Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (23): 4309-4319.doi: 10.3864/j.issn.0578-1752.2019.23.011

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Spatial-Temporal Characteristics and Economic Relevance of Agricultural Carbon Emissions in Hubei Province

LI Bo1,2,DU JianGuo1,LIU XueQi1   

  1. 1 School of Economics, South-Central University for Nationalities, Wuhan 430074
    2 Hubei Moderately Prosperous Society in All Respects Construction Research Institute, Wuhan 430074
  • Received:2019-06-03 Accepted:2019-07-05 Online:2019-12-01 Published:2019-12-01

Abstract:

【Objective】Hubei Province is a large agricultural province, and the carbon emissions from agricultural production account for a large proportion of the total carbon emissions. Environmental problems such as greenhouse effect caused by carbon emission and non-point source pollution caused by agricultural production cannot be ignored. In this study, the co-integration relationship between agricultural economic growth and agricultural carbon emissions was analyzed, and the error correction was carried out, which provided an important theoretical basis and reference for the development of carbon emission reduction in Hubei Province. 【Method】Based on six kinds of main carbon sources from the agricultural inputting and production, the agricultural carbon emission load from 1993 to 2017 was calculated, and then the temporal and spatial characteristics of agricultural carbon emission in Hubei Province were analyzed. Furtherly, Kernel density estimation demonstrated that the regional gap of agricultural carbon emissions in Hubei province. Finally, the integrated use of co-order error correction model was discussed as an evidence of Hubei Province's agricultural economic growth and agricultural carbon emissions. 【Result】The total amount and intensity of agricultural carbon emissions in Hubei Province showed a trend of rising first and then later. The average annual growth rate of agriculture carbon emissions was 2.32%, while the average annual growth rate of intensity was 2.21%. The chain growth of which was general in the stage of decline. Fertilizers, pesticides, agricultural film, agricultural diesel, real tillage and agricultural irrigation as a result of carbon emissions, average annual increase rate was 2.23%, 2.44%, 2.40%, 3.32%, 0.44%, and 2.32%, respectively. Kernel density estimation demonstrated that the regional gap of agricultural carbon emissions in Hubei Province was widening. The integrated use of co-order error correction model was discussed as an evidence of Hubei Province's agricultural economic growth and agricultural carbon emissions. The results showed that: for every 1% increase in per capita agricultural output value, the total carbon intensity of pesticides, agricultural film, agricultural diesel, agricultural irrigation and other carbon sources of carbon emission intensity increased by 0.58%, 0.59%, 0.25% and 0.15%, respectively, and the total agricultural carbon intensity increased by 0.19%.【Conclusion】Different agricultural economic development, production conditions and regional development strategies in Hubei Province led to more and more obvious agricultural carbon emission gap between regions. There was a long-term stable relationship between agricultural economic growth and agricultural carbon emission in Hubei Province, which indicated that Hubei Province was also in a critical period of transition from traditional farming mode to green and low-carbon farming mode, and this development mode had existed for a long time.

Key words: economic growth, agricultural carbon emissions, Kernel density estimation, cointegration, Hubei Province

Table 1

Agricultural carbon emission coefficient and source"

碳源
Carbon source
碳排放系数
Carbon emissions coefficient
参考来源
Reference sources
化肥 Fertilizer 0.8956 kg·kg-1 WEST[21]
农药 Pesticide 4.9341 kg·kg-1 美国橡树岭国家实验室 Oak Ridge National Lab
农膜 Agricultural film 5.18 kg·kg-1 IREEA
柴油 Farm diesel fuel 0.5927 kg·kg-1 IPCC
翻耕 Plowing 312.6 kg·km-2 中国农业大学生物与技术学院
College of Biotechnology, China Agricultural University
农业灌溉 Irrigation 19.533 kg·hm-2 DUBEY[22]

Fig. 1

Research framework"

Fig. 2

Changes on carbon emissions of agriculture from 1993 to 2017 in Hubei Province"

Fig. 3

The trend of agricultural carbon emission in Hubei Province"

Table 2

ADF unit root test for variables"

变量 Variable (C,T,L) ADF 10%的临界值 10% critical value 结果 Result
lnr (C,T,1) -2.619490 -3.248592 不平稳 Nonstationary
Δlnr (C,T,0) -4.724729 -3.248592 平稳 Stationary
lnqd (C,T,4) 1.668840 -3.268973 不平稳 Nonstationary
Δlnqd (C,T,0) -4.066077 -3.248592 平稳 stationary
lnny (C,T,0) -4.486446 -2.635542 平稳 Stationary
lnnm (C,T,0) -3.590363 -2.635542 平稳 Stationary
lnhf (C,T,1) -2.083700 -2.638752 不平稳 Nonstationary
Δ(lnhf) (C,T,0) -2.467557 -2.638752 不平稳 Nonstationary
Δ(lnhf,2) (C,T,2) -2.772617 -2.650413 平稳 Stationary
lncy (C,T,4) -4.462896 -3.268973 平稳 Stationary
lnfg (C,T,0) -1.058579 -2.635542 不平稳 Nonstationary
Δ(lnfg) (C,T,0) -3.567947 -2.638752 平稳 Stationary
lngg (C,T,0) -1.364105 -2.635542 不平稳 Nonstationary
Δ(lngg) (C,T,0) -4.724753 -2.638752 平稳 Stationary

Table 3

The logarithmic linear regression results of agricultural carbon emission intensity to economic growth"

回归方程
Regression equation
lnqd lnny lnnm lnhf lncy lnfg lngg
截距项 Intercept term 4.044588 1.280000 0.613811 2.075700 -1.592469 0.413725 -0.180667
lnr 0.400699 0.367696 0.372047 0.463909 0.660435 0.058325 0.225756
R2 0.671052 0.468211 0.730201 0.807386 0.920123 0.283119 0.583475
F 46.91988 20.25022 62.24868 96.40987 264.9415 9.083428 32.21875
P-value 0.000001 0.000162 0.000000 0.000000 0.000000 0.006185 0.000009
DW 0.166886 0.553936 1.629285 0.269658 0.662351 0.343682 0.779662

Table 4

The ADF unit root test results of the residual sequence"

变量 Variable (C, T, K) ADF 10%临界值 10% critical value P值 P-value 结果 Result
e(lnqd) (C,T,3) -1.762135 -1.607830 0.0743 平稳 Stationary
e(lnny) (C,T,0) -2.940086 -1.608793 0.0051 平稳 Stationary
e(lnnm) (C,T,0) -4.965301 -1.608793 0.0000 平稳Stationary
e(lnhf) (C,T,0) -1.288432 -1.608793 0.1767 不平稳Nonstationary
e(lncy) (C,T,2) -4.278487 -1.608175 0.0002 平稳 Stationary
e(lnfg) (C,T,0) -1.302478 -1.608793 0.1726 不平稳 Nonstationary
e(lngg) (C,T,0) -3.322898 -1.608793 0.0019 平稳 Stationary
[1] 李波, 张俊飚, 李海鹏 . 中国农业碳排放时空特征及影响因素分解研究. 中国人口·资源与环境, 2011,21(8):80-86.
LI B, ZHANG J B, LI H P . Research on spatial-temporal characteristics and affecting factors decomposition of agricultural carbon emission in China. China Population, Resources and Environment, 2011,21(8):80-86. (in Chinese)
[2] 张滨, 吕洁华 . 温室气体排放的环境库兹涅茨曲线检验与减排路径的冲击动态——基于黑龙江省统计核算数据. 气候变化研究进展, 2019,15(1):84-94.
ZHANG B, LÜ J H . EKC inspection and dynamic impact of emissions reduction paths for greenhouse gas emissions-based on statistical data in Heilongjiang province. Climate Change Research, 2019,15(1):84-94. (in Chinese)
[3] 丁宝根, 杨树旺 . 抚州市碳排放的EKC检验及驱动因素分析. 资源与产业, DOI: 10.13776/j.cnki.resourcesindustries.20190110.013.
DING B G, YANG S W . EKC test and driver analysis of carbon emission in Fuzhou. Resources & Industries, DOI: 10.13776/j.cnki.resourcesindustries.20190110.013. (in Chinese)
[4] 赵丽霞, 魏巍贤 . 能源与经济增长模型研究. 预测, 1998,6(6):32-34.
ZHAO L X, WEI W X . Energy and economic growth model research. Forecasting, 1998,6(6):32-34. (in Chinese)
[5] 雷达, 陈志华, 邓建强 . 能源化工循环经济中类Cobb-Douglas生产函数简化及资源优化分配. 系统工程理论与实践, 2014,34(3):683-690.
doi: 10.1016/j.jtbi.2018.12.023 pmid: 30571960
LEI D, CHEN Z H, DENG J Q . Simplification of quasi-Cobb- Douglas production function and the optimization of resources distribution for circular economy. Systems Engineering-Theory & Practice, 2014,34(3):683-690. (in Chinese)
doi: 10.1016/j.jtbi.2018.12.023 pmid: 30571960
[6] 田云, 张俊飚, 李波 . 中国农业低碳竞争力区域差异与影响因素研究. 干旱区资源与环境, 2013,27(6):1-6.
TIAN Y, ZHANG J B LI B . Research on regional difference and affecting factor on competitiveness of agricultural low-carbon in China. Journal of Arid Land Resources and Environment, 2013,27(6):1-6. (in Chinese)
[7] 张明志 . 经济增长与产业结构变动的碳排放效应研究[D]. 济南: 山东大学, 2017.
doi: 10.1016/j.scitotenv.2019.02.363 pmid: 30852204
ZHANG M Z . A research on carbon emission effect of economic growth and the changes of industrial structure[D]. Jinan: Shandong University, 2017. (in Chinese)
doi: 10.1016/j.scitotenv.2019.02.363 pmid: 30852204
[8] 李波, 刘雪琪, 梅倩, 王昆 . 湖北省农地利用方式变化的碳效应特征与空间差异. 中国人口·资源与环境, 2018,28(10):62-70.
LI B, LIU X Q, MEI Q, WANG K . Study on carbon effects and spatial differences based on changes of agricultural land use in Hubei Province. China Population, Resources and Environment, 2018,28(10):62-70. (in Chinese)
[9] 何炫蕾, 陈兴鹏, 庞家幸 . 基于LMDI的兰州市农业碳排放现状及影响因素分析. 中国农业大学学报, 2018,23(7):150-158.
HE X L, CHEN X P, PANG J X . Analysis on the status and influencing factors of agricultural carbon emissions in Lanzhou based on LMDI. Journal of China Agricultural University, 2018,23(7):150-158. (in Chinese)
[10] 李国志, 李宗植, 周明 . 碳排放与农业经济增长关系实证分析. 农业经济与管理, 2011,4(8):34-39.
LI G Z, LI Z Z, ZHOU M . Empirical analysis on relationship between carbon emissions and agricultural economic growth. Agricultural Economics and Management, 2011,4(8):34-39. (in Chinese)
[11] 赵杨, 严良政, 窦应瑛 . 基于Kaya模型的大连市农业CO2排放影响因素分解研究. 环境科学导刊, 2016,35(2):21-26.
ZHAO Y, YAN L Z, DOU Y Y . Study on resolution of factors influencing agricultural CO2 emission of Dalian based on Kaya model. Environmental Science Survey, 2016,35(2):21-26. (in Chinese)
[12] 赵先超, 宋丽美 . 湖南省农地利用碳排放与农业经济关系研究. 生态与农村环境学报, 2018,34(11):976-981.
ZHAO X C, SONG L M . Carbon emission from agricultural land use and its relationship with agricultural economy in Hunan Province. Journal of Ecology and Rural Environment, 2018,34(11):976-981. (in Chinese)
[13] COLE M A . Development, trade, and the environment: how robust is the Environmental Kunzets Cuvre. Environment and Development Economics, 2003(8):557-580.
doi: 10.1016/j.scitotenv.2019.05.028 pmid: 31078854
[14] ALEXANDRA L . Corruption and the environmental Kuznets Curve: Empirical evidence for sulfur. Ecological Economics, 2010,69(11):2191-2201.
doi: 10.1016/j.ecolecon.2010.06.004
[15] SOONAE P, YOUNGMI L . Regional model of EKC for air pollution: Evidence from the Republic of Korea. Energy Policy, 2011,39(10):5840-5849.
doi: 10.1016/j.enpol.2011.06.028
[16] ACIL T P L . Agriculture and GHG mitigation policy: Options in addition to the CPRS. South Wales: Industry & Investment NSW, 2009.
doi: 10.1161/CIRCULATIONAHA.119.042155 pmid: 31841369
[17] RUBEN N L, ANDREW J P, ROBERT N S . Land-use change and carbon sinks: Econometric estimation of the carbon sequestration supply function. Journal of Environmental Economics and Management, 2005,51(2):135-152.
doi: 10.1016/j.jeem.2005.08.001
[18] COONDOO D, DINDA S . Causality between income and emission: A country group-specific econometric analysis. Ecological Economics, 2002,40:351-367.
doi: 10.1016/S0921-8009(01)00280-4
[19] 李波, 张俊飚, 徐卫涛 . 我国循环农业发展时空差异及制约因素分析. 华中农业大学学报(社会科学版), 2010(4):21-26.
LI B, ZHANG J B, XU W T . Analysis on spatial and temporal differences and constraints of circular agriculture development in China. Journal of Huazhong Agricultural University (Social Sciences Edition), 2010(4):21-26. (in Chinese)
[20] JOHNSON J M F . Agricultural opportunities to mitigate greenhouse gas emissions. Environmental Pollution, 2007,150:107-124.
doi: 10.1016/j.envpol.2007.06.030 pmid: 17706849
[21] WEST T O, MARLAND G . A synthesis of carbon sequestration, carbon missions, and net carbon flux in agriculture: comparing tillage practices in the United States. Agriculture Ecosystems and Environment, 2002,91:217-232.
doi: 10.1016/S0167-8809(01)00233-X
[22] DUBEY A, LAL R . Carbon footprint and sustainability of agricultural production systems in Punjab, India and Ohio, USA. Journal of Crop Improvement, 2009,23:332-350.
doi: 10.1080/15427520902969906
[23] 李晋 . 基于误差修正模型的河南省新型城镇化与经济增长关系研究. 河南大学学报(社会科学版), 2016,56(6):29-33.
LI J . Error correction based research on the relationship between new urbanization and economic growth in Henan province. Journal of Henan University (Social Science Edition), 2016,56(6):29-33. (in Chinese)
[24] 王巧英, 刘耘沁, 刘海媛 . 中国固定资产投资与经济增长的关系——基于协整与误差修正模型的动态分析. 内蒙古统计, 2016(5):12-16.
WANG Q Y, LIU G Q, LIU H Y . The relationship between China's fixed asset investment and economic growth-based on the dynamic analysis of co-integration and error correction models. Inner Mongolia Statistics, 2016(5):12-16. (in Chinese)
[25] 李中才, 王广成, 娄美珍 . 中国生态足迹与经济增长的协整、误差修正模型及预测. 系统工程, 2007,25(8):63-67.
LI Z C, WANG G C, LOU M Z . A co-integration analysis and an error-correction model for ecological footprint and economy growth in China. Systems Engineering, 2007,25(8):63-67. (in Chinese)
[26] 吴贤荣, 张俊飚, 田云 . 中国省域农业碳排放: 测算、效率变动及影响因素研究——基于DEA-Malmquist 指数分解方法与Tobit模型运用. 资源科学, 2014,36(1):129-138.
WU X R, ZHANG J B, TIAN Y . Provincial agricultural carbon emissions in China: Calculation, performance change and influencing factors. Resources Science, 2014,36(1):129-138. (in Chinese)
[27] 张秀梅, 李升峰, 黄贤金 . 江苏省1996 年至2007年碳排放效应及时空格局分析. 资源科学, 2010,12(4):768-775.
ZHANG X M, LI S F, HUANG X J . Effects of carbon emissions and their spatio-temporal patterns in Jiangsu Province from 1996 to 2007. Resources Science, 2010,12(4):768-775. (in Chinese)
[28] 徐国泉 . 中国碳排放的因素分解模型及实证分析: 1995-2004. 中国人口·资源与环境, 2006(6):158-161.
XU G Q . Decomposition model and empirical study of carbon emissions for China: 1995-2004. China Population, Resources and Environment, 2006(6):158-161. (in Chinese)
[29] 田云, 张俊彪, 尹朝静, 吴贤荣 . 中国农业碳排放分布动态与趋势演进——基于31个省(市、区)2002-2011年面板数据分析. 中国人口·资源与环境, 2014(7):91-98.
TIAN Y, ZHANG J B, YIN Z J, WU X R . Distributional dynamics and trend evolution of China's agricultural carbon emissions-An analysis on panel data of 31 provinces from 2002 to 2011. China Population, Resources and Environment, 2014(7):91-98. (in Chinese)
[30] 李波, 刘雪琪, 梅倩, 王昆 . 湖北省农地利用方式变化的碳效应特征与空间差异. 中国人口·资源与环境, 2018,28(10):62-70.
LI B, LIU X Q, MEI Q, WANG K . Study on carbon effects and spatial differences based on changes of agricultural land use in Hubei Province. China Population, Resources and Environment, 2018,28(10):62-70. (in Chinese)
[31] 吴贤荣, 张俊飚, 程文能 . 中国种植业低碳生产效率及碳减排成本研究. 环境经济研究, 2017,2(1):57-69.
WU X R, ZHANG J B, CHENG W N . The efficiency and reduction cost of carbon emission in China's planting industry. Journal of Environmental Economics, 2017,2(1):57-69. (in Chinese)
[32] 张振龙, 孙慧, 苏洋 . 中国西北干旱地区农牧业生态系统碳排放的空间分布与趋势演进. 生态学报, 2017,37(16):1-10.
doi: 10.1016/j.chnaes.2016.09.003
ZHANG Z L, SUN H, SU Y . The spatial distribution and evolution trends of agricultural and animal husbandry carbon emissions in the northwest arid region of China. Acta Ecologica Sinica, 2017,37(16):1-10. (in Chinese)
doi: 10.1016/j.chnaes.2016.09.003
[1] TIAN Yun,WANG MengChen. Research on Spatial and Temporal Difference of Agricultural Carbon Emission Efficiency and Its Influencing Factors in Hubei Province [J]. Scientia Agricultura Sinica, 2020, 53(24): 5063-5072.
[2] LI Gan-qiong1, XU Shi-wei1, SUN Yi-guo2, LI Zhe-min1. Short-Term Fluctuations and Risk Evaluation of Vegetables Market Price in China [J]. Scientia Agricultura Sinica, 2011, 44(7): 1502-1511.
[3] . Climate Change and Main Agrometeorological disasters Corresponding to in Hubei Province [J]. Scientia Agricultura Sinica, 2007, 40(8): 1646-1653 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!