Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (17): 3421-3431.doi: 10.3864/j.issn.0578-1752.2020.17.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification and Pyramiding of QTLs for Traits Associated with Pre-Harvest Sprouting Resistance in Two Wheat Cultivars Chuanmai 42 and Chuannong 16

WANG Qin1,2(),LIU ZeHou1,2,WAN HongShen1,2,WEI HuiTing2,3,LONG Hai4,LI Tao4,DENG GuangBing4,LI Jun1,2(),YANG WuYun1,2()   

  1. 1Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066
    2Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Ministry of Agriculture, Chengdu 610066
    3Plant Protection Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066
    4Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041
  • Received:2019-10-21 Accepted:2020-02-08 Online:2020-09-01 Published:2020-09-11
  • Contact: Jun LI,WuYun YANG E-mail:wq860728@163.com;lijunchd@126.com;yangwuyun@126.com

Abstract:

【Objective】Pre-harvest sprouting (PHS) is one of the serious problems for wheat production, which significantly reduces grain yield and end-use quality, especially in rainy or high humidity regions. The objective of this study is to identify and aggregate quantitative trait loci (QTLs) for traits associated with PHS resistance, which will provide a theoretical basis for improving PHS resistance in Sichuan wheat cultivars.【Method】A recombinant inbred line (RIL) population derived from Chuanmai 42 and Chuannong 16 was used to detect QTL and assess the new germplasm resources for PHS resistance. 127 lines in RIL population were analyzed by phenotypic and genetic identification for PHS-related traits. Seed germination index (GI), seed germination rate (GR) and seed germination rate of in each spike (SGR) in two different environments were used to evaluate PHS resistance. All QTLs for PHS resistance were mapped by an available high-density single nucleotide polymorphism (SNP, 90K). The pyramiding of the resistant QTL was also analyzed according to the genotype of every line in RILs. 【Result】There were significant difference in GI, GR and SGR between two parents. PHS resistance of Chuannong 16 was superior than that of Chuanmai 42. A total of 11 QTLs for PHS were detected on chromosomes 2B, 2D, 3A, 3D, 4A, 5A, 5B and 6B. QSgr.saas-5B was significantly associated with PHS resistance in single environment and explained 29.03% phenotypic variation. QSgr.saas-2D, QSgr.saas-3A, QGi.saas-5A and QGr.saas-5A could express stably in two environments, and the alleles of enhancing PHS resistance were from Chuannong 16. The results of genotype analysis showed that the number of resistant QTL in different lines ranged from one to nine. Six excellent lines in RILs with high resistance carried seven or eight additive QTLs for PHS resistance. These additive QTLs included the minor QTLs on chromosome 4A from Chuanmai 42 and the major QTLs on chromosomes 2D and 5B from Chuannong 16. No. 104 and No. 125 in RIL population were released in China or Sichuan province because of its high yield and PHS resistance, and were named Chuanmai 104 and Chuanmai 64, respectively. Chuanmai 104 showed high yield and good resistance for stripe rust, powdery mildew and PHS in the Sichuan provincial trials and the national trails for Upper and Middle Yangtze River region in 2010 and 2012. The QTL analysis for PHS resistance revealed that Chuanmai 104 carried seven QTLs, including four QTLs on chromosomes 2B, 2D and 5B from Chuannong 16 and three QTLs on chromosomes 4A and 6B from another parent Chuanmai 42. The pyramiding of these additive QTL alleles from each parent led directly to the character of high PHS resistance in Chuanmai 104. In recent years, Chuanmai 104 was widely used to wheat improvement in Southwest China, and 18 wheat varieties (lines) have been bred. 【Conclusion】Eleven QTLs for PHS resistance, including three QTLs from Chuanmai 42 and eight QTLs from chuannong16, were detected in this study. Four to nine resistant QTLs were generally carried by the resistant lines in RIL population. Two pyramiding lines (Chuanmai 104 and Chuanmai 64) with high PHS resistance carried seven resistant QTLs.

Key words: wheat, pre-harvest sprouting (PHS), QTL mapping, QTL pyramiding, pyramiding effect

Table 1

The parameters of PHS traits in RIL population and its parents"

性状
Trait
环境
Environment
亲本Parents RIL群体 RIL population
川麦42 Chuanmai 42 川农16 Chuannong 16 均值
Mean
标准差
SD
最小值
Min
最大值
Max
峰度
Kurtosis
偏度
Skewness
遗传力Heritability
GI 2016GH 0.74 0.11** 0.57 0.10 0.06 0.98 -0.02 -0.27 0.57
2018CD 0.76 0.17** 0.59 0.20 0.05 0.87 -0.54 -0.66 0.49
GR 2016GH 0.83 0.24** 0.82 0.09 0.07 1.00 -0.09 -0.57 0.82
2018CD 0.86 0.21** 0.79 0.23 0.06 1.00 0.68 -1.21 0.69
SGR 2017CD 0.62 0.15** 0.52 0.17 0.02 0.90 -0.35 -0.28 0.61
2018CD 0.51 0.09** 0.42 0.21 0.03 0.99 -0.70 0.12 0.51

Table 2

Correlation coefficients between investigated PHS traits in the RIL population"

性状Trait GI-2018CD GR-2016GH GR-2018CD SGR-2017CD SGR-2018CD
GI-2016GH 0.091 0.892** 0.037 0.177* 0.266**
GI-2018CD 0.169 0.966** 0.239** 0.289**
GR-2016GH 0.114 0.247** 0.258**
GR-2018CD 0.201* 0.224*
SGR-2017CD 0.440**

Table 3

QTLs identified for PHS related traits in Chuanmai 42/Chuannong 16 RIL population"

性状
Trait
QTL 环境
Environment
标记区间
Marker interval
LOD 贡献率
PVE (%)
加性效应
Additive effecta
GI QGi.saas-2B 2016GH IWB217IWB12070 2.64 9.47 0.05
QGi.saas-4A 2016GH IWB32870IWB43187 2.50 4.28 -0.03
QGi.saas-5A 2016GH IWB22536IWB43493 2.51 5.88 0.09
2018CD IWB6853IWB25919 3.98 14.72 0.13
GR QGr.saas-2B 2016GH IWB217IWB12070 2.59 5.02 0.03
QGr.saas-4A 2016GH IWB32870IWB43187 2.51 4.79 -0.04
QGr.saas-5A 2016GH IWB22536IWB43493 2.65 4.87 0.06
2018CD IWB6853IWB25919 5.10 18.80 0.15
QGr.saas-6B 2016GR IWB8673IWB22066 11.02 14.26 -0.05
SGR QSgr.saas-2D 2017CD IWB62848IWB56618 3.29 8.06 0.05
2018CD IWB9680IWB62848 2.54 5.73 0.05
QSgr.saas-3A 2017CD IWB10578IWB30094 2.57 4.72 0.04
2018CD IWB10578IWB30094 3.60 10.86 0.07
QSgr.saas-3D 2017CD IWB30686IWB38826 4.69 11.96 0.06
QSgr.saas-5B 2018CD IWB60217IWB52109 12.36 29.03 0.16

Fig. 1

QTLs for PHS related traits on 8 chromosomes The triangle indicates the position of QTL peak. The unfilled triangles represent QTLs for PHS in 2016, the diagonal filled triangles represent QTLs for PHS in 2017, and the black triangles represent QTLs for PHS in 2018"

Fig. 2

Frequency distribution of the resistant QTLs pyramiding for PHS in Chuanmai 42/Chuannong 16 RILs"

Table 4

QTLs for PHS resistance among 6 elite lines in RILs"

株系
Lines
GI (%) GR (%) SGR (%) QTL
2016GH 2018CD 2016GH 2018CD 2017CD 2018CD
12 0.14 0.12 0.12 0.15 0.07 0.05 QGi.saas-2B, QGr.saas-2B, QSgr.saas-2D, QSgr.saas-3A, QSgr.saas-3D, QGi.saas-4A, QGr.saas-4A, QSgr.saas-5B
74 0.13 0.10 0.13 0.15 0.02 0.03 QGi.saas-2B, QGr.saas-2B, QSgr.saas-2D, QSgr.saas-3D, QGi.saas-4A, QGr.saas-4A, QSgr.saas-5B, QGr.saas-6B
82 0.09 0.05 0.12 0.13 0.14 0.07 QGi.saas-2B, QGr.saas-2B, QSgr.saas-2D, QSgr.saas-3A, QGi.saas-4A, QGr.saas-4A, QSgr.saas-5B
104 0.07 0.12 0.10 0.14 0.13 0.11 QGi.saas-2B, QGr.saas-2B, QSgr.saas-2D, QGi.saas-4A, QGr.saas-4A, QSgr.saas-5B, QGr.saas-6B
112 0.06 0.09 0.13 0.11 0.14 0.15 QSgr.saas-2D, QSgr.saas-3D, QGi.saas-4A, QGr.saas-4A, QSgr.saas-5B, QGi.saas-5A, QGr.saas-5A
125 0.08 0.10 0.07 0.11 0.09 0.07 QSgr.saas-2D, QSgr.saas-3A, QSgr.saas-3D, QGi.saas-4A, QGr.saas-4A, QSgr.saas-5B, QGr.saas-6B
[1] 肖世和, 闫长生, 张海萍, 孙果忠. 小麦穗发芽研究. 北京: 中国农业科学技术出版社, 2002.
XIAO S H, YAN C S, ZHANG H P, SUN G Z. Study Pre-Harvest Sprouting in Wheat. Beijing: China Agricultural Science and Technology Press, 2002. (in Chinese)
[2] DERERA N F, BHATT G M, MCMASTER G J. On the problem of preharvest sprouting of wheat. Euphytica, 1977,26(2):299.
doi: 10.1007/BF00026991
[3] OGBONNAYA F C, IMTIAZ M, YE G, HEARNDEN P R, HERNANDEZ E, EASTWOOD R F, GINKEL M V, SHORTER S C, WINCHESTER J M. Genetic and QTL analyses of seed dormancy and preharvest sprouting resistance in the wheat germplasm CN10955. Theoretical and Applied Genetics, 2008,116(7):891-902.
doi: 10.1007/s00122-008-0712-8 pmid: 18368385
[4] XIAO S H, ZHANG X Y, YAN C S, LIN H. Germplasm improvement for preharvest sprouting resistance in Chinese white-grained wheat: An overview of the current strategy. Euphytica, 2002,126(1):35-38.
doi: 10.1023/A:1019679924173
[5] 原亚萍, 陈孝, 肖世和. 小麦穗发芽的研究进展. 麦类作物学报, 2003,23(3):136-139.
doi: 10.7606/j.issn.1009-1041.2003.03.107
YUAN Y P, CHEN X, XIAO S H. Advances in the study on wheat pre-harvest sprouting. Journal of Triticeae Crops, 2003,23(3):136-139. (in Chinese)
doi: 10.7606/j.issn.1009-1041.2003.03.107
[6] 闫长生, 张海萍, 海林, 张秀英, 胡琳, 胡汉桥, 蒲宗君, 肖世和. 中国小麦品种穗发芽抗性差异的研究. 作物学报, 2006,32(4):580-587.
YAN C S, ZHANG H P, HAI L, ZHANG X Y, HU L, HU H Q, PU Z J, XIAO S H. Differences of preharvest sprouting resistance among Chinese wheat cultivars. Acta Agronomica Sinica, 2006,32(4):580-587. (in Chinese)
[7] IMTIAZ M, OGBONNAYA F C, OMAN J, GINKEL M V. Characterization of quantitative trait loci controlling genetic variation for preharvest sprouting in synthetic backcross-derived wheat lines. Genetics, 2008,178(3):1725-1736.
doi: 10.1534/genetics.107.084939 pmid: 18245824
[8] 刘莉, 王庆海, 陈国志. 小麦穗发芽研究进展. 作物杂志, 2013(4):6-11.
LIU L, WANG Q H, CHEN G Z. Advances on resistance to pre-harvest sprouting in wheat. Crops, 2013(4):6-11. (in Chinese)
[9] ANDERSON J A, SORRELLS M E, TANKSLEY S D. RFLP analysis of genomic regions associated with resistance to preharvest sprouting in wheat. Crop Science, 1993,33(3):453-459.
[10] ROY J K, PRASAD M, VARSHNEY R K, BALYAN H S, BLAKE T K, DHALIWAL H S, EDWARDS K J, GUPTA P K. Identification of a microsatellite on chromosomes 6B and a STS on 7D of bread wheat showing an association with preharvest sprouting tolerance. Theoretical and Applied Genetics, 1999,99(1):336-340.
doi: 10.1007/s001220051241
[11] ARIF M R, NEUMANN K, NAGEL M, KOBILJSKI B, LOHWASSER U, BÖRNER A. An association mapping analysis of dormancy and pre-harvest sprouting in wheat. Euphytica, 2012,188:409-417.
doi: 10.1007/s10681-012-0705-1
[12] FLINTHAM J, ADLAM R, BASSOI M, HOLDSWORTH M, GALE M. Mapping genes for resistance to sprouting damage in wheat. Euphytica, 2002,126:39-45.
doi: 10.1023/A:1019632008244
[13] JAISWAL V, MIR R R, MOHAN A, BALYAN H S, GUPTA P K. Association mapping for pre-harvest sprouting tolerance in common wheat ( Triticum aestivum L.). Euphytica, 2012,188:89-102.
doi: 10.1007/s10681-012-0713-1
[14] KULWAL P L, SINGH R, BALYAN H S, GUPTA P K. Genetic basis of pre-harvest sprouting tolerance using single-locus and two-locus QTL analyses in bread wheat. Functional & Integrative Genomics, 2004,4(2):94-101.
doi: 10.1007/s10142-004-0105-2 pmid: 14986154
[15] MARES D, RATHJEN J, MRVA K, CHEONG J. Genetic and environmental control of dormancy in white-grained wheat ( Triticum aestivum L.). Euphytica, 2009,168(3):311-318.
doi: 10.1007/s10681-009-9927-2
[16] SINGH A K, KNOX R E, CLARKE J M, CLARKE F R, SINGH A, DEPAUW R M, CUTHBERT R D. Genetics of pre-harvest sprouting resistance in a cross of Canadian adapted durum wheat genotypes. Molecular Breeding, 2014,33(4):919-929.
doi: 10.1007/s11032-013-0006-y
[17] REN X B, LAN X J, LIU D C, WANG J L, LIANG Z Y. Mapping QTLs for pre-harvest sprouting tolerance on chromosome 2D in a synthetic hexaploid wheat × common wheat cross. Journal of Applied Genetics, 2008,49(4):333-341.
doi: 10.1007/BF03195631
[18] ZHANG X Q, LI C D, TAY A, LANCE R, MARES D, CHEONG J, CAKIR M, MA J H, APPELS R. A new PCR-based marker on chromosome 4AL for resistance to pre-harvest sprouting in wheat ( Triticum aestivum L.). Molecular Breeding, 2008,22(2):227-236.
doi: 10.1007/s11032-008-9169-3
[19] CHEN C X, CAI S B, BAI G H. A major QTL controlling seed dormancy and pre-harvest sprouting resistance on chromosome 4A in a Chinese wheat landrace. Molecular Breeding, 2008,21(3):351-358.
doi: 10.1007/s11032-007-9135-5
[20] SOMYONG S, ISHIKAWA G, MUNKVOLD J D, TANAKA J, BENSCHER D, CHO Y G, SORRELS M E. Fine mapping of a preharvest sprouting QTL interval on chromosome 2B in white wheat. Theoretical and Applied Genetics, 2014,127(8):1843-1855.
doi: 10.1007/s00122-014-2345-4
[21] WANG X Y, LIU H, MIA M S, SIDDIQUE K H M, YAN G J. Development of near-isogenic lines targeting a major QTL on 3AL for pre-harvest sprouting resistance in bread wheat. Crop and Pasture Science, 2018,69(9):864-872.
doi: 10.1071/CP17423
[22] WANG J R, LIU Y X, WANG Y, CHEN Z H, DAI S, CAO W G, FEDAK G, LAN X J, WEI Y M, LIU D C, ZHENG Y L. Genetic variation of Vp1 in Sichuan wheat accessions and its association with preharvest sprouting response. Genes & Genomics, 2011,33(2):139-146.
[23] NAKAMURA S, ABE F, KAWAHIGASHI H, NAKAZONO K, TAGIRI A, MATSUMOTO T, UTSUGI S, OGAWA T, HANDA H, ISHIDA H, MORI M, KAWAURA K, OGIHARA Y, MIURA H. A wheat homolog of MOTHER OF FT and TFL1 acts in the regulation of germination. The Plant Cell, 2011,23(9):3215-3229.
pmid: 21896881
[24] LIU S B, SEHGAL S K, LI J R, LIN M, TRICK H N, YU J M, GILL B S, BAI G H. Cloning and characterization of a critical regulator for preharvest sprouting in wheat. Genetics, 2013,195(1):263-273.
pmid: 23821595
[25] ZHANG Y J, MIAO X L, XIA X C, HE Z H. Cloning of seed dormancy genes ( TaSdr) associated with tolerance to pre-harvest sprouting in common wheat and development of a functional marker. Theoretical and Applied Genetics, 2014,127(4):855-866.
doi: 10.1007/s00122-014-2262-6 pmid: 24452439
[26] ZHANG Y J, XIA X C, HE Z H. The seed dormancy allele TaSdr-A1a associated with pre-harvest sprouting tolerance is mainly present in Chinese wheat landraces. Theoretical and Applied Genetics, 2016,130(1):81-89.
doi: 10.1007/s00122-016-2793-0 pmid: 27650191
[27] ZHOU S H, FU L, WU Q H, CHEN J J, CHEN Y X, XIE J Z, WANG Z Z, WANG G X, ZHANG D Y, LIANG Y, ZHANG Y, YOU M S, LIANG R Q, HAN J, LIU Z Y. QTL mapping revealed TaVp-1A conferred pre-harvest sprouting resistance in wheat population Yanda 1817×Beinong 6. Journal of Integrative Agriculture, 2017,16(2):435-444.
doi: 10.1016/S2095-3119(16)61361-8
[28] DONG Z D, CHEN J, LI T CHEN F, CUI D Q. Molecular survey of Tamyb10-1 genes and their association with grain color and germinability in Chinese wheat and Aegilops tauschii. Journal of Genetics, 2015,94(3):453-459.
doi: 10.1007/s12041-015-0559-0 pmid: 26440084
[29] BARRERO J M, CAVANAGH C, VERBYLA K L, TIBBITS J F G, VERBYLA A P, HUANG B. E, ROSEWARNE G M, STEPHEN S, WANG P, WHAN A, RIGAULT P, HAYDEN M J, GUBLER F. Transcriptomic analysis of wheat near-isogenic lines identifies PM19-A1 and A2 as candidates for a major dormancy QTL. Genome Biology, 2015,16:93.
pmid: 25962727
[30] TORADA A, KOIKE M, OGAWA T, TAKENOUCHI Y, TADAMURA K, WU J Z, MATSUMOTO T, KAWAURA K, OGIHARA Y. A causal gene for seed dormancy on wheat chromosome 4A encodes a MAP kinase kinase. Current Biology, 2016,26(6):782-287.
pmid: 26948878
[31] 李玉营, 马东方, 王晓玲, 方正武. 小麦穗发芽鉴定方法的比较与分析. 广西植物, 2016,36(3):261-266.
LI Y Y, MA D F, WANG X L, FANG Z W, Comparison and analysis of wheat pre-harvest sprouting screening methods. Guihaia, 2016,36(3):261-266. (in Chinese)
[32] KULWAL P L, KUMAR N, GAUR A, KHURANA P, KHURANA J P, TYAGI A K, BALYAN H S, GUPTA P K. Mapping of a major QTL for pre-harvest sprouting tolerance on chromosome 3A in bread wheat. Theoretical and Applied Genetics, 2005,111(6):1052-1059.
doi: 10.1007/s00122-005-0021-4 pmid: 16133317
[33] JIANG Y F, WANG J R, LUO W, WEI Y M, QI P F, LIU Y X, JIANG Q T, PENG Y Y, CHEN G Y, DAI S F, ZHENG Y L, LAN X J. Quantitative trait locus mapping for seed dormancy in different post-ripening stages in a Tibetan semi-wild wheat ( Triticum aestivum ssp. tibetanum Shao). . Euphytica, 2015,203(3):557-567.
doi: 10.1007/s10681-014-1266-2
[34] LIN M, ZHANG D D, LIU S B, ZHANG G R, YU J M, FRITZ A K, BAI G H. Genome-wide association analysis on pre-harvest sprouting resistance and grain color in U.S. winter wheat. BMC Genomics, 2016,17(1):794-810.
doi: 10.1186/s12864-016-3148-6 pmid: 27729004
[35] MOHAN A, KULWAL P, SINGH R, KUMAR V, MIR R R, KUMA J, PRASAD M, BALYAN H S, GUPTA P K. Genome-wide QTL analysis for pre-harvest sprouting tolerance in bread wheat. Euphytica, 2009,168(3):319-329.
doi: 10.1007/s10681-009-9935-2
[36] GROOS C, GAY G, PERRETANT M R, GERVAIS L, BERNARD M, DEDRYVER F, CHARMET G. Study of the relationship between pre-harvest sprouting and grain color by quantitative trait loci analysis in a white×red grain bread-wheat cross. Theoretical and Applied Genetics, 2002,104(1):39-47.
doi: 10.1007/s001220200004 pmid: 12579426
[37] KUMAR S, KNOX R E, CLARKE F R, POZNIAK C J DEPAUW RM, CUTHBERT R D, FOX S. Maximizing the identification of QTL for pre-harvest sprouting resistance using seed dormancy measures in a white-grained hexaploid wheat population. Euphytica, 2015,205(1):287-309.
doi: 10.1007/s10681-015-1460-x
[38] MARES D J, MRVA K, CHEONG J, WILLIAMS K, WATSON B, STORLIE E, SUTHERLAND M, ZOU Y. A QTL located on chromosome 4A associated with dormancy in white- and red-grained wheats of diverse origin. Theoretical and Applied Genetics, 2005,111(7):1357-1364.
doi: 10.1007/s00122-005-0065-5 pmid: 16133305
[39] TAN M K, SHARP P J, LU M Q, HOWES N. Genetics of grain dormancy in a white wheat. Australian Journal of Agricultural Research, 2006,57:1157-1165.
[40] MUNKVOLD J D, TANAKA J, BENSCHER D, SORRELLS M E. Mapping quantitative trait loci for preharvest sprouting resistance in white wheat. Theoretical and Applied Genetics, 2009,119(7):1223-1235.
pmid: 19669633
[41] LIU S B, BAI G H, CAI S B, CHEN C X. Dissection of genetic components of preharvest sprouting resistance in white wheat. Molecular Breeding, 2011,27(4):511-523.
doi: 10.1007/s11032-010-9448-7
[42] LIN M, CAI S, WANG S, LIU S B, ZHANG G R, BAI G H. Genotyping-by-sequencing (GBS) identified SNP tightly linked to QTL for pre-harvest sprouting resistance. Theoretical and Applied Genetics, 2015,128(7):1385-1395.
pmid: 25851002
[43] 周勇. 中国小麦地方品种穗发芽抗性评价及全基因组关联分析[D]. 成都: 四川农业大学, 2017.
ZHOU Y. Genome-wide association study for pre-harvest sprouting resistance in a large germplasm collection of Chinese wheat landraces[D]. Chengdu: Sichuan Agricultural University, 2017. (in Chinese)
[44] SINGH R, MATUS-CÁDIZ M, BÅGA M, HUCL P, CHIBBAR R N. Identification of genomic regions associated with seed dormancy in white-grained wheat. Euphytica, 2010,174(3):391-408.
doi: 10.1007/s10681-010-0137-8
[45] CABRAL A L, JORDAN M C, MCCARTNEY C A, YOU F M, HUMPHREYS D G, MACLACHLAN R, POZNIAK C J. Identification of candidate genes, regions and markers for pre-harvest sprouting resistance in wheat ( Triticum aestivum L.). BMC Plant Biology, 2014,14(1):340.
[46] KATO K, NAKAMURA W, TABIKI T, MIURA H, SAWADA S. Detection of loci controlling seed dormancy on group 4 chromosomes of wheat and comparative mapping with rice and barley genomes. Theoretical and Applied Genetics, 2001,102(6/7):980-985.
[47] JUSTIN M V, ROBERT N S, JOHN M M, MICHAEL J G. Revealing the genetic mechanisms of pre-harvest sprouting in hexaploid wheat ( Triticum aestivum L.). Plant Science, 2019,281:180-185.
doi: 10.1016/j.plantsci.2019.01.004 pmid: 30824050
[48] 李式昭, 郑建敏, 伍玲, 李俊, 万洪深, 杨漫宇, 罗江陶, 刘廷辉, 杨开俊, 蒲宗君. 四川小麦品种籽粒硬度和穗发芽抗性相关基因的分子标记鉴定. 西南农业学报, 2018,31(4):641-645.
LI S Z, ZHENG J M, WU L, LI J, WAN H S, YANG M Y, LUO J T, LIU T H, YANG K J, PU Z J. Identification of grain hardness and resistance to pre-harvest sprouting in Sichuan wheat cultivars with molecular markers. Southwest China Journal of Agricultural Sciences, 2018,31(4):641-645. (in Chinese)
[49] TANG Y L, LI C S, YANG W Y, WU Y Q, WU X L, WU C, MA X L, LI S Z, ROSEWARNE G M. Quality potential of synthetic-derived commercial wheat cultivars in south-western China. Crop and Pasture Science, 2016, 67(6): 583-593.
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[5] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[6] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[7] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[8] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[9] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[10] GOU ZhiWen,YIN Wen,CHAI Qiang,FAN ZhiLong,HU FaLong,ZHAO Cai,YU AiZhong,FAN Hong. Analysis of Sustainability of Multiple Cropping Green Manure in Wheat-Maize Intercropping After Wheat Harvested in Arid Irrigation Areas [J]. Scientia Agricultura Sinica, 2022, 55(7): 1319-1331.
[11] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[12] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[13] CAI WeiDi,ZHANG Yu,LIU HaiYan,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Early Detection on Wheat Canopy Powdery Mildew with Hyperspectral Imaging [J]. Scientia Agricultura Sinica, 2022, 55(6): 1110-1126.
[14] ZONG Cheng, WU JinXin, ZHU JiuGang, DONG ZhiHao, LI JunFeng, SHAO Tao, LIU QinHua. Effects of Additives on the Fermentation Quality of Agricultural By-Products and Wheat Straw Mixed Silage [J]. Scientia Agricultura Sinica, 2022, 55(5): 1037-1046.
[15] MA HongXiang, WANG YongGang, GAO YuJiao, HE Yi, JIANG Peng, WU Lei, ZHANG Xu. Review and Prospect on the Breeding for the Resistance to Fusarium Head Blight in Wheat [J]. Scientia Agricultura Sinica, 2022, 55(5): 837-855.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!