Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (13): 2599-2611.doi: 10.3864/j.issn.0578-1752.2024.13.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Long-Term Application of Chemical Fertilizers Induces Soil Acidification and Soil Exchangeable Base Cation Loss on Paddy in Southern China

JI JianHua1(), LÜ ZhenZhen1, LIU ShuZhen3, HOU HongQian1, LIU YiRen1, LIU XiuMei1, LI XuHua2(), LAN XianJin1   

  1. 1 Institute of Soil Fertilizer and Resource Environment, Jiangxi Academy of Agricultural Sciences/National Engineering and Technology Research Center for Red Soil Improvement/Key Laboratory of Acidified Soil Amelioration and Utilization, Ministry of Agriculture and Rural Affairs, Nanchang 330200
    2 College of Resources and Environment, Shandong Agricultural University/ National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Taian 271018, Shandong
    3 Jiangxi Biotech Vocational College, Nanchang 330200
  • Received:2023-08-21 Accepted:2023-10-23 Online:2024-07-09 Published:2024-07-09
  • Contact: LI XuHua

Abstract:

【Objective】 The effects of nitrogen, phosphorus, and potassium fertilizer application on soil acidification, exchangeable aluminum production, and loss of basic ions were assessed, so as to provide the theory basis for maintaining soil health and sustainable development of farmland. 【Method】 The field experiment, established in 1984, was designed to have five treatments, that is, CK (an early rice-late rice rotation without fertilizer), PK (N deficiency), NP (K deficiency), NK (P deficiency), and NPK (balanced chemical fertilizer application), and all the treatments, except CK, were the same rate in N nutrient supply. Soil samples of 0-10 cm, 10-20 cm, 20-40 cm and 40-60 cm collected for each treatments after late rice harvest in 2016 were used to measure soil pH, exchangeable acidity, exchangeable base cation, accumulation of exchangeable base cation, pH buffer capacity, and acidification rate, etc.【Result】 After 33 years of continuous application of chemical fertilizer, the soil pH under CK, PK, NP, NK and NPK treatments decreased significantly by 0.82, 0.91, 1.13, 0.8 and 1.19 pH units compared with an initial pH of 6.5 in the 0-20 cm soil layers, respectively, which resulted in obvious acidification of cultivated soil, and the acidification rates reached 1.1, 1.22, 1.46, 1.13 and 1.58 kmol·hm-2·a-1, respectively. Different fertilization treatments were different from CK treatment. Compared with CK treatment, the soil pH of the 0-40 cm layer significantly decreased by 0.28-0.38 units under NP treatment and by 0.35-0.46 units under NPK treatment. The exchangeable acidity of the soil increased by 35.5%-110.0% under NP treatment and by 30.4%-120.5% in the NPK treatment, with a significant increase in exchangeable aluminum by 56.2%-157.6% and 73.7%-189.8%, respectively. The total content of exchangeable bases in the soil decreased by 6.3%-14.9% under NP treatment and by 9.9%-13.2% under NPK treatment, resulting in a decrease in base saturation by 2.9-14.9 and 2.6-15.4 percentage points, respectively. The NK treatment slightly acidified the 0-20 cm soil layer, with an increase in exchangeable acidity by 53.5%-55.0% and a decrease in base saturation by 6.0-7.1 percentage points. The PK treatment did not show significant soil acidification in the 0-60 cm layer, and there was no significant difference in the increase of exchangeable acidity and the decrease of exchangeable bases. 【Conclusion】 Long-term application of fertilizers showed significant differences in the degree of soil acidification and loss of basic ions. Among them, the long-term application of NPK and NP fertilizers intensifies the soil acidification process, with acidification depth reaching 40 cm, and there was a substantial increase in the loss of basic ions and the production of exchangeable aluminum. Preliminary estimation showed that the application of fertilizer could lower the soil pH by one unit, and the loss of exchangeable base in soil was approximately twice the increase in exchangeable acid. Long-term application of PK and NK fertilizers had a relatively smaller impact on soil acidification, with less increase in the loss of basic ions and exchangeable aluminum.

Key words: chemical fertilizer, long-term located fertilization, paddy, soil pH, soil acidification, exchangeable base cation

Fig. 1

Soil pH (ratio of water to soil 1﹕2.5) in the soil profile under long-term fertilization treatments CK, PK, NP, NK and NPK stands for CK (an early rice-late rice rotation without fertilizer), PK (N deficiency), NP (K deficiency), NK (P deficiency), and NPK (balanced chemical fertilizer application), respectively. Horizontal lines indicate the Least Significant Difference (P<0.05). The same as below"

Fig. 2

Exchangeable acid in the soil profile under long-term fertilization treatments"

Table 1

Exchangeable base cation, CEC and base saturation in the soil profile under long-term fertilization treatments"

土层
Soil layer
(cm)
处理
Treatment
交换性Ca2+
Exchangeable Ca2+
(cmol·kg-1)
交换性Mg2+
Exchangeable Mg2+
(cmol·kg-1)
交换性K+
Exchangeable K+
(cmol·kg-1)
交换性Na+
Exchangeable Na+
(cmol·kg-1)
交换性盐基离子总量
Exchangeable base cations
(cmol·kg-1)
阳离子交换量
CEC
(cmol·kg-1)
盐基饱和度
Base saturation (%)
0—10 CK 4.53±0.14a 0.34±0.060a 0.14±0.028c 0.081±0.018a 5.08±0.04a 5.94±0.16a 85.59±1.96a
PK 4.39±0.20a 0.24±0.073bc 0.39±0.055a 0.067±0.006b 5.08±0.14a 6.10±0.21a 83.39±0.85a
NP 3.98±0.14b 0.15±0.046c 0.13±0.014c 0.064±0.004b 4.33±0.19b 6.13±0.46a 70.74±3.64c
NK 4.20±0.30ab 0.26±0.065ab 0.35±0.017a 0.081±0.005a 4.89±0.35a 6.22±0.19a 78.53±3.27b
NPK 3.93±0.17b 0.15±0.056c 0.26±0.023b 0.073±0.010ab 4.41±0.18b 6.31±0.51a 70.15±2.96c
10—20 CK 5.11±0.37a 0.40±0.048a 0.11±0.019b 0.074±0.016a 5.69±0.39a 6.54±0.33a 87.06±2.90a
PK 5.13±0.44a 0.32±0.034a 0.22±0.037a 0.089±0.017a 5.76±0.43a 6.75±0.37a 85.25±1.69ab
NP 4.97±0.13ab 0.20±0.056b 0.11±0.008b 0.056±0.013b 5.34±0.16ab 6.88±0.13a 77.51±2.12cd
NK 4.94±0.36ab 0.31±0.033a 0.21±0.019a 0.082±0.006a 5.55±0.40ab 6.84±0.41a 81.05±2.64bc
NPK 4.60±0.28b 0.19±0.068b 0.17±0.033a 0.081±0.020a 5.04±0.21b 6.94±0.54a 72.84±5.12d
20—40 CK 6.11±0.25a 0.65±0.120a 0.09±0.019d 0.063±0.018a 6.91±0.15a 7.37±0.24a 93.78±1.18a
PK 5.91±0.65a 0.46±0.093b 0.26±0.027a 0.060±0.014a 6.69±0.54ab 7.08±0.61a 94.46±0.58a
NP 5.78±0.49a 0.28±0.069c 0.10±0.005d 0.037±0.007b 6.19±0.42b 6.82±0.35a 90.81±1.74b
NK 5.89±0.40a 0.51±0.134b 0.17±0.022b 0.069±0.003a 6.64±0.42ab 7.19±0.35a 92.27±1.82ab
NPK 5.73±0.18a 0.31±0.081c 0.14±0.027c 0.058±0.014a 6.23±0.12b 6.83±0.12a 91.21±0.74b
40—60 CK 6.23±1.07a 1.00±0.133a 0.09±0.011b 0.081±0.002a 7.40±0.99a 7.79±0.99a 94.97±0.68a
PK 6.24±0.65a 0.89±0.178a 0.16±0.015a 0.076±0.015ab 7.36±0.55a 7.73±0.58a 95.22±0.54a
NP 6.11±0.72a 0.72±0.211b 0.10±0.011b 0.057±0.003b 7.00±0.55a 7.46±0.55a 93.74±0.63b
NK 5.98±0.96a 0.94±0.231a 0.14±0.002a 0.092±0.014a 7.14±0.86a 7.61±0.85a 93.80±0.88b
NPK 6.50±0.47a 0.71±0.141b 0.14±0.021a 0.079±0.009a 7.44±0.46a 7.87±0.44a 94.55±0.68ab

Fig. 3

Accumulation of exchangeable basic ions in the soil profile under long-term fertilization treatments"

Fig. 4

Relationship between soil pH and exchangeable acidity and exchangeable base cations in soil"

Table 2

Soil pH buffer capacity (pHBC) and acidification rate"

土层
Soil layer (cm)
处理
Treatment
土壤pH
Soil pH
容重
Bulk density
(g·cm-3)
土壤缓冲容量
pHBC
(mmol·kg-1·pH-1)
酸化速率
Acidification rate (kmol·hm-2·a-1)
0—10 CK 5.54±0.27a 1.25a 18.98±2.36a 0.62±0.077b
PK 5.42±0.19a 1.19a 19.63±2.78a 0.69±0.098b
NP 5.21±0.16b 1.21a 18.65±2.92a 0.81±0.13a
NK 5.54±0.34a 1.19a 20.70±1.48a 0.64±0.046b
NPK 5.19±0.17b 1.18a 19.74±0.91a 0.86±0.039a
10—20 CK 5.82±0.11a 1.18a 17.37±2.16a 0.48±0.030b
PK 5.76±0.18a 1.17a 17.86±2.53a 0.52±0.041b
NP 5.54±0.18b 1.13a 18.09±2.84a 0.65±0.067a
NK 5.85±0.01a 1.13a 19.05±1.36a 0.49±0.040b
NPK 5.44±0.10b 1.12a 18.36±0.84a 0.72±0.034a

Fig. 5

Arborescence of cluster analysis"

Fig. 6

Effects of long-term application of chemical fertilizers on aluminum saturation"

Fig. 7

Relationship between pH and aluminum saturation in soil"

[1]
GUO J H, LIU X J, ZHANG Y, SHEN J L, HAN W X, ZHANG W F, CHRISTIE P, GOULDING K W T, VITOUSEK P M, ZHANG F S. Significant acidification in major Chinese croplands. Science, 2010, 327(5968): 1008-1010.

doi: 10.1126/science.1182570 pmid: 20150447
[2]
CHEN C, XIAO W Y, CHEN H Y H. Mapping global soil acidification under N deposition. Global Change Biology, 2023, 29(16): 4652-4661.

doi: 10.1111/gcb.16813 pmid: 37296534
[3]
赵学强, 潘贤章, 马海艺, 董晓英, 车景, 王超, 时玉, 柳开楼, 沈仁芳. 中国酸性土壤利用的科学问题与策略. 土壤学报, 2023, 60(5): 1248-1263.
ZHAO X Q, PAN X Z, MA H Y, DONG X Y, CHE J, WANG C, SHI Y, LIU K L, SHEN R F. Scientific issues and strategies of acid soil use in China. Acta Pedologica Sinica, 2023, 60(5): 1248-1263. (in Chinese)
[4]
XU D H, ZHU Q C, ROS G H, XU M G, WEN S L, ZHANG F S, DE VRIES W. Model-based optimal management strategies to mitigate soil acidification and minimize nutrient losses for croplands. Field Crops Research, 2023, 292: 108827.
[5]
SHEN J, LUO Y L, TAO Q, WHITE P J, SUN G, LI M, LUO J P, HE Y T, LI B, LI Q Q, XU Q, CAI Y, LI H X, WANG C Q. The exacerbation of soil acidification correlates with structural and functional succession of the soil microbiome upon agricultural intensification. Science of the Total Environment, 2022, 828: 154524.
[6]
WU Z F, SUN X M, SUN Y Q, YAN J Y, ZHAO Y F, CHEN J. Soil acidification and factors controlling topsoil pH shift of cropland in central China from 2008 to 2018. Geoderma, 2022, 408: 115586.
[7]
陈琦. 农户水稻施肥现状调查与分析:以江西省、 江苏省为例[D]. 南京: 南京农业大学, 2013.
CHEN Q. Investigation and analysis of farmers’fertilization status on rice[D]. Nanjing: Nanjing Agricultural University, 2013. (in Chinese)
[8]
STONE D L R, WHITNEY D A, JANSSEN K A, LONG J H. Soil properties after twenty years of fertilization with different nitrogen sources. Soil Science Society of America Journal, 1991, 55(4): 1097-1100.
[9]
BOUMAN O T, CURTIN D, CAMPBELL C A, BIEDERBECK V O, UKRAINETZ H. Soil acidification from long-term use of anhydrous ammonia and urea. Soil Science Society of America Journal, 1995, 59(5): 1488-1494.
[10]
BARAK P, JOBE B O, KRUEGER A R, PETERSON L A, LAIRD D A. Effects of long-term soil acidification due to nitrogen fertilizer inputs in Wisconsin. Plant and Soil, 1997, 197(1): 61-69.
[11]
MALHI S S, HARAPIAK J T, NYBORG M, GILL K S. Effects of long-term applications of various nitrogen sources on chemical soil properties and composition of bromegrass hay. Journal of Plant Nutrition, 2000, 23(7): 903-912.
[12]
CHIEN S H, GEARHART M M, COLLAMER D J. The effect of different ammonical nitrogen sources on soil acidification. Soil Science, 2008, 173(8): 544-551.
[13]
SCHRODER J L, ZHANG H L, GIRMA K, RAUN W R, PENN C J, PAYTON M E. Soil acidification from long-term use of nitrogen fertilizers on winter wheat. Soil Science Society of America Journal, 2011, 75(3): 957-964.
[14]
孟红旗. 长期施肥农田的土壤酸化特征与机制研究[D]. 杨凌: 西北农林科技大学, 2013.
MENG H Q. Characteristics and mechanisms for soil acidification under long-term fertilization in Chinese croplands[D]. Yangling: Northwest A&F University, 2013. (in Chinese)
[15]
张永春, 汪吉东, 沈明星, 沈其荣, 许仙菊, 宁运旺. 长期不同施肥对太湖地区典型土壤酸化的影响. 土壤学报, 2010, 47(3): 465-472.
ZHANG Y C, WANG J D, SHEN M X, SHEN Q R, XU X J, NING Y W. Effects of long-term fertilization on soil acidification in Taihu Lake region, China. Acta Pedologica Sinica, 2010, 47(3): 465-472. (in Chinese)
[16]
CAI Z J, WANG B R, XU M G, ZHANG H M, HE X H, ZHANG L, GAO S D. Intensified soil acidification from chemical N fertilization and prevention by manure in an 18-year field experiment in the red soil of Southern China. Journal of Soils and Sediments, 2015, 15(2): 260-270.
[17]
曾沐梵. 长期施肥导致农田土壤酸化的机制及缓解策略[D]. 北京: 中国农业大学, 2017.
ZENG M F. Mechanisms of cropland soil acidification induced by the long-term fertilization and mitigation strategy[D]. Beijing: China Agricultural University, 2017. (in Chinese)
[18]
林涵. 长期不同施肥对黑土酸度变化的影响[D]. 长春: 吉林农业大学, 2014.
LIN H. The influence of different fertilization systems on soil acidification[D]. Changchun: Jilin Agricultural University, 2014. (in Chinese)
[19]
DONG Y, YANG J L, ZHAO X R, YANG S H, MULDER J, DÖRSCH P, PENG X H, ZHANG G L. Soil acidification and loss of base cations in a subtropical agricultural watershed. Science of the Total Environment, 2022, 827: 154338.
[20]
YU Z P, CHEN H Y H, SEARLE E B, SARDANS J, CIAIS P, PEÑUELAS J, HUANG Z Q. Whole soil acidification and base cation reduction across subtropical China. Geoderma, 2020, 361: 114107.
[21]
鲁艳红, 廖育林, 聂军, 周兴, 谢坚, 杨曾平, 吴浩杰. 长期施用氮磷钾肥和石灰对红壤性水稻土酸性特征的影响. 土壤学报, 2016, 53(1): 202-212.
LU Y H, LIAO Y L, NIE J, ZHOU X, XIE J, YANG Z P, WU H J. Effect of long-term fertilization and lime application on soil acidity of reddish paddy soil. Acta Pedologica Sinica, 2016, 53(1): 202-212. (in Chinese)
[22]
鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000: 56-271.
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: China Agriculture Press, 2000: 56-271. (in Chinese)
[23]
LUO W T, NELSON P N, LI M H, CAI J P, ZHANG Y Y, ZHANG Y G, YANG S, WANG R Z, WANG Z W, WU Y N, HAN X G, JIANG Y. Contrasting pH buffering patterns in neutral-alkaline soils along a 3600 km transect in Northern China. Biogeosciences, 2015, 12(23): 7047-7056.
[24]
NELSON P N, SU N H. Soil pH buffering capacity: A descriptive function and its application to some acidic tropical soils. Soil Research, 2010, 48(3): 201.
[25]
JOHNSON J, CARVER B, BALIGAR V. Productivity in great plains acid soils of wheat genotypes selected for aluminium tolerance. Plant and Soil, 1997, 188(1): 101-106.
[26]
NOBLE A D, SUZUKI S, SODA W, RUAYSOONGNERN S, BERTHELSEN S. Soil acidification and carbon storage in fertilized pastures of Northeast Thailand. Geoderma, 2008, 144(1/2): 248-255.
[27]
蔡泽江. 长期施肥下红壤酸化特征及影响因素[D]. 北京: 中国农业科学院, 2010.
CAI Z J. Acidification characteristics of red soil under long-term fertilization and effect factors[D]. Beijing: Chinese Academy of Agricultural Sciences, 2010. (in Chinese)
[28]
DARILEK J L, HUANG B, WANG Z G, QI Y B, ZHAO Y C, SUN W X, GU Z Q, SHI X Z. Changes in soil fertility parameters and the environmental effects in a rapidly developing region of China. Agriculture, Ecosystems & Environment, 2009, 129(1/2/3): 286-292.
[29]
王绪奎, 徐茂, 汪吉东, 王建明, 张永春. 太湖地区典型水稻土大时间尺度下的肥力质量演变. 中国生态农业学报, 2009, 17(2): 220-224.
WANG X K, XU M, WANG J D, WANG J M, ZHANG Y C. Response of typical paddy soil fertility to long-term cultivation in Taihu Lake Region. Chinese Journal of Eco-Agriculture, 2009, 17(2): 220-224. (in Chinese)
[30]
程先富, 陈梦春, 郝李霞, 史学正. 红壤丘陵区农田土壤酸化的时空变化研究. 中国生态农业学报, 2008, 16(6): 1348-1351.
CHENG X F, CHEN M C, HAO L X, SHI X Z. Spatio-temporal variation of soil acidification in hilly red soil croplands. Chinese Journal of Eco-Agriculture, 2008, 16(6): 1348-1351. (in Chinese)
[31]
文帮勇, 杨忠芳, 侯青叶, 杨晓燕, 尹国胜, 衷存堤. 江西鄱阳湖地区土壤酸化与人为源氮的关系. 现代地质, 2011, 25(3): 562-568.
WEN B Y, YANG Z F, HOU Q Y, YANG X Y, YIN G S, ZHONG C D. The relationship between soil acidification and nitrogen inputs in the Poyang Lake area, Jiangxi Province, China. Geoscience, 2011, 25(3): 562-568. (in Chinese)
[32]
HAO T X, LIU X J, ZHU Q C, ZENG M F, CHEN X J, YANG L S, SHEN J B, SHI X J, ZHANG F S, DE VRIES W. Quantifying drivers of soil acidification in three Chinese cropping systems. Soil and Tillage Research, 2022, 215: 105230.
[33]
冀建华, 刘光荣, 李祖章, 刘益仁, 侯红乾, 刘秀梅, 李絮花, 罗奇祥. 基于AMMI模型评价长期定位施肥对双季稻总产量稳定性的影响. 中国农业科学, 2012, 45(4): 685-696. doi: 10.3864/j.issn.0578-1752.2012.04.009.
JI J H, LIU G R, LI Z Z, LIU Y R, HOU H Q, LIU X M, LI X H, LUO Q X. Effects of long-term fertilization on stability of double cropping rice yield based on AMMI model. Scientia Agricultura Sinica, 2012, 45(4): 685-696. doi: 10.3864/j.issn.0578-1752.2012.04.009. (in Chinese)
[34]
冀建华, 侯红乾, 刘益仁, 刘秀梅, 冯兆滨, 刘光荣, 杨涛, 李文娟. 长期施肥对双季稻产量变化趋势、稳定性和可持续性的影响. 土壤学报, 2015, 52(3): 607-619.
JI J H, HOU H Q, LIU Y R, LIU X M, FENG Z B, LIU G R, YANG T, LI W J. Effects of long-term fertilization on yield variation trend, yield stability and sustainability in the double cropping rice system. Acta Pedologica Sinica, 2015, 52(3): 607-619. (in Chinese)
[35]
吴照辉, 贺立源, 严昶, 门玉英. 低磷胁迫对水稻地上部钙、镁吸收和积累的影响. 应用与环境生物学报, 2009, 15(3): 295-300.
WU Z H, HE L Y, YAN C, MEN Y Y. Effect of low phosphorus stress on calcium and magnesium absorption and accumulation in rice shoot. Chinese Journal of Applied & Environmental Biology, 2009, 15(3): 295-300. (in Chinese)
[36]
FUJII K, HAYAKAWA C, PANITKASATE T, MASKHAO I, FUNAKAWA S, KOSAKI T, NAWATA E. Acidification and buffering mechanisms of tropical sandy soil in northeast Thailand. Soil and Tillage Research, 2017, 165: 80-87.
[37]
吕真真, 吴向东, 侯红乾, 冀建华, 刘秀梅, 刘益仁. 有机-无机肥配施比例对双季稻田土壤质量的影响. 植物营养与肥料学报, 2017, 23(4): 904-913.
Z Z, WU X D, HOU H Q, JI J H, LIU X M, LIU Y R. Effect of different application ratios of chemical and organic fertilizers on soil quality in double cropping paddy fields. Journal of Plant Nutrition and Fertilizer, 2017, 23(4): 904-913. (in Chinese)
[38]
郭朝晖, 张杨珠, 黄见良, 李合松, 周清, 黄运湘. 磷对杂交水稻根系特性与养分吸收的影响. 湖南农业大学学报(自然科学版), 2001, 27(5): 350-354.
GUO Z H, ZHANG Y Z, HUANG J L, LI H S, ZHOU Q, HUANG Y X. Effects of phosphorus on roots’ physiological properties and nutrient absorbing of hybrid rice. Journal of Hunan Agricultural University (Natural Sciences), 2001, 27(5): 350-354. (in Chinese)
[39]
曾勇军, 周庆红, 吕伟生, 谭雪明, 潘晓华, 石庆华. 土壤酸化对双季早、晚稻产量的影响. 作物学报, 2014, 40(5): 899-907.
ZENG Y J, ZHOU Q H, W S, TAN X M, PAN X H, SHI Q H. Effects of soil acidification on the yield of double season rice. Acta Agronomica Sinica, 2014, 40(5): 899-907. (in Chinese)
[40]
VAN BREEMEN N, DRISCOLL C T, MULDER J. Acidic deposition and internal proton sources in acidification of soils and waters. Nature, 1984, 307(5952): 599-604.
[41]
ZHANG Y T, HE X H, LIANG H, ZHAO J, ZHANG Y Q, XU C, SHI X J. Long-term tobacco plantation induces soil acidification and soil base cation loss. Environmental Science and Pollution Research, 2016, 23(6): 5442-5450.
[42]
TIAN D S, NIU S L. A global analysis of soil acidification caused by nitrogen addition. Environmental Research Letters, 2015, 10(2): 024019.
[43]
DE VRIES W, POSCH M, KÄMÄRI J. Simulation of the long-term soil response to acid deposition in various buffer ranges. Water, Air, and Soil Pollution, 1989, 48(3): 349-390.
[1] GAO YaFei, ZHAO YuanBo, XU Lin, SUN JiaYue, XIA YuXuan, XUE Dan, WU HaiWen, NING Hang, WU AnChi, WU Lin. Long-Term Sphagnum Cultivation in Cold Waterlogged Paddy Fields Increases Organic Carbon Content and Decreases Soil Extracellular Enzyme Activities [J]. Scientia Agricultura Sinica, 2024, 57(8): 1533-1546.
[2] SONG YaRong, CHANG DanNa, ZHOU GuoPeng, GAO SongJuan, DUAN TingYu, CAO WeiDong. Effect and Mechanism of Phosphate-Solubilizing Bacterial on Activating of Low-Grade Phosphate Rock Powder in Red Paddy Soil [J]. Scientia Agricultura Sinica, 2024, 57(6): 1102-1116.
[3] MA RongHui, YANG WuJie, YU Lei, YANG ZeLong, WANG Jian, GUO YueSheng. Investigation on Potential of Replacing Chemical Fertilizer for Crop Straw and Livestock Manure Organic Fertilizer in Shandong Province [J]. Scientia Agricultura Sinica, 2024, 57(4): 721-739.
[4] QIU HaiHua, KUAI LeiXin, ZHANG Lu, LIU LiSheng, WEN ShiLin, CAI ZeJiang. Characteristics of Acidity and Nutrient Changes in Red Soil After Conversion of Paddy Field to Dry Land and Vegetable Field [J]. Scientia Agricultura Sinica, 2024, 57(3): 525-538.
[5] ZHANG Yi, LIU Ying, CHENG CunGang, LI YanQing, LI Zhuang. Effects of Combined Application Proportion of Cow Manure and Chemical Fertilizer on Soil Organic Carbon Pool and Enzyme Activity in Apple Orchard [J]. Scientia Agricultura Sinica, 2024, 57(20): 4107-4118.
[6] JIA BingLi, LI YanXing, YANG WenJie, YU Jie, YUAN AiJing, LI NingNa, QIU WeiHong, WANG ZhaoHui. Effects of Phosphorus Fertilization on the Yield and Phosphorus Absorption and Utilization of Dryland Winter Wheat Under Different Precipitation Year Types [J]. Scientia Agricultura Sinica, 2024, 57(16): 3192-3206.
[7] ZHANG XiaoQin, YIN Chang, LI Zheng, TANG Xu, LI Yan, WU ChunYan. Influences of Long-Term Appling Different Fertilizers on the Activities and Abundances of Canocial Ammonia Oxidizers and Comammox in Paddy Soil [J]. Scientia Agricultura Sinica, 2024, 57(14): 2803-2814.
[8] CHAI RuShan, ZHU LiQing, LIU MengYang, LUO LaiChao, ZHANG LiangLiang, CHENG QiPeng, ZHANG ChaoChun. Distribution of Wheat and Maize Straw Resources in Shandong Province and Fertilizer Reduction Potential Under Straw Return [J]. Scientia Agricultura Sinica, 2024, 57(11): 2202-2214.
[9] WANG Fei, LI QingHua, HE ChunMei, YOU YanLing, HUANG YiBin. Effects of Long-Term Fertilization on Nitrogen Accumulations and Organic Nitrogen Components in Soil Aggregates in Yellow-Mud Paddy Soil [J]. Scientia Agricultura Sinica, 2023, 56(9): 1718-1728.
[10] SUN QiBin, WANG JianNan, LI YiNian, HE RuiYin, DING QiShuo. Study on the Dynamics of Root Length Density in Soil Layers of Single Plant Wheat Under Controlled Seed-to-Seed Distance [J]. Scientia Agricultura Sinica, 2023, 56(8): 1456-1470.
[11] HAN ZiXuan, FANG JingJing, WU XuePing, JIANG Yu, SONG XiaoJun, LIU XiaoTong. Synergistic Effects of Organic Carbon and Nitrogen Content in Water-Stable Aggregates as well as Microbial Biomass on Crop Yield Under Long-Term Straw Combined Chemical Fertilizers Application [J]. Scientia Agricultura Sinica, 2023, 56(8): 1503-1514.
[12] WANG Ning, FENG KeYun, NAN HongYu, CONG AnQi, ZHANG TongHui. Effects of Combined Application of Organic Manure and Chemical Fertilizer Ratio on Water and Nitrogen Use Efficiency of Cotton Under Water Deficit [J]. Scientia Agricultura Sinica, 2023, 56(8): 1531-1546.
[13] LI Hao, CHEN Jin, WANG HongLiang, LIU KaiLou, HAN TianFu, DU JiangXue, SHEN Zhe, LIU LiSheng, HUANG Jing, ZHANG HuiMin. Response of Carbon and Nitrogen Distribution in Organo-Mineral Complexes of Red Paddy Soil to Long-Term Fertilization [J]. Scientia Agricultura Sinica, 2023, 56(7): 1333-1343.
[14] LI YaZhen, HAN TianFu, QU XiaoLin, MA ChangBao, DU JiangXue, LIU KaiLou, HUANG Jing, LIU ShuJun, LIU LiSheng, SHEN Zhe, ZHANG HuiMin. Spatio-Temporal Variations of Fertilizer Contribution Rate for Rice in China and Its Influencing Factors [J]. Scientia Agricultura Sinica, 2023, 56(4): 674-685.
[15] YIN ZeRun, SHENG Hao, LIU Xin, XIAO HuaCui, ZHANG LiNa, LI YuanZhao, TIAN Yu, ZHOU Ping. Response of Paddy Soil Health to Continuous Amendments of Organic Fertilizer and Lime Separately Under Double-Cropping Rice Fields [J]. Scientia Agricultura Sinica, 2023, 56(19): 3829-3842.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!