Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (5): 893-908.doi: 10.3864/j.issn.0578-1752.2019.05.011

• HORTICULTURE • Previous Articles     Next Articles

Effects of Nitrogen Application Levels on Nutrient, Yield and Quality of Tarocco Blood Orange and Soil Physicochemical Properties in the Three Gorges Area of Chongqing

YANG JiangBo,ZHANG Ji,LI JunJie,ZHENG YongQiang,LÜ Qiang,XIE RangJin,MA YanYan,DENG Lie,HE ShaoLan,YI ShiLai()   

  1. Citrus Research Institute, Southwest University/Citrus Research Institute, Chinese Academy of Agricultural Sciences, Chongqing 400712
  • Received:2018-10-22 Accepted:2018-12-28 Online:2019-03-01 Published:2019-03-12
  • Contact: ShiLai YI E-mail:yishilai@126.com

Abstract:

【Objective】 This study investigated effects of different nitrogen application levels on nutrient uptake, fruit yield and quality, soil physical and chemical properties of late ripening citrus Tarocco blood orange in typical citrus orchards to provide a theoretical basis for the high-quality and high-yield of late-maturing citrus in the Three Gorges area of Chongqing city. 【Method】 Six different nitrogen treatments (N0 (0), N1 (1 kg/plant), N2 (1.5 kg/plant), N3 (2 kg/plant), N4 (2.5 kg/plant) and N5 (3 kg/plant)) were performed to study its effects on nutrient absorption of branches and leaves and fruit, fruit quality and yield and soil physicochemical properties using 7-year-old Tarocco blood orange grafted on Poncirus trifoliata (L.). 【Result】 Results showed that the increased nitrogen levels except N2 group significantly increased the dry matter amount of leaves and branches in different periods of blood orange with higher level in spring shoots than autumn shoots as well as higher level in leaves than branches. The nutrient absorption of nitrogen, phosphorus and potassium in spring shoots was the lowest under N0 treatment, and the absorption of nitrogen in leaves was significantly increased by the added nitrogen fertilizer with a peak level under N2 treatment while the absorption of phosphorus and potassium with a peak level under N3 treatment. Nitrogen application significantly increased the amount of nitrogen uptake of leaves and branches of autumn shoots with a maximum level under N5 treatment. High nitrogen treatments (N3-N5) significantly increased the amounts of phosphorus and potassium uptake of leaves and branches. Nitrogen first increased then decreased the nitrogen and potassium content of fruit with the maximum level under N2 treatment. The content of nitrogen and potassium in pulp was much higher than that of peel, while the phosphorus content was opposite. The maximum nutrient removal amount of nitrogen, phosphorus and potassium was found under N2 treatment with a significant increase, and the amount of nutrient removal was potassium>nitrogen>phosphorus. The pH value and content of organic matter of soil decreased significantly by adding nitrogen fertilizer while the content of available nitrogen and phosphorus of soil increased significantly with the maximum available potassium content under N3 treatment. Nitrogen increased the leaching of nitrate nitrogen in soil within 0-20 cm with the highest level under N2 treatment. Ammonium nitrogen was positively correlated with the nitrogen application rate. There was no significant difference among the content of nitrate nitrogen and ammonium nitrogen under all treatments within 20-40 cm soil layer. The content of nitrate nitrogen in 40-60 cm soil layer increased significantly under high nitrogen treatments, while the ammonium nitrogen content did not change. Nitrogen application first enhanced the thickness of pericarp, the longitudinal diameter, transverse diameter, average weight and yield, and then decreased with the highest level of the longitudinal and transverse diameter under N3 treatment and the highest weight and yield under N2 treatment. Nitrogen application first increased then decreased the total soluble solid (TSS) content without significant difference. Nitrogen input increased titratable acid (TA) content and but decreased TSS/TA ratio. N2 group had the highest vitamin C and anthocyanin content. Fruit coloration was relatively good between N2 and N3 treatments. Correlation analysis showed that the nitrogen content in leaves was positively corrected with the TA content of fruit and the thickness of pericarp, and negatively correlated with the ratio of TSS/TA, and the content of available N in soil was positively correlated with TA content and pericarp thickness, which was significantly negatively correlated with TSS/TA ratio of fruit.【Conclusion】Considering and analyzing, in the citrus orchard of the Three Gorges area of Chongqing, the recommended pure nitrogen application rate was ranged from 0.63 to 0.86 kg/plant which can guarantee a high level of yield and fruit quality, and is beneficial to the nutrient absorption and utilization of blood orange tree, while the risk of orchards’ soil environmental pollution was relatively low.

Key words: Three Gorges area of Chongqing city, Tarocco blood orange, nitrogen application level, nitrogen reduction, nutrition, fruit yield and quality

Fig. 1

Effects of nitrogen application on dry matter accumulation of blood orange leaves Different lowercase letters indicate significant differences (P <0.05). The same as below"

Fig. 2

Effects of nitrogen application on dry matter accumulation of blood orange twigs"

Table 1

Effects of nitrogen application on nutrient uptake of blood orange shoots"

枝梢类型
Shoot type
处理
Treatment
叶片Leaves (g/plant) 枝条Twigs (g/plant)
N P2O5 K2O N P2O5 K2O
春梢
Spring shoot
N0 40.39±7.14c 5.42±0.88c 16.90±2.02c 4.26±0.31c 0.97±0.11c 2.00±0.39c
N1 59.55±6.42b 7.83±0.38b 26.28±3.26b 5.08±0.82c 1.35±0.11b 3.03±0.43b
N2 81.81±9.93a 9.20±0.77a 25.97±2.64b 6.71±0.63b 1.44±0.07ab 3.50±0.12ab
N3 70.47±6.00ab 9.67±0.27a 36.20±3.61a 6.62±0.48b 1.55±0.15a 3.29±0.47ab
N4 72.79±5.75ab 9.61±0.92a 36.08±2.96a 7.12±0.30ab 1.62±0.10a 4.04±0.52a
N5 78.54±7.56a 9.29±0.83a 37.02±3.73a 7.86±0.55a 1.63±0.10a 3.76±0.41ab
秋梢
Autumn shoot
N0 18.97±1.85c 5.17±0.60c 12.66±0.61c 2.48±0.78c 0.98±0.11c 2.12±0.22b
N1 19.86±2.24c 3.67±0.30d 8.88±0.68d 2.92±0.19c 0.71±0.08d 1.50±0.14b
N2 22.61±2.20c 4.68±0.66cd 11.23±1.51cd 3.14±0.74c 0.80±0.12cd 2.07±0.48b
N3 33.49±3.34b 6.82±0.87b 16.98±1.89b 4.54±0.69b 1.30±0.09b 3.28±0.29a
N4 34.66±4.24b 7.75±0.56b 19.64±1.51a 4.66±0.79b 1.32±0.18b 3.59±0.51a
N5 46.88±2.68a 9.17±0.65a 20.14±1.93a 6.22±0.62a 1.60±0.19a 3.91±0.58a

Fig. 3

Effects of nitrogen application on nitorgen content of blood orange fruit"

Fig. 4

Effects of nitrogen application on P2O5 content of blood orange fruit"

Fig. 5

Effects of nitrogen application on K2O content of blood orange fruit"

Fig. 6

Effects of nitrogen application on nutrient removal amount of blood orange fruit"

Table 2

Mathematical relationship between nitrogen application and fruit N, P2O5 and K2O removal amount"

养分
Nutrient
方程
Equation
拐点
Inflection point
R 2 P
N y =-48.976x 2+65.859x +28.176 0.67 0.89 0.034
P2O5 y =-13.444x 2+17.035x +9.4192 0.63 0.88 0.039
K2O y =-55.59x 2+74.182x +32.222 0.67 0.88 0.045

Table 3

Effects of nitrogen application on soil physicochemical properties of blood orange orchard"

处理
Treatment
土壤容重
Soil bulk density (g?cm-3)
有机质
Organic matter (g?kg-1)
碱解氮
Available N (mg?kg-1)
有效磷
Available P (mg?kg-1)
速效钾
Available K (mg?kg-1)
N0 1.42±0.22a 12.00±0.85a 55.91±4.14c 56.50±3.33bc 163.26±8.26d
N1 1.40±0.09a 10.07±0.75b 56.68±2.49c 52.04±5.03c 249.95±9.13c
N2 1.52±0.04a 8.72±1.75bc 60.10±7.45c 68.83±11.74b 261.51±8.57c
N3 1.35±0.09a 9.50±1.00b 71.79±2.20b 72.32±9.91b 348.96±7.45a
N4 1.46±0.13a 6.91±0.71cd 79.24±3.49ab 116.08±12.59a 297.41±10.54b
N5 1.42±0.18a 6.71±0.72d 81.13±6.89a 130.24±3.88a 246.96±7.18c

Fig. 7

Effects of nitrogen application on NO- 3-N content in different soil layers"

Fig. 8

Effects of nitrogen application on NH+ 4-N content in different soil layers"

Table 4

Effects of nitrogen application on fruit size and peel thickness of blood orange"

处理
Treatment
纵径
Vertical diameter (mm)
横径
Transverse diameter (mm)
果形指数
Shape index
果皮厚度
Pericarp thickness (mm)
N0 69.28±1.85c 71.50±2.46b 0.97±0.01a 2.88±0.33c
N1 70.83±0.44bc 71.67±0.88b 0.99±0.03a 3.34±0.20bc
N2 73.22±0.51b 73.50±1.09ab 1.00±0.03a 3.34±0.30bc
N3 77.11±2.50a 76.50±1.42a 1.01±0.02a 3.74±0.30b
N4 74.50±1.27b 74.00±2.00ab 1.01±0.03a 4.52±0.11a
N5 73.89±1.59b 73.22±1.51b 1.01±0.01a 4.69±0.53a

Fig. 9

Effects of nitrogen application on average weight (left) and plant yield (right) of blood orange"

Table 5

Effects of nitrogen application on fruit intrinsic quality of blood orange"

处理
Treatment
可溶性固形物
TSS (%)
可滴定酸
TA (%)
固酸比
TSS/TA
N0 10.83±0.50a 0.71±0.02b 15.21±0.40a
N1 11.07±0.21a 0.77±0.04ab 14.39±0.56a
N2 11.20±0.36a 0.82±0.12a 13.60±0.40ab
N3 11.27±0.25a 0.80±0.02ab 14.03±0.50ab
N4 10.73±0.23a 0.83±0.05a 12.97±0.19b
N5 10.67±0.55a 0.85±0.02a 12.57±0.04b

Fig. 10

Effects of nitrogen application on vitamin C (left) and anthocyanin (right) content of blood orange"

Table 6

Effects of nitrogen application on color of blood orange fruit surface"

处理 Treatment L a b a/b
N0 65.08±0.61a 25.45±0.33c 34.97±0.44a 0.73±0.02d
N1 59.66±1.54d 27.81±0.26ab 32.35±0.30cd 0.86±0.02b
N2 61.13±0.44cd 27.38±0.57b 32.91±1.38bc 0.83±0.05bc
N3 61.97±0.90bc 28.83±0.72a 31.26±1.03d 0.93±0.05a
N4 62.02±1.79bc 27.82±0.99ab 32.95±0.60bc 0.84±0.04bc
N5 64.04±1.34ab 27.23±0.70b 34.39±0.95ab 0.79±0.03cd

Table 7

Correlation between nitrogen content in soil and leaves and fruit nutrients (n=18)"

成分
Parameters
果实养分含量
Nutrient content in fruit
果实养分带走量
Nutrient removal amount of fruit
N P2O5 K2O N P2O5 K2O
春梢叶氮含量 Nitrogen content in spring leaves 0.082 -0.041 0.329 0.376 0.296 0.366
秋梢叶氮含量 Nitrogen content in autumn leaves 0.306 -0.184 0.151 0.113 0.021 0.288
碱解氮含量 Available Nitrogen content 0.254 -0.192 -0.167 -0.323 -0.482* -0.372

Table 8

Correlation between Nitrogen content in soil and leaves and fruit yield and quality (n=18)"

成分
Parameters
可溶性固形物
TSS
可滴定酸
TA
固酸比
TSS/TA
维生素C
Vc
花色苷
Anthocyanin
果皮厚度
Pericarp thickness
产量
Yield
春梢叶氮含量
Nitrogen content in spring leaves
-0.257 0.358 -0.278 0.103 0.246 0.568* 0.394
秋梢叶氮含量
Nitrogen content in autumn leaves
-0.319 0.493* -0.568* 0.137 0.149 0.520* 0.345
碱解氮含量
Available nitrogen content
-0.353 0.635** -0.719** 0.264 -0.047 0.917** -0.206
[1] 黄成能, 卢晓鹏, 李静, 肖玉明, 孙敏红, 谢深喜 .柑橘氮素营养生理研究进展. 湖南农业科学,2013(15):76-79.
doi: 10.3969/j.issn.1006-060X.2013.15.025
HUANG C N, LU X P, LI J, XIAO Y M, SUN M H, XIE S X .Advances in nutrient and physiology of nitrogen in citrus.Hunan Agricultural Sciences ,2013(15):76-79. (in Chinese)
doi: 10.3969/j.issn.1006-060X.2013.15.025
[2] 黄成能 .氮胁迫对柑橘营养生长及GS/GOGAT循环酶基因表达影响的研究[D].长沙: 湖南农业大学, 2014.
HUANG C N .Effect of nitrogen stress on citrus vegetative growth and expression of enzyme genes in cycle of GS/GOGAT[D].Changsha: Hunan Agricultural University, 2014. ( in Chinese)
[3] NGUYEN H, SCHOENAU J J, VAN REES K, NGUYEN D, QIAN P . Long-term nitrogen, phosphorus and potassium fertilization of cassava influences soil chemical properties in North Vietnam. Canadian Journal of Soil Science, 2001,81(4):481-488.
doi: 10.4141/S00-048
[4] 鲁剑巍, 陈防, 王运华, 刘东碧, 万运帆, 余常兵 .氮磷钾肥对红壤地区幼龄柑橘生长发育和果实产量及品质的影响. 植物营养与肥料学报, 2004,10(4):413-418.
doi: 10.11674/zwyf.2004.0414
LU J W, CHEN F, WANG Y H, LIU D B, WAN Y F, YU C B . Effect of N, P, K fertilization on young citrus tree growth, fruit yield and quality in area of red soil. Plant Nutrition and Fertilizer Science , 2004,10(4):413-418. (in Chinese)
doi: 10.11674/zwyf.2004.0414
[5] IWAKIRI T, NAKAHARA M .Nitrogen fertilization programs in Satsuma mandarin groves in Japan.Proceedings of the International Society of Citriculture ,1983(2):571-574
[6] 凌丽俐, 彭良志, 淳长品, 江才伦, 曹立 .赣南脐橙叶片营养状况对果实品质的影响. 植物营养与肥料学报, 2012,18(4):947-954.
doi: 10.11674/zwyf.2012.11402
LING L L, PENG L Z, CHUN C P, JIANG C L, CAO L . The relationship between leaf nutrients and fruit quality of navel orange in southern Jiangxi province of China. Plant Nutrition and Fertilizer Science , 2012,18(4):947-954. (in Chinese)
doi: 10.11674/zwyf.2012.11402
[7] 杨生权 .土壤和叶片养分状况对柑橘产量和品质的影响[D].重庆: 西南大学, 2008.
YANG S Q .Studies on the influence of soil and leaf nutrient on citrus fruit’s output and quality[D].Chongqing: Southwest University, 2008. ( in Chinese)
[8] 李信五 .温州蜜柑7月施氮过量会诱发产生青浮皮果. 湖北农业科学,1987(6):12.
LI X W .The excessive application of nitrogen in Wenzhou mandarin orange in July will induce the production of green floating fruit.Hubei Agricultural Sciences ,1987(6):12. (in Chinese)
[9] ALVA A K, FARES A, DOU H . Managing citrus trees to optimize dry mass and nutrient partitioning. Journal of plant nutrition, 2003,26(8):1541-1559.
doi: 10.1081/pln-120022362
[10] BYJU G, ANAND M H . Differential response of short- and long-duration cassava cultivars to applied mineral nitrogen. Journal of Plant Nutrition and Soil Science, 2009,172(4):572-576.
doi: 10.1002/jpln.200800044
[11] 赵营, 同延安, 赵护兵 .不同供氮水平对夏玉米养分累积、转运及产量的影响. 植物营养与肥料学报, 2006,12(5):622-627.
doi: 10.11674/zwyf.2006.0504
ZHAO Y, TONG Y A, ZHAO H B . Effects of different N rates on nutrients accumulation, transformation and yield of summer maize. Plant Nutrition and Fertilizer Science , 2006,12(5):622-627. (in Chinese)
doi: 10.11674/zwyf.2006.0504
[12] 周鑫斌, 温明霞, 王秀英, 樊晓翠, 孙彭寿, 石孝均, 李伟, 戴亨林 .三峡重庆库区柑橘园氮素平衡状况研究. 植物营养与肥料学报, 2011,17(1):88-94.
doi: 10.11674/zwyf.2011.0466
ZHOU X B, WEN M X, WANG X Y, FAN X C, SUN P T, SHI X J, LI W, DAI H L . Soil nitrogen balance in citrus orchards of the Three Gorges area in Chongqing. Plant Nutrition and Fertilizer Science , 2011,17(1):88-94. (in Chinese)
doi: 10.11674/zwyf.2011.0466
[13] 刘相超, 祖波, 宋献方, 夏军, 唐常源, 张依章 .三峡库区梁滩河流域水化学与硝酸盐污染. 地理研究, 2010,29(4):629-639.
doi: 10.3724/SP.J.1084.2010.00199
LIU X C, ZU B, SONG X F, XIA J, TANG C Y, ZHANG Y Z . Water chemistry and nitrate pollution in the Liangtan river basin in the Three Gorges reservoir area. Geographical Research , 2010,29(4):629-639. (in Chinese)
doi: 10.3724/SP.J.1084.2010.00199
[14] 鲍士旦 .土壤农化分析. 3 版. 北京: 中国农业出版社, 2000: 263-270.
BAO S D. Soil and Agricultural Chemistry Analysis:3rd ed. Beijing: China Agriculture Press, 2000: 263-270. (in Chinese)
[15] 徐娟 .几个柑桔产区果实色泽评价及红肉脐橙(Citrus sinensis L.cv.Cara cara)果肉呈色机理初探[D].武汉: 华中农业大学, 2002.
XU J .Fruit color evaluation among citrus product areas and preliminary study on the mechanism of pigment accumulation in the flesh of Red flesh navel oranges (Citrus sinensis L.cv. Cara cara)[D].Wuhan: Huazhong Agricultural University, 2002. (in Chinese)
[16] 曹少谦, 潘思轶 .血橙花色苷研究进展. 食品科学, 2006,27(9):278-281.
doi: 10.3321/j.issn:1002-6630.2006.09.066
CAO S Q, PAN S Y . Review of anthocyanins from blood orange. Food Science , 2006,27(9):278-281. (in Chinese)
doi: 10.3321/j.issn:1002-6630.2006.09.066
[17] 位高生, 胡承孝, 谭启玲, 朱东煌, 李潇彬 .氮磷减量施肥对琯溪蜜柚果实产量和品质的影响. 植物营养与肥料学报, 2018,24(2):471-478.
doi: 10.11674/zwyf.17331
WEI G S, HU C X, TAN Q L, ZHU D H, LI X B . The effect of nitrogen and phosphorus fertilizer reduction on yield and quality of Guanxi pomelo. Plant Nutrition and Fertilizer Science, 2018,24(2):471-478 (in Chinese)
doi: 10.11674/zwyf.17331
[18] 姜琳琳, 韩立思, 韩晓日, 战秀梅, 左仁辉, 吴正超, 袁程 .氮素对玉米幼苗生长、根系形态及氮素吸收利用效率的影响. 植物营养与肥料学报, 2011,17(1):247-253.
doi: 10.11674/zwyf.2011.0134
JIANG L L, HAN L S, HAN X R, ZHAN X M, ZUO R H, WU Z C, YUAN C . Effects of nitrogen on growth, root morphological traits, nitrogen uptake and utilization efficiency of maize seedlings. Plant Nutrition and Fertilizer Science , 2011,17(1):247-253. (in Chinese)
doi: 10.11674/zwyf.2011.0134
[19] 江秋菊, 周鑫斌, 石孝均, 周永祥 .甜橙氮素营养研究进展. 安徽农业科学, 2013,41(2):575-577, 580.
doi: 10.3969/j.issn.0517-6611.2013.02.041
JIANG Q J, ZHOU X B, SHI X J, ZHOU Y X . Research progress on orange nitrogen nutrition. Journal of Anhui Agricultural Sciences , 2013,41(2):575-577, 580. (in Chinese)
doi: 10.3969/j.issn.0517-6611.2013.02.041
[20] 卢晓鹏, 李静, 黄成能, 肖玉明, 谢深喜 .氮素胁迫对枳生长发育及其氨基酸含量的影响. 湖南农业大学学报(自然科学版), 2013,39(6):615-620.
doi: 10.3724/SP.J.1238.2013.00615
LU X P, LI J, HUANG C N, XIAO Y M, XIE S X . Effects of nitrogen stress on the development and amino acid content of trifoliate orange (Poncirus trifoliata (L.) Raf.). Journal of Hunan Agricultural University (Natural Science Edition) , 2013,39(6):615-620. (in Chinese)
doi: 10.3724/SP.J.1238.2013.00615
[21] MARTÍNEZ-ALCÁNTARA B, QUIÑONES A, PRIMO-MILLO E, LEGAZ F . Nitrogen remobilization response to current supply in young citrus trees.Plant and Soil ,2011(342):433-443.
[22] 申玉香, 栾文婷 .氮素水平对小麦幼苗性状和营养元素含量的影响. 中国农学通报, 2009,25(24):196-199.
SHEN Y X, LUAN W T . Effect of different nitrogen levels on wheat seedling trait and nutrient content. Chinese Agricultural Science Bulletin , 2009,25(24):196-199. (in Chinese)
[23] 赵丹, 莫良玉, 刘铭, 周瑞阳 .氮胁迫对红麻生理生化特性及干茎产量的影响. 南方农业学报, 2011,42(6):609-611.
doi: 10.3969/j.issn.2095-1191.2011.06.010
ZHAO D, MO L Y, LIU M, ZHOU R Y . Effect of nitrogen stress on physio-biochemical characteristics and dry stem yield of Hibiscus cannabinus L.Journal of Southern Agriculture , 2011,42(6):609-611. (in Chinese)
doi: 10.3969/j.issn.2095-1191.2011.06.010
[24] 李文涛, 杨江波, 余倩倩, 田旺海, 普金安, 陈磊, 邓烈, 何绍兰, 易时来 .柑橘施肥养分推荐方法研究进展. 安徽农业科学, 2017,45(28):7-10.
doi: 10.3969
LI W T, YANG J B, YU Q Q, TIAN W H, PU J A, CHEN L, DENG L, HE S L, YI S L . Research progress on methods of nutrient recommendation for fertilization in citrus. Journal of Anhui Agricultural Sciences , 2017,45(28):7-10. (in Chinese)
doi: 10.3969
[25] 李清南, 曹淑燕, 古咸杰, 熊博, 叶霜, 邱霞, 汪志辉 .两种施肥模式下柑橘树体氮素吸收与运转机制的研究. 浙江农业学报, 2016,28(1):51-55.
doi: 10.3969/j.issn.1004-1524.2016.01.09
LI Q N, CAO S Y, GU X J, XIONG B, YE S, QIU X, WANG Z H . Study on nitrogen absorption and operation mechanism of citrus tree in two fertilization modes. Acta Agriculturae Zhejiangensis , 2016,28(1):51-55. (in Chinese)
doi: 10.3969/j.issn.1004-1524.2016.01.09
[26] 束怀瑞 .果树栽培生理学. 北京: 中国农业出版社, 1997: 304.
SHU H R . The Pomology Physiology. Beijing: China Agriculture Press, 1997: 304. (in Chinese)
[27] PAPP J . Effect of nitrogen dressings to Jonathan apple trees in a long-term experiment. International Journal of Horticultural Science, 2000,6(1):128-130.
[28] 廖炜, 李先信, 阳志慧, 卜范文 .氮磷肥对柑橘的影响研究进展. 湖南农业科学,2010(24):34-35.
doi: 10.3969/j.issn.1006-060X.2010.24.013
LIAO W, LI X X, YANG Z H, BU F W .Research progress on the effects of nitrogen phosphate fertilizer on citrus.Hunan Agricultural Sciences ,2010(24):34-35. (in Chinese)
doi: 10.3969/j.issn.1006-060X.2010.24.013
[29] NAKHLLA F G, ISMAIL A E, ABOUL H Z . Effect of some organic and inorganic nitrogen fertilizers on growth and productivity of Balady orange trees in relation to infection of citrus nematode Tylenchulus semipenetrans . Pakistan Journal of Nematology , 1998,16(2):111-126.
[30] OBREZA T A, ROUSE R E, SHERROD J B . Economics of controlled-release fertilizer use on young citrus trees. Journal of Production Agriculture, 1999,12(1):69-73.
doi: 10.2134/jpa1999.0069
[31] BINGHAM F T, DAVIS S, SHADE E . Water relations, salt balance, and nitrate leaching losses of a 960-acre citrus watershed. Soil Science, 1971,112(6):410-418.
doi: 10.1097/00010694-197112000-00005
[32] ALVA A K, PARAMASIVAM S, OBREZA T A, SCHUMANN A W . Nitrogen best management practice for citrus trees: I. Fruit yield, quality, and leaf nutritional status. Scientia Horticulturae, 2006,107(3):233-244.
doi: 10.1016/j.scienta.2005.05.017
[33] 朱波, 汪涛, 况福虹, 徐泰平, 唐家良, 武永峰 .紫色土坡耕地硝酸盐淋失特征. 环境科学学报, 2008,28(3):525-533.
doi: 10.3321/j.issn:0253-2468.2008.03.018
ZHU B, WANG T, KUANG F H, XU T P, TANG J L, WU Y F . Characteristics of nitrate leaching from hilly cropland of purple soil. Acta Scientiae Circumstantiae , 2008,28(3):525-533. (in Chinese)
doi: 10.3321/j.issn:0253-2468.2008.03.018
[34] 白荣, 郎南军, 邵智 .不同土地类型氮磷的输出及富营养化风险分析. 水土保持学报, 2011,25(6):211-215.
BAI R, LANG N J, SHAO Z. Analysis N, P output and eutrophication risk under the different land use types. Journal of Soil and Water Conversation , 2011,25(6):211-215. (in Chinese)
[35] 王艳丽, 张冬梅, 李春阳 .农田氮磷流失对水体富营养化的影响及防治对策. 现代农业科技,2012(3):305.
doi: 10.3969/j.issn.1007-5739.2012.03.190
WANG Y L, ZHANG D M, LI C Y .Effects of N, P loss on eutrophication of water body and its control countermeasures in farmland.Modern Agricultural Science and Technology ,2012(3):305. (in Chinese)
doi: 10.3969/j.issn.1007-5739.2012.03.190
[36] 付玉芹, 雷玉平, 郑力, 耿清国 .不同施氮水平下深层土壤硝态氮淋失特征研究. 中国农学通报, 2006,22(6):245-248.
doi: 10.3969/j.issn.1000-6850.2006.06.061
FU Y Q, LEI Y P, ZHENG L, GENG Q G . Nitrate leaching characteristics in deep soil layer for different fertilization methods. Chinese Agricultural Science Bulletin , 2006,22(6):245-248. (in Chinese)
doi: 10.3969/j.issn.1000-6850.2006.06.061
[37] 樊卫国, 葛会敏 .不同形态及配比的氮肥对枳砧脐橙幼树生长及氮素吸收利用的影响. 中国农业科学, 2015,48(13):2666-2675.
doi: 10.3864/j.issn.0578-1752.2015.13.018
FAN W G, GE H M .Effects of nitrogen fertilizer of different forms and ratios on the growth, nitrogen absorption and utilization of young Navel orange trees grafted on Poncirus Trifoliate . Scientia Agricultura Sinica, 2015,48(13):2666-2675. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.13.018
[1] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[2] LI YangMei,LIU Xin,JIA MengHan,TONG YuXin. Tipburn Injury and Nutritional Quality of Lettuce Plants as Affected by Humidity Control During the Light Period in A Plant Factory [J]. Scientia Agricultura Sinica, 2022, 55(20): 4011-4019.
[3] WANG ChuHan,LIU Fei,GAO JianYong,ZHANG HuiFang,XIE YingHe,CAO HanBing,XIE JunYu. The Variation Characteristics of Soil Organic Carbon Component Content Under Nitrogen Reduction and Film Mulching [J]. Scientia Agricultura Sinica, 2022, 55(19): 3779-3790.
[4] HOU HuiZhi,ZHANG XuCheng,YIN JiaDe,FANG YanJie,WANG HongLi,YU XianFeng,MA YiFan,ZHANG GuoPing,LEI KangNing. Effects of Deep and Layered Application of Reduced Chemical Nitrogen Fertilizer on Water, Nutrient Utilization and Yield of Spring Wheat in Rain-Fed Arid Area [J]. Scientia Agricultura Sinica, 2022, 55(17): 3289-3302.
[5] ZHAO XiaoHui,ZHANG YanYan,RONG YaSi,DUAN JianZhao,HE Li,LIU WanDai,GUO TianCai,FENG Wei. Study on Critical Nitrogen Dilution Model of Winter Wheat Spike Organs Under Different Water and Nitrogen Conditions [J]. Scientia Agricultura Sinica, 2022, 55(17): 3321-3333.
[6] DING Peng,TONG YueYue,LIU HuiChao,YIN Xin,LIU JiangJun,HE Xi,SONG ZeHe,ZHANG HaiHan. Dynamic Changes of Yolk Microbiota in Yellow-Feathered Broiler and Its Role on Early Colonization of Intestinal Microbiota During the Embryonic Stage [J]. Scientia Agricultura Sinica, 2022, 55(14): 2837-2849.
[7] Biao SONG,KaiYue XU,XiaoHua WANG,JiuXin GUO,LiangQuan WU,Da SU. Spatial Distribution of Phytic Acid and Minerals’ Availability in Pomelo Fruit [J]. Scientia Agricultura Sinica, 2021, 54(6): 1229-1242.
[8] XU HaoCong,YAO Bo,WANG Quan,CHEN TingTing,ZHU TieZhong,HE HaiBing,KE Jian,YOU CuiCui,WU XiaoWen,GUO ShuangShuang,WU LiQuan. Determination of Suitable Band Width for Estimating Rice Nitrogen Nutrition Index Based on Leaf Reflectance Spectra [J]. Scientia Agricultura Sinica, 2021, 54(21): 4525-4538.
[9] ZHAI ShengNan,LIU AiFeng,LI FaJi,LIU Cheng,GUO Jun,HAN Ran,ZI Yan,WANG XiaoLu,LÜ YingYing,LIU JianJun. Improvement and Application of the Method for Determining Yellow Pigment Content in Wheat Grain [J]. Scientia Agricultura Sinica, 2021, 54(2): 239-247.
[10] WANG KunJiao,REN Tao,LU ZhiFeng,LU JianWei. Effects of Different Magnesium Supplies on the Growth and Physiological Characteristics of Oilseed Rape in Seeding Stage [J]. Scientia Agricultura Sinica, 2021, 54(15): 3198-3206.
[11] LIU Kai,XIE YingHe,LI TingLiang,MA HongMei,ZHANG QiRu,JIANG LiWei,CAO Jing,SHAO JingLin. Effects of Nitrogen Reduction and Film Mulching on Wheat Yield and Nutrient Absorption and Utilization in Loess Plateau [J]. Scientia Agricultura Sinica, 2021, 54(12): 2595-2607.
[12] PANG BaoGang,CAO Nan,ZHOU ZhiGuo,ZHAO WenQing. Critical Phosphorus Concentration Dilution Model and Phosphorus Nutrition Diagnosis in Two Cotton Cultivars with Different Phosphorus Sensitivity [J]. Scientia Agricultura Sinica, 2020, 53(22): 4561-6130.
[13] ZHANG Ji,LI JunJie,WAN LianJie,YANG JiangBo,ZHENG YongQiang,LÜ Qiang,XIE RangJin,MA YanYan,DENG Lie,YI ShiLai. Effects of Potassium Application Levels on Nutrient, Yield and Quality of Newhall Navel Orange [J]. Scientia Agricultura Sinica, 2020, 53(20): 4271-4286.
[14] WANG HaiLian,WANG RunFeng,LIU Bin,ZHANG HuaWen. Effects of Harvesting at Different Growth Stage on Agronomic and Nutritional Quality Related Traits of Sweet Sorghum [J]. Scientia Agricultura Sinica, 2020, 53(14): 2804-2813.
[15] JIANG QianHong,LU ZhiFeng,ZHAO HaiYan,GUO JunJie,LIU WenBo,LING Ning,GUO ShiWei. Potential Analysis of Reducing Chemical Nitrogen Inputs While Increasing Efficiency by Organic-Inorganic Fertilization in Winter Rapeseed Producing Areas of the Middle and Lower Reaches of the Yangtze River [J]. Scientia Agricultura Sinica, 2020, 53(14): 2907-2918.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!