different levels of dietary zinc, manganese, and copper from organic or inorganic sources on performance, bacterial chondronecrosis, intramuscular collagen characteristics, and occurrence of meat quality defects of broiler chickens. Poultry Science, 2016, 95(8): 1813-1824. doi: 10.3382/ps/pew064.
doi: 10.3382/ps/pew064
[47] 王一冰, 王薇薇, 苟钟勇, 李龙, 林厦菁, 范秋丽, 叶金玲, 崔小燕, 蒋守群. 饲粮微量元素不同用量组合对黄羽肉鸡生产性能、胴体指标及肉品质的影响. 中国农业大学学报, 2020, 25(3): 60-70.
WANG Y B, WANG W W, GOU Z Y, LI L, LIN X J, FAN Q L, YE J L, CUI X Y, JIANG S Q. Effects of different combinations of dietary trace elements on the growth performance, carcass trait and meat quality of yellow-feathered broilers. Journal of China Agricultural University, 2020, 25(3): 60-70. (in Chinese)
[48] 李菁菁, 邓中勇, 杨朝武, 任鹏, 蒋小松, 王也, 刘益平. 旧院黑鸡屠宰性能及肉品质测定. 四川农业大学学报, 2017, 35(2): 256-259. doi: 10.16036/j.issn.1000-2650.2017.02.018.
doi: 10.16036/j.issn.1000-2650.2017.02.018
LI J J, DENG Z Y, YANG C W, REN P, JIANG X S, WANG Y, LIU Y P. The slaughtering performance and meat quality of Jiuyuan black fowls. Journal of Sichuan Agricultural University, 2017, 35(2): 256-259. doi: 10.16036/j.issn.1000-2650.2017.02.018. (in Chinese)
doi: 10.16036/j.issn.1000-2650.2017.02.018
[49] FANATICO A C, PILLAI P B, EMMERT J L, OWENS C M. Meat quality of slow-and fast-growing chicken genotypes fed low-nutrient or standard diets and raised indoors or with outdoor access. Poultry Science, 2007, 86(10): 2245-2255. doi: 10.1093/ps/86.10.2245.
doi: 10.1093/ps/86.10.2245
[50] BARBUT S. Problem of pale soft exudative meat in broiler chickens. British Poultry Science, 1997, 38(4): 355-358. doi: 10.1080/00071669708418002.
doi: 10.1080/00071669708418002
[51] AKSU T, AKSU M İ, YORUK M A, KARAOGLU M. Effects of organically-complexed minerals on meat quality in chickens. British Poultry Science, 2011, 52(5): 558-563. doi: 10.1080/00071668.2011.606800.
doi: 10.1080/00071668.2011.606800
[52] 徐日峰, 张煜, 胡建民, 杨建成. 影响鸡肉品质因素的研究进展. 江苏农业科学, 2013, 41(2): 183-184, 189. doi: 10.3969/j.issn.1002-1302.2013.02.071.
doi: 10.3969/j.issn.1002-1302.2013.02.071
XU R F, ZHANG Y, HU J M, YANG J C. Research progress of factors affecting meat quality. Jiangsu Agricultural Sciences, 2013, 41(2): 183-184, 189. doi: 10.3969/j.issn.1002-1302.2013.02.071. (in Chinese)
doi: 10.3969/j.issn.1002-1302.2013.02.071
[53] GOLL D E, OTSUKA Y, NAGAINIS P A, SHANNON J D, SATHE S K. Role of muscle proteinases in maintenance of muscle integrity and mass. Food Biochemistry, 1983, 7(3): 137-177. doi: 10.1111/j.1745-4514.1983.tb00795.x.
doi: 10.1111/j.1745-4514.1983.tb00795.x
[54] 李明奇, 贺稚非, 李少博, 李冉冉, 李洪军. 氯化钙-无花果蛋白酶-猕猴桃蛋白酶复合嫩化剂体系改善兔肉嫩度和保水性的工艺优化. 食品与发酵工业, 2019, 45(18): 120-129. doi: 10.13995/j.cnki.11-1802/ts.021040.
doi: 10.13995/j.cnki.11-1802/ts.021040
LI M Q, HE Z F, LI S B, LI R R, LI H J. Optimization of calcium chloride, ficin and kiwifruit protease tenderization system to improve the tenderness and water holding capability of rabbit meat. Food and Fermentation Industries, 2019, 45(18): 120-129. doi: 10.13995/j.cnki.11-1802/ts.021040. (in Chinese)
doi: 10.13995/j.cnki.11-1802/ts.021040
[1] CHE DaLu,ZHAO LiChen,CHENG SuCai,LIU AiYu,LI XiaoYu,ZHAO ShouPei,WANG JianCheng,WANG Yuan,GAO YuHong,SUN XinSheng. Effect of Litter Bed on Growth Performance and Odor Emission in Fattening Lamb [J]. Scientia Agricultura Sinica, 2022, 55(24): 4943-4956.
[2] SONG ShuZhen, GAO LiangShuang, LI Hong, GONG XuYin, LIU LiShan, WEI YuBing. Effects of Feeding Levels on Muscle Tissue Structure and Muscle Fiber Composition Related Genes in Sheep [J]. Scientia Agricultura Sinica, 2022, 55(21): 4304-4314.
[3] WANG XueJie,XING Shuang,ZHAO ShaoMeng,ZHOU Ying,LI XiuMei,LIU QingXiu,MA DanDan,ZHANG MinHong,FENG JingHai. Effects of Heat Stress on Ileal Microbiota of Broilers [J]. Scientia Agricultura Sinica, 2022, 55(17): 3450-3460.
[4] LIU WangJing,TANG DeFu,AO ChangJin. Effect of Allium mongolicum Regel and Its Extracts on the Growth Performance, Carcass Characteristics, Meat Quality and Serum Biochemical Indices of Captive Small-Tailed Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(17): 3461-3472.
[5] DING Peng,TONG YueYue,LIU HuiChao,YIN Xin,LIU JiangJun,HE Xi,SONG ZeHe,ZHANG HaiHan. Dynamic Changes of Yolk Microbiota in Yellow-Feathered Broiler and Its Role on Early Colonization of Intestinal Microbiota During the Embryonic Stage [J]. Scientia Agricultura Sinica, 2022, 55(14): 2837-2849.
[6] CHEN ZhiMin,CHANG WenHuan,ZHENG AiJuan,CAI HuiYi,LIU GuoHua. Effect of Expanded Feather Powder on Growth Performance, Slaughter Performance and Serum Biochemical Index of Broiler [J]. Scientia Agricultura Sinica, 2022, 55(13): 2643-2653.
[7] SHU JingTing,JI GaiGe,SHAN YanJu,ZHANG Ming,JU XiaoJun,LIU YiFan,TU YunJie,SHENG ZhongWei,TANG YanFei,JIANG HuaLian,ZOU JianMin. Expression Analysis of IGF1-PI3K-Akt-Dependent Pathway Genes in Skeletal Muscle and Liver Tissue of Yellow Feather Broilers [J]. Scientia Agricultura Sinica, 2021, 54(9): 2027-2038.
[8] YuYan YANG,YaoWen LI,Shuang XING,MinHong ZHANG,JingHai FENG. The Temperature-Humidity Index Estimated by the Changes of Surface Temperature of Broilers at Different Ages [J]. Scientia Agricultura Sinica, 2021, 54(6): 1270-1279.
[9] WANG JinFei,YANG GuoYi,FAN ZiHan,LIU Qi,ZHANG PengCheng,REN YouShe,YANG ChunHe,ZHANG ChunXiang. Effects of Whole Plant Corn Silage Ratio in Diet on Growth Performance, Rumen Fermentation, Nutrient Digestibility and Serological Parameters of Dorper×Hu Crossbred Female Lambs [J]. Scientia Agricultura Sinica, 2021, 54(4): 831-844.
[10] LIU Jiao,CHEN ZhiMin,ZHENG AiJuan,LIU GuoHua,CAI HuiYi,CHANG WenHuan. Effects of Glucose Oxidase on Growth Performance, Immune Functions and Intestinal Health of Ducks Challenged by Escherichia coli [J]. Scientia Agricultura Sinica, 2021, 54(22): 4917-4930.
[11] WANG Chen,ZHANG HongWei,WANG HuCheng,SUN XiaoPing,LI FaDi,YANG BoHui. Energy and Protein Requirements of Alpine Merino Growing Sheep [J]. Scientia Agricultura Sinica, 2021, 54(16): 3537-3548.
[12] HUANG WenQin,LÜ XiaoKang,ZHUANG YiMin,CUI Kai,WANG ShiQing,DIAO QiYu,ZHANG NaiFeng. The Effects of Early Weaning and NDF Levels of Finishing Diets on Growth Performance, Nutrient Digestion and Metabolism of Hu Lambs [J]. Scientia Agricultura Sinica, 2021, 54(10): 2217-2228.
[13] YANG YunYan,WANG QiYan,PENG DiWei,PAN YiFan,GAO XiaoMei,XUAN ZeYi,CHEN ShaoMei,ZOU CaiXia,CAO YanHong,LIN Bo. Effects of Cinnamaldehyde on Growth Performance,Health Status, Rumen Fermentation and Microflora of Dairy Calves [J]. Scientia Agricultura Sinica, 2021, 54(10): 2229-2238.
[14] ZHANG MeiQi,LI Yan,LI ShuJing,GAO YanXia,LI JianGuo,CAO YuFeng,LI QiuFeng. Effects of Dietary Energy Levels on Production Performance, Blood Index, Slaughter Performance and Meat Quality of Holstein Steers [J]. Scientia Agricultura Sinica, 2021, 54(1): 203-212.
[15] Zhen LI,ShiXiong YANG,Sheng NIU,Ning ZHANG,Xin LI,YangYang ZHANG,YunFei JIA,ZhiXiong TIAN,GuanBao NING,Ding ZHANG,WenXia TIAN. Effect of Recombinant GSTA3 Protein on Expression of the Anti-Apoptotic Gene BAG-3 in Thiram-Induced Tibial Chondrodysplasia [J]. Scientia Agricultura Sinica, 2020, 53(9): 1921-1930.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!