Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (4): 779-787.doi: 10.3864/j.issn.0578-1752.2023.04.015

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles     Next Articles

Effects of TBHQ on Pyroptosis, Necroptosis and Inflammatory Damage of Chicken Embryonic Lung Tissues Induced by PM2.5 from Chicken Houses

XI MengXue(), SHEN Dan, SHI YiFan, LI ChunMei()   

  1. College of Animal Science and Technology, Nanjing Agricultural University, Research Center for Livestock Environmental Control and Smart Production, Nanjing 210095
  • Received:2021-09-13 Accepted:2022-12-08 Online:2023-02-16 Published:2023-02-24

Abstract:

【Objective】 The aim of this study was to investigate the protective effect and mechanism of tert-butylhydroquinone (TBHQ) on chicken embryo lung injury induced by fine particulate matter (PM2.5) in chicken house, so as to provide a theoretical basis for prevention and mitigation of chicken respiratory health problems caused by PM2.5 pollution in chicken house. 【Method】 14-day-old chicken embryos were selected as the research model in this study. Firstly, a model of lung tissue damage induced by PM2.5 from chicken houses was established, and then the alleviating effects of TBHQ on lung injury of chicken embryos was studied. In the experiment of establishing the model of chicken embryo lung tissue injury induced by PM2.5 from chicken houses, different concentrations of PM2.5 (0, 0.25, 0.5, and 1 mg·mL-1) were injected into egg albumens. After 5 days, the survival rate and lung tissues of chicken embryos were observed, and the appropriate concentration of PM2.5 (0.25 mg·mL-1) was selected to establish the model of chicken embryo lung injury. In the experiment of the effects of TBHQ on PM2.5-induced lung injury of chicken embryos, chicken embryos were divided into control group (saline), PM2.5 group (0.25 mg·mL-1 PM2.5), TBHQ group (0.1 μg·mL-1 TBHQ) and PM2.5+TBHQ group (0.25 mg·mL-1 PM2.5+0.1 μg·mL-1 TBHQ). The experiment lasted for 5 days. The lung tissues were collected and the egg weight, embryo weight and lung tissue weight were recorded. The expressions of MDA, T-SOD, T-AOC and pyroptosis-related genes (NLRP3, Caspase-1, IL-18, IL-1β) and necroptosis-related genes (RIPK1, RIPK3, MLKL) in lung tissues of chicken embryos were detected. 【Result】 The results suggested that in the experiment to establish a model for PM2.5-induced lung tissue damage in chicken embryos, different concentrations of PM2.5 (0, 25, 50, and 100 μg·mL-1) from chicken houses did not significantly affect the survival of chicken embryos, but the lung tissues of chicken embryos in the 0.25 mg·mL-1 PM2.5 group showed inflammatory cell infiltration. The lung tissues of chicken embryos in 0.5 mg·mL-1 and 1 mg·mL-1 PM2.5 groups showed pulmonary edema. In the experiment on the effects of TBHQ on PM2.5-induced lung damage in chicken embryos, there was no effect on embryo weight, lung tissue weight and related indices in all groups. Compared with the PM2.5 group, the inflammatory cell infiltration and MDA levels were reduced in the lung tissues of chicken embryos co-treated with TBHQ and PM2.5. RT-PCR results showed that the expression of the Caspase-1 gene in the TBHQ group was significantly increased compared with the control group (P<0.01), as were the expressions of IL-1β (P<0.01) and RIPK1 (P<0.01) genes in the PM2.5 group. Compared with the PM2.5 group, the expressions of IL-18 (P<0.01), IL-1β (P<0.01), RIPK1 (P<0.01), and MLKL (P<0.01) genes were significantly down in the TBHQ and PM2.5 co-treatment groups. On the contrary, the expressions of Caspase-1 (P<0.01), RIPK3 (P<0.05) genes in the TBHQ and PM2.5 co-treatment groups were significantly increased compared with the PM2.5 group. 【Conclusion】TBHQ could alleviate inflammatory damage in chicken embryo lung tissues induced by PM2.5 from chicken houses by inhibiting oxidative stress and reducing the gene expressions of pyroptosis and necroptosis.

Key words: TBHQ, pyroptopsis, necroptosis, PM2.5, chicken embryos, oxidative stress

Table 1

Primer sequence"

引物名称 Gene 引物序列 Sequence (5′ to 3′)
Caspase-1 TTCCTTCAACACCATCTACG / GGTGAGCTTCTCTGGTTTTA
IL-1β ACTGGGCATCAAGGGCTACA / GCTGTCCAGGCGGTAGAAGA
IL-18 AGTTGCTTGTGGTTCGTCCA / TCCACTGCCAGATTTCACCTC
NLRP3 AGCTACCACACATCTAGGAT / GGTGTCCAAATCCTCAATCT
PERK TCGAGCTGCTTTACCCTTTC / CTCATTGTCCGTGACCTCTG
CHOP CAGGAAGAAGAGCTGGCCCCACT / TGCTGTGCTCGCCGTGCTGT
IRE1 CCCAAAGCATCAAACCATTC / CAACGTCGCGGTTATCAAAT
ATF6 CGTCGTCTGAACCACTTACTGA / CCTTCTTTCCTAACAGCCACAC
GRP78 GAATCGGCTAACACCAGAGGA / CGCATAGCTCTCCAGCTCATT
RIPK1 CTTCAACCAGCGCCATTAGC / TTGAGTCTTCTGTATCCGTGTCT
RIPK3 ACATCCTTCGCTCACAGCAA / ACCTGTGCTGCCTTCTCTCC
MLKL AAGGTGGACTGGATGCAAGG / TAGAGGTCGTAGCGCTCAGT
β-actin TGTTACCAACACCCACACCC / TCCTGAGTCAAGCGCCAAAA

Table 2

Effects of different concentrations of PM2.5 on the survival rate of chick embryos"

浓度
Concentration (mg·mL-1)
胚数Embryo number 总数
Total
鸡胚存活率
Survival rate of chicken embryo (%)
死亡Death 存活Survival
0 0 5 5 100
0.25 0 5 5 100
0.5 0 5 5 100
1 0 5 5 100

Fig. 1

Effects of different concentrations of PM2.5 on the morphology of chick embryo lungs A/E: control group; B/F: 0.25 mg·mL-1 PM2.5 group; C/G: 0.5 mg·mL-1 PM2.5 group; D/H: 1 mg·mL-1 PM2.5 group; A/B/C/D: Bar=100 μm; E/F/G/H are the enlarged images of the black frame area, Bar=20 μm"

Table 3

Effects of TBHQ or PM2.5 on embryo weight, lung tissue weight and related indexes of chick embryos"

项目
Item
对照组
Control group
TBHQ组
TBHQ group
PM2.5
PM2.5 group
PM2.5 + TBHQ组
PM2.5 + TBHQ group
P
P value
绝对重量Absolute weight (g)
种蛋重量 Egg weight 42.83 ± 1.33 41.53 ± 0.96 43.05 ± 1.08 40.41 ± 0.58 0.45
胚胎重量 Embryo weight 24.13 ± 0.75 22.52 ± 0.81 23.66 ± 1.19 23.47 ± 0.37 0.44
肺组织重量 Lung tissue weight 0.18 ± 0.02 0.17 ± 0.01 0.20 ± 0.02 0.17 ± 0.01 0.14
相对重量Relative weight
胚蛋比 The ratio of embryo and egg (g·g-1) 0.57 ± 0.02 0.54 ± 0.02 0.55 ± 0.03 0.58 ± 0.01 0.94
肺胚比 The ratio of lung and embryo (mg·g-1) 0.73 ± 0.09 0.75 ± 0.04 0.84 ± 0.08 0.74 ± 0.05 0.95

Fig. 2

Effects of TBHQ on the morphology of chick embryo lungs damage induced by PM2.5 A/E: control group; B/F: 0.1 μg·mL-1 TBHQ group; C/G: 0.25 mg·mL-1 PM2.5 group; D/H: 0.1 μg·mL-1 TBHQ and 0.25 mg·mL-1 PM2.5 co-treatment group; A/B/C/D: Bar=100 μm; E/F/G/H are the enlarged images of the black frame area, Bar=20 μm"

Fig. 3

Effects of TBHQ on oxidative stress parameters of lung tissue after PM2.5-induced lung injury in chick embryos"

Table 4

Effects of TBHQ on the expression of pyroptosis and necroptosis related genes in lung tissues after PM2.5- induced lung injury in chick embryos"

基因
Gene
对照组
Control group
TBHQ组
TBHQ group
PM2.5
PM2.5 group
PM2.5 + TBHQ组
PM2.5 and TBHQ group
NLRP3 1.00 ± 0.19ab 0.62 ± 0.09 b 1.29 ± 0.13 a 1.56 ± 0.18a
Caspase-1 1.00 ± 0.10 c 1.63 ± 0.10 b 1.35 ± 0.08 bc 2.44 ± 0.16a
IL-18 1.00 ± 0.13 ab 0.72 ± 0.14 bc 1.14 ± 0.03a 0.57 ± 0.0a5c
IL-1β 1.00 ± 0.12b 0.57 ± 0.12bc 1.62 ± 0.14a 0.37 ± 0.03c
RIPK1 1.00 ± 0.17b 0.75 ± 0.06b 1.66 ± 0.09a 1.07 ± 0.14b
RIPK3 1.00 ± 0.07b 1.44 ± 0.21 ab 1.20 ± 0.23b 1.92 ± 0.12a
MLKL 1.00 ± 0.30ab 0.37 ± 0.10b 1.74 ± 0.26a 0.42 ± 0.08b
[1]
李佳明, 张加力, 钱军, 付莹莹, 王中一, 郭振东, 赵宗正, 张春茂, 陈冠希, 刘林娜. 养殖场颗粒物的环境与健康危害研究进展. 畜牧与兽医, 2018, 50(8): 117-121.
LI J M, ZHANG J L, QIAN J, FU Y Y, WANG Z Y, GUO Z D, ZHAO Z Z, ZHANG C M, CHEN G X, LIU L N. The hazardous effects of particulate matter from livestock farm on the environment and animal health. Animal Husbandry & Veterinary Medicine, 2018, 50(8): 117-121. (in Chinese)
[2]
沈丹, 凌德凤, 戴鹏远, 李延森, 李春梅. 封闭式肉种鸡舍内夏季和冬季环境参数监测与分析对比. 畜牧与兽医, 2018, 50(5): 28-35.
SHEN D, LING D F, DAI P Y, LI Y S, LI C M. Monitoring and comparative analysis of environmental parameters in an enclosed broiler breeder house in summer and winter. Animal Husbandry & Veterinary Medicine, 2018, 50(5): 28-35. (in Chinese)
[3]
戴鹏远, 沈丹, 唐倩, 李延森, 李春梅. 畜禽养殖场颗粒物污染特征及其危害呼吸道健康的研究进展. 中国农业科学, 2018, 51(16): 3214-3225.
DAI P Y, SHEN D, TANG Q, LI Y S, LI C M. Research progress on characteristics of particulate matter in livestock houses and its harmful effects on respiratory tract health of livestock and poultry. Scientia Agricultura Sinica, 2018, 51(16): 3214-3225. (in Chinese)
[4]
DAI P Y, SHEN D, TANG Q, HUANG K, LI C M. PM2.5 from a broiler breeding production system: the characteristics and microbial community analysis. Environmental Pollution, 2020, 256: 113368. doi:10.1016/j.envpol.2019.113368.

doi: 10.1016/j.envpol.2019.113368.
[5]
DAI P Y, SHEN D, SHEN J K, TANG Q, XI M X, LI Y S, LI C M. The roles of Nrf2 and autophagy in modulating inflammation mediated by TLR4 - NFκB in A549 cell exposed to layer house particulate matter 2.5 (PM2.5). Chemosphere, 2019, 235: 1134-1145. doi:10.1016/j.chemosphere.2019.07.002.

doi: 10.1016/j.chemosphere.2019.07.002.
[6]
FARKAS J K, FLOROS J D, LINEBACK D S, WATKINS B A. Oxidation kinetics of menhaden oil with TBHQ. Journal of Food Science, 1997, 62(3): 505-507. doi:10.1111/j.1365-2621.1997.tb04416.x.

doi: 10.1111/j.1365-2621.1997.tb04416.x.
[7]
NNA V U, UJAH G A, SULEIMAN J B, MOHAMED M, NWKOCHA C, AKPAN T J, EKUMA H C, FUBARA V V, KEKUNG C B, OSIM E E. Tert-butylhydroquinone preserve testicular steroidogenesis and spermatogenesis in cisplatin-intoxicated rats by targeting oxidative stress, inflammation and apoptosis. Toxicology, 2020, 441: 152528. doi:10.1016/j.tox.2020.152528.

doi: 10.1016/j.tox.2020.152528.
[8]
NISHIZONO S, HAYAMI T, IKEDA I, IMAIZUMI K. Protection against the diabetogenic effect of feeding tert-butylhydroquinone to rats prior to the administration of streptozotocin. Bioscience, Biotechnology, and Biochemistry, 2000, 64(6): 1153-1158. doi:10.1271/bbb.64.1153.

doi: 10.1271/bbb.64.1153. pmid: 10923784
[9]
KUNDU J K, SURH Y J. Nrf2-Keap 1 signaling as a potential target for chemoprevention of inflammation-associated carcinogenesis. Pharmaceutical Research, 2010, 27(6): 999-1013. doi:10.1007/s11095-010-0096-8.

doi: 10.1007/s11095-010-0096-8.
[10]
LI J, JOHNSON D, CALKINS M, WRIGHT L, SVENDSEN C, JOHNSON J. Stabilization of Nrf 2 by tBHQ confers protection against oxidative stress-induced cell death in human neural stem cells. Toxicological Sciences, 2004, 83(2): 313-328. doi:10.1093/toxsci/kfi027.

doi: 10.1093/toxsci/kfi027.
[11]
ABRAMOV J P, WELLS P G. Embryoprotective role of endogenous catalase in acatalasemic and human catalase-expressing mouse embryos exposed in culture to developmental and phenytoin-enhanced oxidative stress. Toxicological Sciences, 2011, 120(2): 428-438. doi:10.1093/toxsci/kfr007.

doi: 10.1093/toxsci/kfr007 pmid: 21252394
[12]
VARGAS A. The chick embryo and its chorioallantoic membrane (CAM) for the in vivo evaluation of drug delivery systems. Advanced Drug Delivery Reviews, 2007, 59(11): 1162-1176. doi:10.1016/j.addr. 2007.04.019.

doi: 10.1016/j.addr. 2007.04.019.
[13]
张超. PM2.5暴露对鸡胚心脏和肝脏发育毒性的评价[D]. 青岛: 青岛大学, 2019.
ZHANG C. Evaluation of toxicity of PM2.5 exposure to chicken embryo heart and liver development[D]. Qingdao: Qingdao University, 2019. (in Chinese)
[14]
LI R J, KOU X J, XIE L Z, CHENG F Q, GENG H. Effects of ambient PM2.5 on pathological injury, inflammation, oxidative stress, metabolic enzyme activity, and expression of c-fos and c-Jun in lungs of rats. Environmental Science and Pollution Research International, 2015, 22(24): 20167-20176. doi:10.1007/s11356-015-5222-z.

doi: 10.1007/s11356-015-5222-z.
[15]
TERASAKI Y, OHSAWA I, TERASAKI M, TAKAHASHI M, KUNUGI S, KANG D D, URUSHIYAMA H, AMENOMORI S, KANEKO-TOGASHI M, KUWAHARA N, ISHIKAWA A, KAMIMURA N, OHTA S, FUKUDA Y. Hydrogen therapy attenuates irradiation-induced lung damage by reducing oxidative stress. American Journal of Physiology Lung Cellular and Molecular Physiology, 2011, 301(4): L415-L426. doi:10.1152/ajplung.00008. 2011.

doi: 10.1152/ajplung.00008. 2011.
[16]
YANG D, JIN M L, BAI C L, ZHOU J, SHEN Y.Peroxiredoxin 6 suppresses Muc5ac overproduction in LPS-induced airway inflammation through H2O2-EGFR-MAPK signaling pathway. Respiratory Physiology & Neurobiology, 2017, 236: 84-90. doi:10.1016/j.resp. 2016.11.012.

doi: 10.1016/j.resp. 2016.11.012.
[17]
CHEN Z H, WU Y F, WANG P L, WU Y P, LI Z Y, ZHAO Y, ZHOU J S, ZHU C, CAO C, MAO Y Y, XU F, WANG B B, CORMIER S A, YING S M, LI W, SHEN H H. Autophagy is essential for ultrafine particle-induced inflammation and mucus hyperproduction in airway epithelium. Autophagy, 2016, 12(2): 297-311. doi:10.1080/15548627. 2015.1124224.

doi: 10.1080/15548627. 2015.1124224.
[18]
VAL S, BELADE E, GEORGE I, BOCZKOWSKI J, BAEZA- SQUIBAN A. Fine PM induce airway MUC5AC expression through the autocrine effect of amphiregulin. Archives of Toxicology, 2012, 86(12): 1851-1859. doi:10.1007/s00204-012-0903-6.

doi: 10.1007/s00204-012-0903-6 pmid: 22820758
[19]
FRANK D, VINCE J E. Pyroptosis versus necroptosis: similarities, differences, and crosstalk. Cell Death & Differentiation, 2019, 26(1): 99-114. doi:10.1038/s41418-018-0212-6.

doi: 10.1038/s41418-018-0212-6.
[20]
DICKENS L S, POWLET J R, HUGHES M A, MACFARLANE M. The ‘complexities’ of life and death: death receptor signalling platforms. Experimental Cell Research, 2012, 318(11): 1269-1277. doi:10.1016/j.yexcr.2012.04.005.

doi: 10.1016/j.yexcr.2012.04.005.
[21]
李丹丹, 胡玉伟, 张海东, 王瑞. 叔丁基对苯二酚在氧化应激中作用的研究进展. 职业与健康, 2019, 35(11): 1577-1580, 1584. doi:10.13329/j.cnki.zyyjk.2019.0417.

doi: 10.13329/j.cnki.zyyjk.2019.0417.
LI D D, HU Y W, ZHANG H D, WANG R. Study progress on the role of tert-butylhydroquinone in oxidative stress. Occupation and Health, 2019, 35(11): 1577-1580, 1584. doi:10.13329/j.cnki.zyyjk.2019.0417. (in Chinese)

doi: 10.13329/j.cnki.zyyjk.2019.0417.
[22]
PATRICK E. Depigmentation with tert-butyl hydroquinone using black Guinea pigs. Food and Chemical Toxicology, 1999, 37(2/3): 169-175. doi:10.1016/S0278-6915(98)00127-6.

doi: 10.1016/S0278-6915(98)00127-6.
[23]
OKUBO T. Cell death induced by the phenolic antioxidant tert- butylhydroquinone and its metabolite tert-butylquinone in human monocytic leukemia U937 cells. Food and Chemical Toxicology, 2003, 41(5): 679-688. doi:10.1016/S0278-6915(03)00002-4.

doi: 10.1016/S0278-6915(03)00002-4.
[24]
李霞, 马宁, 田晶, 赫春颖, 陈乐, 徐博. 氧化应激与组织损伤的研究进展. 吉林医药学院学报, 2020, 41(4): 292-294. doi:10. 13845/j.cnki.issn1673-2995.2020.04.022.

doi: 10.13845/j.cnki.issn1673-2995.2020.04.022.
LI X, MA N, TIAN J, HE C Y, CHEN L, XU B. Research progress of oxidative stress and tissue damage. Journal of Jilin Medical University, 2020, 41(4): 292-294. doi:10.13845/j.cnki.issn1673-2995.2020.04.022. (in Chinese)

doi: 10.13845/j.cnki.issn1673-2995.2020.04.022.
[25]
王晴晴, 樊彦红, 汪袁, 肖秋萍, 何成华. 紫竹根水提物对小鼠体内外抗氧化作用的研究. 畜牧与兽医, 2017, 49(6): 163-169.
WANG Q Q, FAN Y H, WANG Y, XIAO Q P, HE C H. Antioxidant activity of aqueous extract of rhizome of Phyllostachys nigra (Lodd. ex Lindl.) Munro in vitro and in vivo. Animal Husbandry & Veterinary Medicine, 2017, 49(6): 163-169. (in Chinese)
[26]
ZAHAN O M, SERBAN O, GHERMAN C, FODOR D. The evaluation of oxidative stress in osteoarthritis. Medicine and Pharmacy Reports, 2020, 93(1): 12-22. doi:10.15386/mpr-1422.

doi: 10.15386/mpr-1422.
[27]
GRISHKO V I IV, HO R, WILSON G L, PEARSALL A W. Diminished mitochondrial DNA integrity and repair capacity in OA chondrocytes. Osteoarthritis and Cartilage, 2009, 17(1): 107-113. doi: 10.1016/j.joca.2008.05.009.

doi: 10.1016/j.joca.2008.05.009 pmid: 18562218
[28]
SUN W, ZENG C R, LIU S S, FU J, HU L W, SHI Z, YUE D, REN Z H, ZHONG Z J, ZUO Z C, CAO S Z, PENG G N, DENG J L, HU Y C. Ageratina adenophora induces mice hepatotoxicity via ROS- NLRP3-mediated pyroptosis. Scientific Reports, 2018, 8: 16032. doi:10.1038/s41598-018-34492-7.

doi: 10.1038/s41598-018-34492-7.
[29]
SAKON S, XUE X, TAKEKAWA M, SASAZUKI T, OKAZAKI T, KOJIMA Y, PIAO J H, YAGITA H, NF-kappaB inhibits TNF-induced accumulation of ROS that mediate prolonged MAPK activation and necrotic cell death. OKUMURA K, doi:10.1093/emboj/cdg379.

doi: 10.1093/emboj/cdg379.
[30]
刘辉, 刘红阳, 姜一农, 常栋, 李楠, 张彧. 叔丁基对苯二酚拮抗心肌细胞氧化应激损伤机制研究. 中国实用内科杂志, 2015, 35(8): 704-707.
LIU H, LIU H Y, JIANG Y N, CHANG D, LI N, ZHANG Y. Effects of tert-butylhydroquinone(t BHQ) against oxidative stress injury of H9c2 myocardial cells. Chinese Journal of Practical Internal Medicine, 2015, 35(8): 704-707. (in Chinese)
[1] TAO WenJing, ZHANG ZiTing, LIU Yuan, SONG Dan, LI XiangChen. Inhibitory Effect of N-acetylcysteine on Bisphenol A-Induced Apoptosis and Inflammatory Response in Porcine Kidney Cells [J]. Scientia Agricultura Sinica, 2023, 56(3): 549-558.
[2] YANG ChangPei,WANG NaiXiu,WANG Kai,HUANG ZiQing,LIN HaiLan,ZHANG Li,ZHANG Chen,FENG LuQiu,GAN Ling. Effects and Mechanisms of Exogenous GABA Against Oxidative Stress in Piglets [J]. Scientia Agricultura Sinica, 2022, 55(17): 3437-3449.
[3] JIANG ChunHui,SUN XuDong,TANG Yan,LUO ShengBin,XU Chuang,CHEN YuanYuan. Curcumin Alleviates H2O2-Induced Oxidative Stress in Bovine Mammary Epithelial Cells Via the Nrf2 Signaling Pathway [J]. Scientia Agricultura Sinica, 2021, 54(8): 1787-1794.
[4] LÜ ChuYang,DENG PingChuan,ZHANG XiaoLi,SUN YuChao,LIANG WuSheng,HU DongWei. Transcriptomic Analysis of Sclerotia Formation Induced by Low Temperature in Villosiclava virens [J]. Scientia Agricultura Sinica, 2020, 53(22): 4571-4583.
[5] LI HanTong,JIA ChengLi,ZHANG ShuWen,LU Jing,PANG XiaoYang,LIU Lu,LÜ JiaPing. Chromium (III) Stress Alleviation by Sulfur Compounds During Chromium Bio-enrichment by Saccharomyces cerevisiae [J]. Scientia Agricultura Sinica, 2019, 52(6): 1078-1089.
[6] DU Jiao, WANG YaBo, LI XueHua, HUANG ZhiQiang, YANG YuHeng, BI ChaoWei, YU Yang. Function analysis ofγ-glutamyl phosphate reductase-encoded gene SsGPR1 in Sclerotinia sclerotiorum [J]. Scientia Agricultura Sinica, 2018, 51(19): 3694-3703.
[7] TANG Qin, DENG Yuan-yuan, ZHANG Rui-fen, ZHANG Yan, ZHANG Ming-wei, WEI Zhen-cheng, TANG Xiao-jun, LIU Lei, TI Hui-hui, MA Yong-xuan. Effect of Momordica charantia Fruit Aqueous Extract on Serum Lipids Metabolic Disorder in Restraint Mice [J]. Scientia Agricultura Sinica, 2014, 47(16): 3300-3307.
[8] ZHAO Jiao, ZHOU Zhao-Hong, LIANG Xiao-Fang, MAO Xiang-Bing, CHEN Dai-Wen, YU Bing. Effects of GSPs and VE on Growth Performance, Serum Redox Status and Hepatic Oxidative Damage in Piglets Under Oxidative Stress [J]. Scientia Agricultura Sinica, 2013, 46(19): 4157-4164.
[9] SONG Gui-Fang-., FAN Wei-Li, WANG Jun-Juan, WANG De-Long, WANG Shuai, ZHOU Kai, YE Wu-Wei. Cloning and Characterization of Drought-stress Responsive Gene GhGR in Gossypium hirsutum L. [J]. Scientia Agricultura Sinica, 2012, 45(8): 1644-1652.
[10] CUI Zhi-Wen, HUANG Qin, HUANG Yi, WU Hong-Zhao, WEN Jing, LI Wei-Fen. Antioxidative Function of Lacbacillus rhamnosus to Caco-2 Cells [J]. Scientia Agricultura Sinica, 2011, 44(23): 4926-4932.
[11] DU Jun,LI Hai-lan,LI Hui,ZHAN Ji-cheng,HUANG Wei-dong
. Oxidative Stress of Wine Yeasts Under Copper Exposure
[J]. Scientia Agricultura Sinica, 2011, 44(2): 369-378 .
[12] WANG Ji-Cang, LIU Xue-Zhong, YUAN Yan, YI Chuan-Hui, BIAN Jian-Chun, LIU Zong-Ping. The Role of Oxidative Stress on the Apoptosis of Rat Hepatocytes Induced by Cadmium [J]. Scientia Agricultura Sinica, 2011, 44(18): 3895-3902.
[13] WANG Cheng,WU Shu-geng,ZHANG Hai-jun,YUE Hong-yuan,ZHAI Yong-gong,QI Guang-hai
. Study on Oxidative Stress-Activated MAPK Signaling Pathway in Broilers Breast Muscle Satellite Cells
[J]. Scientia Agricultura Sinica, 2010, 43(20): 4286-4294 .
[14] . Responses to Nitric Dioxide Stress and Modulation of Hydrogen Peroxide in Pakchoi Seedlings [J]. Scientia Agricultura Sinica, 2007, 40(11): 2556-2562 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!