Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (19): 3857-3866.doi: 10.3864/j.issn.0578-1752.2020.19.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Allelic Variations of Pins Genes in Xinjiang Spring Wheat Varieties and Their Influence on Processing Quality of Xinjiang Hand-Stretched Noodles

XIANG JiShan1(),LIU PengPeng2(),SANG Wei2,CUI FengJuan2,HAN XinNian2,NIE YingBin2,KONG DeZhen2,ZOU Bo2,XU HongJun2,MU PeiYuan2()   

  1. 1Academy of Agricultural Sciences, Chifeng University/Key Laboratory of Agro-ecological Protection & Exploitation and Utilization of Animal and Plant Resources in Eastern Inner Mongolia, Chifeng 024000, Inner Mongolia
    2Institute of Crop Research, Xinjiang Academy of Agri-Reclamation Sciences/Key Lab of Xinjiang Production and Construction Corps for Cereal Quality Research and Genetic Improvement, Shihezi 832000, Xinjiang
  • Received:2019-11-20 Accepted:2020-03-10 Online:2020-10-01 Published:2020-10-19
  • Contact: PeiYuan MU E-mail:xiangjsh@163.com;nkylpp@163.com;mupy@163.com

Abstract:

【Objective】The objectives of this study were to detect the allelic variations of Pins genes in Xinjiang spring wheat varieties, analyze the difference of grain hardness among different Pins genotypes of spring wheats, and explore the effects of Pins genes on different quality characters and the processing quality of Xinjiang hand-stretched noodles.【Method】First, the allelic variations of Pins genes in 386 Xinjiang spring wheats varieties were detected with molecular markers. Second, the quality characters of these materials were determined, including milling quality, gluten quality, dough character, and starch gelatinization character. Third, the processing qualities of Xinjiang hand-stretched noodles were evaluated. 【Result】The allelic variations of Pins genes: In Xinjiang spring wheat varieties, there were two alleles (Pina-D1a and Pina-D1b) at Pina locus with proportions of 86.79% and 13.21%, respectively, three alleles (Pinb-D1a, Pinb-D1b, Pinb-D1p) at Pinb locus with proportions of 64.77%, 32.12%, and 3.11%, respectively, and six genotype combinations (Pina-D1a/Pinb-D1a, Pina-D1a/Pinb-D1b, Pina-D1a/Pinb-D1p, Pina-D1b/Pinb-D1a, Pina-D1b/Pinb-D1b, Pina-D1b/Pinb-D1p) for Pina/Pinb with proportions of 58.81%, 25.39%, 2.59%, 5.96%, 6.74%, and 0.52%, respectively. The effect of Pins gene on the quality characters of Xinjiang spring wheat: the grain protein content, and flour ash content, whiteness, and wet gluten content, Zeleny sedimentation value with Pina-D1a were significantly higher than those with Pina-D1b (P<0.05), whereas the grain hardness, flour yellowness (b*), gluten index, mid line peak time, 8 min integral, and starch breakdown of Pina-D1a were significantly lower than those of Pina-D1b (P<0.05). Among different alleles of Pinb, the flour whiteness and weak gluten content of Pinb-D1a, the grain flour yield and flour yellowness (b*) of Pinb-D1b, and the grain hardness and flour gluten index of Pinb-D1p were significantly higher than those of other alleles (P<0.05). Among different genotype combinations of Pina/Pinb, the flour whiteness of Pina-D1a/Pinb-D1a, the grain hardness, flour gluten index, and dough 8 min integral of Pina-D1a/Pinb-D1p, the starch breakdown of Pina-D1b/Pinb-D1b, and the grain protein content, flour yield, and flour wet gluten content of Pina-D1b/Pinb-D1p were significantly higher than those of other genotype combinations (P<0.05 or P<0.01). The effect of Pins genes on processing qualities of Xinjiang hand-stretched noodles: the stretch feeling, viscoelasticity, and total score of Pina-D1a were significantly lower than those of Pina-D1b (P<0.01). The stretch feeling of Pina-D1b/Pinb-D1p was significantly higher than those of other genotype combinations (P<0.01). The viscoelasticity of Pina-D1a/Pinb-D1p, Pina-D1b/ Pinb-D1a, and Pina-D1b/Pinb-D1b were significantly higher than those of other genotype combinations (P<0.05). The total score of Pina-D1b/Pinb-D1a and Pina-D1b/Pinb-D1b were significantly higher than those of other genotype combinations (P<0.01). 【Conclusion】 The mutation of Pina gene can significantly (P<0.05) increase the grain hardness and the total score of Xinjiang hand-stretched noodles. But the mutation of Pinb gene had no significant effect on the processing qualities of Xinjiang hand-stretched noodles. Pina-D1b/Pinb-D1a and Pina-D1b/Pinb-D1b are the key genotype combinations of high quality breeding for Xinjiang hand-stretched noodles.

Key words: Xinjiang spring wheats, germplasms, Pins gene, quality characters, Xinjiang hand-stretched noodles

Table 1

Pins genes detected by molecular markers in Xinjiang spring wheat varieties"

项目Item Pina Pinb
Pina-D1a Pina-D1b Pinb-D1a Pinb-D1b Pinb-D1p
品种数 Variety number 335 51 250 124 12
所占比例Proportion (%) 86.79 13.21 64.77 32.12 3.11

Table 2

Number and proportions of different allele combinations of Pins genes in Xinjiang spring wheat varieties"

项目Item Pina-D1a/Pinb-D1a Pina-D1a/Pinb-D1b Pina-D1a/Pinb-D1p Pina-D1b/Pinb-D1a Pina-D1b/Pinb-D1b Pina-D1b/Pinb-D1p
品种数Variety number 227 98 10 23 26 2
所占比例Proportion (%) 58.81 25.39 2.59 5.96 6.74 0.52

Table 3

Effects of Pins genes on the grain character and milling quality in Xinjiang spring wheat varieties"

基因型组合
Genotype combination
籽粒性状Grain character 磨粉品质Milling quality
硬度
Hardness
蛋白含量
Protein content (%)
出粉率
Flour yield
(%)
灰分含量
Ash content (%)
L*
L* value
a*值
a* value
b*值
b* value
白度
Whiteness
Pina Pina-D1a 52.54±17.30 15.39±1.83** 49.32±8.41 0.52±0.07** 97.89±5.10 -0.02±1.25 9.67±1.55 73.90±4.67*
Pina-D1b 56.59±14.36** 15.00±1.57 49.86±6.85 0.51±0.05 97.28±4.99 -0.09±1.24 9.89±1.44* 73.40±2.76
Pinb Pinb-D1a 52.68±17.50 15.37±1.86 48.90±8.16abAB 0.51±0.06 97.88±5.18 -0.03±1.24 9.63±1.61b 74.13±3.86aA
Pinb-D1b 53.57±16.02b 15.25±1.68 50.47±8.23aA 0.51±0.08 97.71±4.88 -0.02±1.26 9.82±1.40a 73.30±5.49abAB
Pinb-D1p 57.38±13.64a 15.38±1.80 48.65±7.79bB 0.52±0.05 97.17±5.17 -0.09±1.16 9.81±1.23a 73.06±2.30bB
Pina/
Pinb
Pina-D1a/Pinb-D1a 52.16±17.77cC 15.42±1.88bB 48.80±8.34b 0.52±0.06 97.99±5.17 -0.03±1.24 9.61±1.64 74.20±3.96a
Pina-D1a/Pinb-D1b 52.77±16.39cC 15.34±1.72bB 50.66±8.47a 0.52±0.08 97.73±4.94 0.00±1.26 9.77±1.36 73.25±6.08ab
Pina-D1a/Pinb-D1p 58.14±13.50aA 15.19±1.74bB 48.15±8.04b 0.51±0.05 97.25±5.12 -0.11±1.17 9.82±1.17 73.24±2.36ab
Pina-D1b/Pinb-D1a 57.29±14.21abAB 14.94±1.61bB 49.78±6.27ab 0.50±0.04 96.90±5.25 -0.08±1.22 9.79±1.37 73.46±2.80ab
Pina-D1b/Pinb-D1b 56.22±14.45bB 14.94±1.48bB 49.83±7.41ab 0.51±0.05 97.66±4.70 -0.11±1.27 9.98±1.49 73.44±2.76ab
Pina-D1b/Pinb-D1p 53.26±14.29cC 16.46±1.82aA 51.35±5.90a 0.54±0.05 96.75±5.68 -0.01±1.15 9.73±1.56 72.13±1.79b

Table 4

Effects of Pins genes on flour quality and flour dough properties in Xinjiang spring wheat varieties"

基因型组合
Genotype combination
湿面筋含量
Gluten content
(%)
面筋指数
Gluten index
(%)
Zeleny沉淀值
Zeleny sedimentation (mL)
峰值时间
Midline peak time (min)
峰值高度
Midline peak value (%)
8分钟宽度
8 min width (%)
8分钟面积
8 min integral (%TQ*min)
Pina Pina-D1a 3.43±0.64** 70.14±19.84 32.27±7.55* 2.99±2.41 54.85±3.25 29.45±10.22 127.03±50.41
Pina-D1b 3.33±0.56 74.64±16.63** 31.22±6.97 3.17±1.19* 54.77±2.56 30.20±10.21 135.59±52.85**
Pinb Pinb-D1a 3.45±0.64aA 69.41±19.92bB 31.98±7.24 2.97±2.71 54.90±3.05 29.50±10.15 125.60±50.70bB
Pinb-D1b 3.36±0.60bB 73.04±18.59abAB 32.30±7.84 3.06±1.12 54.73±3.40 29.67±10.31 131.88±50.10bAB
Pinb-D1p 3.40±0.60abAB 75.55±16.14aA 32.87±8.26 3.38±1.26 54.66±2.63 29.49±10.68 144.84±55.71aA
Pina/
Pinb
Pina-D1a/Pinb-D1a 3.46±0.65abAB 68.66±20.13bB 32.06±7.30 2.95±2.82 54.90±3.11 29.41±10.16 124.23±49.65bB
Pina-D1a/Pinb-D1b 3.38±0.62bB 72.86±19.04abAB 32.65±7.95 3.04±1.14 54.75±3.60 29.44±10.33 131.40±50.40abAB
Pina-D1a/Pinb-D1p 3.34±0.60bB 76.23±17.12aA 33.24±8.72 3.41±1.34 54.60±2.68 30.28±10.57 145.81±58.82aA
Pina-D1b/Pinb-D1a 3.32±0.61bB 76.03±16.56aA 31.32±6.65 3.23±1.37 54.85±2.47 30.34±10.12 137.70±57.98abAB
Pina-D1b/Pinb-D1b 3.30±0.51bB 73.63±17.09abAB 31.15±7.38 3.11±1.05 54.68±2.66 30.43±10.23 133.46±49.24abAB
Pina-D1b/Pinb-D1p 3.74±0.50aA 71.85±8.67abAB 30.89±4.91 3.20±0.80 54.98±2.43 25.16±10.66 139.59±35.75abAB

Table 5

Effects of Pins genes on the starch gelatinization in Xinjiang spring wheat varieties"

基因型组合
Genotype combination
峰值黏度
Peak viscosity (cp)
低谷黏度
Trough viscosity (cp)
稀懈值
Breakdown (cp)
最终黏度
Final viscosity (cp)
反弹值
Setback (cp)
Pina Pina-D1a 3503.24±545.86 2272.50±304.02 1230.74±392.65 3862.32±457.70 1589.82±210.34
Pina-D1b 3555.49±461.50 2260.21±245.00 1295.28±358.76** 3837.73±349.40 1577.52±171.57
Pinb Pinb-D1a 3501.94±556.29 2267.75±309.03 1234.19±394.10 3853.71±462.32 1585.95±208.48
Pinb-D1b 3529.24±503.23 2268.36±276.34 1260.87±380.10 3857.72±414.66 1589.35±198.63
Pinb-D1p 3504.54±377.63 2349.23±202.99 1155.31±342.06 3964.23±315.85 1615.00±200.88
Pina/Pinb Pina-D1a/Pinb-D1a 3493.70±562.46 2265.96±312.40 1227.75±396.64a 3853.15±469.21 1587.20±211.06
Pina-D1a/Pinb-D1b 3521.04±524.56 2276.45±294.44 1244.59±386.95a 3867.35±444.77 1590.90±209.24
Pina-D1a/Pinb-D1p 3541.43±348.69 2368.97±169.17 1172.47±355.24ab 4001.82±276.43 1632.85±202.06
Pina-D1b/Pinb-D1a 3574.79±494.23 2283.62±277.98 1291.17±367.34a 3858.59±397.71 1574.97±184.51
Pina-D1b/Pinb-D1b 3556.25±425.80 2241.72±204.25 1314.54±352.46a 3825.95±293.29 1584.23±159.17
Pina-D1b/Pinb-D1p 3283.20±472.95 2230.80±321.26 1052.40±249.32b 3738.70±433.76 1507.90±167.94

Table 6

Effects of Pins genes on the processing quality of Xinjiang hand-stretched noodles"

基因型组合
Genotype combination
拉面手感
Stretch feeling
表面状况
Surface
适口性
Firmness
粘弹性
Viscoelasticity
光滑性
Smoothness
食味
Taste and flavor
色泽
Color
总分
Total score
Pina Pina-D1a 10.87±2.07 7.06±0.79 13.90±2.02 22.88±3.35 7.58±0.66 4.06±0.27 11.12±1.47 77.46±6.21
Pina-D1b 11.40±1.73** 7.13±0.80 13.99±1.90 23.42±3.06** 7.65±0.68 4.06±0.28 11.25±1.47 78.86±5.91**
Pinb Pinb-D1a 10.90±2.02 7.06±0.79 13.93±2.02 22.86±3.31 7.59±0.65 4.06±0.27 11.13±1.48 77.53±6.12
Pinb-D1b 11.03±2.00 7.08±0.79 13.84±1.96 23.11±3.28 7.56±0.68 4.06±0.27 11.19±1.45 77.86±6.32
Pinb-D1p 11.06±2.21 7.11±0.69 14.19±1.78 23.35±3.30 7.76±0.68 4.06±0.26 10.93±1.23 78.45±5.18
Pina/
Pinb
Pina-D1a/Pinb-D1a 10.84±2.04bB 7.06±0.79 13.94±2.02 22.80±3.34b 7.58±0.66 4.05±0.27 11.12±1.49 77.38±6.16bB
Pina-D1a/Pinb-D1b 10.94±2.05bB 7.06±0.77 13.78±1.99 23.01±3.31ab 7.54±0.66 4.07±0.27 11.15±1.42 77.54±6.31bB
Pina-D1a/Pinb-D1p 10.87±2.35bB 7.13±0.71 14.25±1.80 23.46±3.39a 7.75±0.69 4.07±0.27 11.02±1.14 78.54±5.31abAB
Pina-D1b/Pinb-D1a 11.44±1.72abAB 7.10±0.76 13.91±1.99 23.46±2.95a 7.66±0.62 4.09±0.28 11.20±1.38 78.87±5.61aA
Pina-D1b/Pinb-D1b 11.32±1.79abAB 7.17±0.85 14.06±1.83 23.44±3.19a 7.63±0.74 4.03±0.28 11.34±1.52 78.91±6.26aA
Pina-D1b/Pinb-D1p 12.09±0.54aA 7.05±0.57 13.86±1.72 22.73±2.84b 7.80±0.67 3.98±0.22 10.45±1.61 77.96±4.59bB
[1] POMERANZ Y, WILLAMS P C. Wheat hardness: Its genetic, structure and biochemical background, measurement, and significance. In ‘Advances in cereal science and technology’. American Association of Cereal Chemists: St Paul Minnesota, 1990: 471-548.
[2] MA D Y, ZHANG Y, XIA X C, MORRIS C F, HE Z H. Milling and Chinese raw white noodle qualities of common wheat near-isogenic lines differing in puroindoline b alleles. Journal of Cereal Science, 2009, 50: 126-130.
doi: 10.1016/j.jcs.2009.03.006
[3] ERKINBAEV C, DERKSEN K, PALIWAL J. Single kernel wheat hardness estimation using near infrared hyperspectral imaging. Infrared Physics & Technology, 2019(98): 250-255.
[4] 胡瑞波, 田纪春. 小麦主要品质性状与面粉色泽的关系. 麦类作物学报, 2006, 26(3): 96-101.
doi: 10.7606/j.issn.1009-1041.2006.03.114
HU R B, TIAN J C. Relationship between main quality characteristics and wheat flour color. Journal of Triticeae Crops, 2006, 26(3): 96-101. (in Chinese)
doi: 10.7606/j.issn.1009-1041.2006.03.114
[5] 周艳华, 何中虎, 阎俊, 张艳, 王德森, 周桂英. 中国小麦硬度分布及遗传分析. 中国农业科学, 2002, 35(10): 1177-1185.
ZHOU Y H, HE Z H, YAN J, ZHANG Y, WANG D S, ZHOU G Y. Distribution of grain hardness in Chinese wheat and genetic analysis. Scientia Agricultura Sinica, 2002, 35(10): 1177-1185. (in Chinese)
[6] LILLEMO M, SIMEONE M C, MORRIS C F. Analysis of puroindoline a and b sequences from Triticum aestivum cv. ‘Penawawa’ and related taxa. Euphytica, 2002, 126: 321-331.
doi: 10.1023/A:1019908325078
[7] GIROUX M J, MORRIS C F. A glycine to serine change in puroindoline b is associated with wheat grain hardness and low levels of starch-surface friabilin. Theoretical and Applied Genetics, 1997, 95: 857-864.
doi: 10.1007/s001220050636
[8] MORRIS C F, BHAVE M. Reconciliation of D-genome puroindoline allele designations with current DNA sequence data. Journal of Cereal Science, 2008, 48: 277-287.
doi: 10.1016/j.jcs.2007.09.012
[9] MASSA A N, MORRIS C F, GILL B S. Sequence diversity of puroindoline-a, puroindoline-b, and the grain softness protein genes in Aegilops tauschii cross. Crop Science, 2004, 44: 1808-1816.
doi: 10.2135/cropsci2004.1808
[10] GEDYE K R, MORRIS C F, BETTGE A D. Determination and evaluation of the sequence and textural effects of the puroindoline a and puroindoline b genes in a population of synthetic hexaploid wheat. Theoretical and Applied Genetics, 2004, 109: 1597-1603.
doi: 10.1007/s00122-004-1788-4 pmid: 15448897
[11] IKEDA T M, OHNISHI N, NAGAMINE T, ODA S, HISATOMI T, YANO H. Identification of new puroindoline genotypes and their protein products among wheat cultivars. Journal of Cereal Science, 2004, 41: 1-6.
doi: 10.1016/j.jcs.2004.10.002
[12] GAZZA L, NOCENTE F, NG P K W, POGNA N E. Genetic and biochemical analysis of common wheat cultivars lacking puroindoline a. Theoretical and Applied Genetics, 2005, 110: 470-478.
doi: 10.1007/s00122-004-1854-y pmid: 15657742
[13] CHEN F, HE Z H, XIA X C, XIA L Q, ZHANG X Y, LILLEMO M, MORRIS C F. Molecular and biochemical characterization of puroindoline a and b alleles in Chinese landraces and historical cultivars. Theoretical and Applied Genetics, 2006, 112: 400-409.
doi: 10.1007/s00122-005-0095-z pmid: 16344983
[14] CHANG C, ZHANG H P, XU J, LI W H, LIU G T, YOU M S, LI B Y. Identification of allelic variations of puroindoline genes controlling grain hardness in wheat using a modified denaturing PAGE. Euphytica, 2006, 152: 225-234.
doi: 10.1007/s10681-006-9204-6
[15] CHEN F, ZHANG F Y, XIA X C, DONG Z D, CUI D Q. Distribution of puroindoline alleles in bread wheat cultivars of the Yellow and Huai valley of China and discovery of a novel puroindoline a allele without PINA protein. Molecular Breeding. 2012, 29: 371-378.
doi: 10.1007/s11032-011-9553-2
[16] CHEN F, LI H, CUI D Q. Discovery, distribution and diversity of Puroindoline-D1 genes in bread wheat from five countries(Triticum aestivum L.). BMC Plant Biology, 2013, 125: 1-13.
[17] RAMALINGAM A, PALOMBO E A, BHAVE M. The Pinb-2 genes in wheat comprise a multigene family with great sequence diversity and important variants. Journal of Cereal Science, 2012, 56: 171-180.
doi: 10.1016/j.jcs.2012.02.006
[18] KUMAR R, ARORA S, SINGH K, GARG M. Puroindoline allelic diversity in Indian wheat germplasm and identification of new allelic variants. Breeding Science, 2015, 65(4): 319-326.
doi: 10.1270/jsbbs.65.319 pmid: 26366114
[19] LILLEMO M, MORRIS C F. Aleucine to proline mutation in puroindoline b is frequently present in hard wheats from Northern Europe. Theoretical and Applied Genetics, 2000, 100: 1100-1107.
doi: 10.1007/s001220051392
[20] MORRIS C F, LILLEMO M, SIMEONE M C, GIROUX M J, BABB S L, KIMBERLEE K K. Prevalence of puroindoline grain hardness genotypes among historically significant North American spring and winter wheats. Crop Science, 2001, 41: 218-228.
doi: 10.2135/cropsci2001.411218x
[21] SIMEONE M, GEDYE K R, MASON-GAMER R, GILL B S, MORRIS C F. Conserved regulator elements identified from a comparative puroindoline gene sequence survey of Triticum and Aegilops diploid taxa. Journal of Cereal Science, 2006, 44: 21-33.
doi: 10.1016/j.jcs.2006.02.002
[22] XIA L Q, CHEN F, HE Z H, CHEN X M, MORRIS C F. Occurrence of puroindoline alleles in Chinese winter wheats. Cereal Chemistry, 2005, 82: 38-43.
doi: 10.1094/CC-82-0038
[23] CHEN F, HE Z H, XIA X C, LILLEMO M, MORRIS C F. A new puroindoline b mutation presented in Chinese winter wheat cultivar Jingdong 11. Journal of Cereal Science, 2005, 42: 267-269.
doi: 10.1016/j.jcs.2005.03.004
[24] RAM S, JAIN N, SHORAN J, SINGH R. New frame shift mutation in puroindoline b in Indian wheat cultivars Hyb65 and Ni5439. Journal of Plant Biochemistry and Biotechnology, 2005, 14: 45-48.
doi: 10.1007/BF03263224
[25] CHEN F, YU Y X, XIA X C, HE Z H. Prevalence of a novel puroindoline b allele in Yunnan endemic wheats (Triticum aestivum ssp. yunnanense King). Euphytica, 2007, 156: 39-46.
doi: 10.1007/s10681-006-9347-5
[26] WANG J, SUN J J, LIU D C, YANG W L, WANG D W, TONG Y P, ZHANG A M. Analysis of Pina and Pinb alleles in the micro-core collections of Chinese wheat germplasm by ecotilling and identification of a novel Pinb allele. Journal of Cereal Science, 2008, 48: 836-842.
doi: 10.1016/j.jcs.2008.06.005
[27] LI G, HE Z, LILLEMO M, SUN Q, XIA X. Molecular characterization of allelic variations at Pina and Pinb loci in Shandong wheat landraces, historical and current cultivars. Journal of Cereal Science, 2008, 47: 510-517.
doi: 10.1016/j.jcs.2007.06.003
[28] TANAKA H, MORRIS C F, HARUNA M, TSUJIMOTO H. Prevalence of puroindoline alleles in wheat from eastern Asia including the discovery of a new SNP in puroindoline b. Plant Genetic Resource, 2008, 6: 142-152.
doi: 10.1017/S1479262108993151
[29] WANG L, LI G Y, XIA X C, HE Z H, MU P Y. Molecular characterization of Pina and Pinb allelic variations in Xinjiang landraces and commercial wheat cultivars. Euphytica, 2008, 164: 745-752.
doi: 10.1007/s10681-008-9706-5
[30] MARTIN J M, SHERMAN J D, LANNING S P, TALBERT L E, GIROUX M J. Effect of variation in amylase content and puroindoline composition on bread quality in a hard spring wheat population. Cereal Chemistry, 2008, 85: 266-269.
doi: 10.1094/CCHEM-85-2-0266
[31] 周显青, 张玉荣. 拉面的实验室制作及评价方法的研究. 中国粮油学报, 2000, 15(4): 53-56.
ZHOU X Q, ZHANG Y R. Laboratory procedure and evaluation of hand-extended noodles. Journal of the Chinese Cereals and Oils Association, 2000, 15(4): 53-56. (in Chinese)
[32] 芦静, 张新忠, 吴新元, 黄天荣. 小麦品质性状与面制食品加工特性相关性研究. 新疆农业科学, 2002, 39(5): 290-292.
LU J, ZHANG X Z, WU X Y, HUANG T R. Investigation on correlation between quality characters of wheat and processing quality of flour food. Xinjiang Agricultural Sciences, 2002, 39(5): 290-292. (in Chinese)
[33] 哈力旦·依克热木, 芦静, 周安定, 曾潮武, 曹俊梅, 梁晓东, 刘联正, 范贵强, 张新忠, 黄天荣, 高永红, 吴新元. 新疆部分小麦材料籽粒硬度基因等位变异的分子鉴定及其分布. 新疆农业科学, 2016, 53(6): 981-986.
HALIDAN Y, LU J, ZHOU A D, ZENG C W, CAO J M, LIANG X D, LIU L Z, FAN G Q, ZHANG X Z, HUANG T R, GAO Y H, WU X Y. Distribution and molecular identification of kernel hardness gene alleles in part of wheat germplasms of Xinjiang. Xinjiang Agricultural Sciences, 2016, 53(6): 981-986. (in Chinese)
[34] 王亮, 穆培源, 桑伟, 徐红军, 庄丽, 邹波. 新疆小麦品种籽粒硬度及puroindoline基因等位变异的分子检测. 麦类作物学报, 2010, 30(1): 17-22.
doi: 10.7606/j.issn.1009-1041.2010.01.004
WANG L, MU P Y, SANG W, XU H J, ZHUANG L, ZOU B. Kernel hardness and allelic variations of Puroindoline genes in Xinjiang wheat cultivars. Journal of Triticeae Crops, 2010, 30(1): 17-22. (in Chinese)
doi: 10.7606/j.issn.1009-1041.2010.01.004
[35] 丛花, 王宏飞, 章艳凤, 严勇亮, 池田达哉, 高田兼则, 长峰司. 新疆小麦地方品种籽粒硬度及其Puroindoline基因等位变异研究. 新疆农业科学, 2011, 48(6): 1056-1063.
CONG H, WANG H F, ZHANG Y F, YAN Y L, TATSUYA I, KANENORI T, TSUKASA N. Identification of the allelic variation of puroindoline alleles in Xinjiang wheat landraces. Xinjiang Agricultural Sciences, 2011, 48(6): 1056-1063. (in Chinese)
[36] LAGUDAH E S, APPELS R, MCNEIL D. The Nor-D3 locus of Triticum tauschii: natural variation and genetic linkage to makers on chromosome 5. Genome, 1991, 34: 387-395.
doi: 10.1139/g91-060
[37] XIA L Q, CHEN F, HE Z H, CHEN X M, MORRIS C F. Occurrence of puroindoline alleles in Chinese winter wheat. Cereal Chemistry, 2005, 82: 38-43.
doi: 10.1094/CC-82-0038
[38] MA X L, SAJJAD M, WANG J, YANG W L, SUN J Z, LI X, ZHANG A M, LIU D C. Diversity, distribution of Puroindoline genes and their effect on kernel hardness in a diverse panel of Chinese wheat germplasm. BMC Plant Biology, 2017, 17(1): 158.
doi: 10.1186/s12870-017-1101-8 pmid: 28931378
[39] MORRIS C F. Puroindolines: The molecular genetic basis of wheat grain hardness. Plant Molecular Biology, 2002, 48: 633-647.
doi: 10.1023/a:1014837431178 pmid: 11999840
[40] 杨保安, 张建伟, 张福彦, 陈建峰, 程仲杰, 陈晓杰, 崔党群. 81份国外小麦品种(系)Puroindoline基因分子鉴定与分析. 核农学报, 2014, 28(5): 2014, 28(5): 817-824.
doi: 10.11869/j.issn.100-8551.2014.04.0817
YANG B A, ZHANG J W, ZHANG F Y, CHEN J F, CHENG Z J, CHEN X J, CUI D Q. Molecular identification and analysis of puroindoline alleles in 81 foreign wheat varieties. Journal of Nuclear Agricultural Sciences, 2014, 28(5): 817-824. (in Chinese)
doi: 10.11869/j.issn.100-8551.2014.04.0817
[41] 陈锋, 夏先春, Manila William, Morten Lillemo, Richard Trethowan, Roberto J Peňa, 何中虎. CIMMYT小麦puroindoline 基因型的进一步鉴定与分析. 中国农业科学, 2006, 39(8): 1518-1525.
CHEN F, XIA X C, MANILA W, MORTEN L, RICHARD T, ROBERTO J P, HE Z H. Determination and evaluation of puroindoline alleles in CIMMYT wheats. Scientia Agricultura Sinica, 2006, 39(8): 1518-1525. (in Chinese)
[42] EAGLES H A, CANE K, EASTWOOD R F, HOLLAMBY G J, KUCHEL H, MARTIN P J, CORNISH G.B. Contributions of glutenin and puroindoline genes to grain quality traits in Southern Australian wheat breeding programs. Australian Journal of Agricultural Research, 2006, 57: 179-186.
doi: 10.1071/AR05242
[43] NAGAMINE T, IKEDA T M, YANAGISAWA T, YANAKA M, ISHIKAWA N. The effects of hardness allele Pinb-D1b on the flour quality of wheat for Japanese white salty noodles. Journal of Cereal Science, 2003, 37: 337-342.
doi: 10.1006/jcrs.2002.0505
[44] 穆培源, 桑伟, 王亮, 庄丽, 王祥军, 芦静, 徐红军, 韩新年, 于芳祥. 新疆市售小麦面粉制作新疆拉面的加工品质特性及其专用粉品质评价指标的研究. 麦类作物学报, 2007, 27(6): 1034-1046.
doi: 10.7606/j.issn.1009-1041.2007.06.249
MU P Y, SANG W, WANG L, ZHUANG L, WANG X J, LU J, XU H J, HAN X N, YU F X. Study on processing quality of commercial wheat flours in Xinjiang for Xinjiang Hand-Stretched Noodle and quality evaluation parameters of specific flour. Journal of Triticeae Crops, 2007, 27(6): 1034-1046. (in Chinese)
doi: 10.7606/j.issn.1009-1041.2007.06.249
[45] 桑伟, 穆培源, 徐红军, 庄丽, 王亮, 于芳祥, 韩新年, 聂迎彬, 邹波. 新疆春小麦品种主要品质性状及其与新疆拉面加工品质的关系. 麦类作物学报, 2008, 28: 772-779.
SANG W, MU P Y, XU H J, ZHUANG L, WANG L, YU F X, HAN X N, NIE Y B, ZOU B. Main quality traits of the spring wheat cultivars from Xinjiang and their correlations with processing quality of Xinjiang hand-stretched noodle. Journal of Triticeae Crops, 2008, 28: 772-779. (in Chinese)
[46] CHEN F, HE Z H, CHEN D S, ZHANG C L, ZHANG Y, XIA X C. Influence of puroindoline alleles on milling performance and qualities of Chinese noodles, steamed bread and pan bread in spring wheats. Journal of Cereal Science, 2007, 45: 59-66.
doi: 10.1016/j.jcs.2006.06.006
[1] LI Ying,ZHANG ShuHang,GUO Yan,ZHANG XinFang,WANG GuangPeng. Catkin Phenotypic Diversity and Cluster Analysis of 211 Chinese Chestnut Germplasms [J]. Scientia Agricultura Sinica, 2020, 53(22): 4667-4682.
[2] WenJing HU,ChunMei ZHANG,Di WU,ChengBin LU,YaChao DONG,XiaoMing CHENG,Yong ZHANG,DeRong GAO. Screening for Resistance to Fusarium Head Blight and Agronomic Traits of Wheat Germplasms from Yangtze River Region [J]. Scientia Agricultura Sinica, 2020, 53(21): 4313-4321.
[3] CHEN Yin-ji, JIANG Wei-xin, CAO Jun, DAI Bing-ye, DONG Wen. Storage and Transportation Characteristic of Different Moisture Paddy Rice Dealt with Dynamic Temperature and Humidity [J]. Scientia Agricultura Sinica, 2016, 49(1): 163-175.
[4] LI Chao; LUO Shu-ping; ZENG Bin; LI Jiang; LI Gang. Analysis of Genetic Diversity of Germplasm Resources of Walnut (Juglans regia L.) Revealed by ISSR in Xinjiang of China [J]. Scientia Agricultura Sinica, 2011, 44(9): 1871-1879.
[5] GUAN Zhi-yong,CHEN Su-mei,CHEN Fa-di,YIN Dong-mei,LIU Zhao-lei,TANG Juan,YANG Fan
.

Salt Tolerance Screening of 32 Taxa from Chrysanthemum and Its Relative Genera

[J]. Scientia Agricultura Sinica, 2010, 43(19): 4063-4071 .
[6] LI Ying-hui,CHANG Ru-zhen,QIU Li-juan
. The Strategy for Maintaining Genetic Integrity of Soybean Germplasms ——Selecting Pure Lines Based on SSR Markers
[J]. Scientia Agricultura Sinica, 2010, 43(19): 3930-3936 .
[7] CHEN Guo-ping,ZHANG Xin,ZHOU Rui-yang,ZHAO Hong-tao
. A Study on the Changeable Law of the Yield and Quality Characters of Perennial Upland Cotton in Southern Guangxi
[J]. Scientia Agricultura Sinica, 2010, 43(15): 3106-3114 .
[8]

. Influence of High Temperature Stress on Composition and Accumulation Configuration of Storage Protein in Rice
[J]. Scientia Agricultura Sinica, 2009, 42(2): 714-718 .
[9] ,,,,,. High-molecular-weight Glutenin Subunit Compositions of Chinese Common Wheat (Triticum aestivum L.) Germplasms [J]. Scientia Agricultura Sinica, 2006, 39(12): 2406-2415 .
[10] ,. Limiting Factors of Wheat Quality Improvement in Southwest China [J]. Scientia Agricultura Sinica, 2004, 37(10): 1414-1421 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!