Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (10): 1961-1970.doi: 10.3864/j.issn.0578-1752.2022.10.007

• PLANT PROTECTION • Previous Articles     Next Articles

Spatial Distribution Pattern and Sampling Technique of Conogethes punctiferalis Larvae in Maize Fields

LI ShaoHua(),WANG YunPeng,WANG RongCheng,YIN Ping,LI XiangDong(),ZHENG FangQiang()   

  1. College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong
  • Received:2021-09-10 Accepted:2021-10-22 Online:2022-05-16 Published:2022-06-02
  • Contact: XiangDong LI,FangQiang ZHENG E-mail:18763822737@163.com;xdongli@sdau.edu.cn;fqzheng@sdau.edu.cn

Abstract:

【Objective】The yellow peach moth, Conogethes punctiferalis, as an agricultural insect pest, its damage to maize ears has become more and more serious in Huang-Huai-Hai maize-producing areas of China in recent years, threatening the safe production of maize and the food safety. The spatial distribution pattern is an important ecological attribute of insect population, the objective of this study is to research the spatial distribution pattern of C. punctiferalis larvae in maize fields, clarify the spatial distribution characteristics of the pest, and to provide scientific bases for formulating field sampling program of C. punctiferalis larvae in maize fields, forecasting and effective management of the insect pest on maize.【Method】The spatial distribution pattern of the population of C. punctiferalis larvae in maize fields was studied by traditional statistical method (aggregation indexes, Taylor’s power law and Iwao’s regression model) and geostatistical method. Based on the Iwao’s regression model, the theoretical sampling number of C. punctiferalis larvae in fields was determined, and the maximum theoretical sampling number with different admissible errors (D=0.1, 0.2, 0.3) and the putative economic thresholds (m0=0.5, 1, 1.5, 2 larvae per plant) was also determined by the sequential sampling.【Result】The results of the two kinds of statistical methods showed that the spatial distribution pattern of C. punctiferalis larvae belonged to aggregation distribution. The analysis of some aggregation indexes showed that spatial distribution pattern of C. punctiferalis larvae belonged to aggregation distribution. The results of Taylor’s power law showed that the spatial distribution pattern of C. punctiferalis larvae belonged to aggregation distribution, and the aggregation intensity increased with the population density. The Iwao’s regression model proved that the spatial distribution pattern of C. punctiferalis larvae belonged to negative binomial distribution in aggregation distributions. The parameters of semivariogram models indicated that the optimal fitting models of C. punctiferalis larvae were the spherical, exponential and linear models. The three-dimensional and two-dimensional maps from Kriging interpolations showed that the aggregation centers of C. punctiferalis larvae were located at the edges of the fields. Based on sampling technique from the Iwao’s regression model, the theoretical sampling number of C. punctiferalis larvae in maize fields was determined when the confidence probability t=2 and different mean densities m=0.5, 1, 2, 3, 4, 5, 10 and 15. The maximum theoretical sampling number was also determined by the sequential sampling. Assuming t=2, D=0.1, 0.2, 0.3, when m0=0.5 larva per plant, the maximum theoretical sampling numbers were 3 417, 854 and 380, respectively; when m0=1 larva per plant, the maximum theoretical sampling numbers were 1 717, 429 and 191, respectively; when m0=1.5 larvae per plant, the maximum theoretical sampling numbers were 1 150, 287 and 128, respectively; when m0=2 larvae per plant, the maximum theoretical sampling numbers were 867, 217 and 96, respectively.【Conclusion】The spatial distribution pattern of C. punctiferalis larvae belongs to the negative binomial distribution in aggregation distributions, and the aggregation centers were located at the edges of the fields. The maximum theoretical sampling number based on the sequential sampling in maize fields can be used for monitoring and management of C. punctiferalis larvae.

Key words: Conogethes punctiferalis, aggregation indices, geostatistics, spatial distribution pattern, sampling technique

Table 1

Aggregation indices of C. punctiferalis larvae populations"

田块
Field
样方数
Number of quadrat
均值m
Mean
方差S2
Variance
平均拥挤度m*
Mean crowding
丛生指数I
Clumping index
聚块指数m*/m
Patch index
久野指数CA
Cassie index
扩散系数C
Dispersion coefficient
分布型
Distribution pattern
1 52 54.40 377.62 60.34 5.94 1.11 0.11 6.94 聚集型 Aggregation
2 92 81.90 778.18 90.40 8.50 1.10 0.10 9.50 聚集型 Aggregation
3 60 30.10 104.40 32.57 2.47 1.08 0.08 3.47 聚集型 Aggregation
4 60 25.50 231.68 33.59 8.09 1.32 0.32 9.09 聚集型 Aggregation
5 60 72.13 293.10 75.20 3.06 1.04 0.04 4.06 聚集型 Aggregation
6 60 33.88 242.75 40.05 6.16 1.18 0.18 7.16 聚集型 Aggregation
7 60 16.47 127.41 23.20 6.74 1.41 0.41 7.74 聚集型 Aggregation
8 72 11.99 47.84 14.98 2.99 1.25 0.25 3.99 聚集型 Aggregation
9 105 21.68 54.07 23.17 1.49 1.07 0.07 2.49 聚集型 Aggregation
10 36 10.39 28.82 12.16 1.77 1.17 0.17 2.77 聚集型 Aggregation

Table 2

The parameters of semivariogram models and spatial patterns of C. punctiferalis larvae populations"

田块
Field
模型
Model
块金值C0
Nugget
基台值C0+C
Sill
变程a
Range
(m)
空间结构比率C0/(C0+C)
Proportion of spatial structure (%)
决定系数R2
Coefficient of determination
空间格局
Spatial pattern
1 指数型 Exponential 71.00 434.30 11.13 16.35 0.66 聚集型 Aggregation
2 球型 Spherical 129.00 774.70 2.23 16.65 0 聚集型 Aggregation
3 指数型 Exponential 24.70 103.20 1.44 23.93 0.01 聚集型 Aggregation
4 指数型 Exponential 0.10 241.40 4.75 0.04 0.82 聚集型 Aggregation
5 球型 Spherical 43.30 251.40 4.32 17.22 0.63 聚集型 Aggregation
6 球型 Spherical 0.10 267.00 6.21 0.04 0.76 聚集型 Aggregation
7 线型 Linear 0.30 0.43 17.56 69.77 0.29 聚集型 Aggregation
8 球型 Spherical 11.60 48.78 1.50 23.78 0 聚集型 Aggregation
9 指数型 Exponential 19.90 61.38 3.06 32.42 0.26 聚集型 Aggregation
10 球型 Spherical 4.09 29.09 2.05 14.06 0 聚集型 Aggregation

Fig. 1

The three-dimensional and two-dimensional maps of C. punctiferalis larvae populations Distance, meter"

Table 3

The theoretical sampling number of C. punctiferalis larvae"

允许误差D
Admissible error
平均密度Mean density
0.5 1 2 3 4 5 10 15
D=0.1 3417 1717 867 583 441 356 186 130
D=0.2 854 429 216 146 110 89 47 32
D=0.3 380 191 96 65 49 40 21 14

Table 4

The sequential sampling of C. punctiferalis larvae"

经济阈值(头/株)
Economic threshold (larvae/plant)
调查株数 Number of plants
40 60 80 100 120 140 160 180 200
m0=0.5 上限 Upper limit 38 53 66 79 92 105 117 129 141
下限 Lower limit 2 7 14 21 28 35 43 51 59
m0=1 上限 Upper limit 66 92 117 141 165 189 212 236 259
下限 Lower limit 14 28 43 59 75 91 108 124 141
m0=1.5 上限 Upper limit 92 129 165 201 236 270 304 338 372
下限 Lower limit 28 51 75 99 124 150 176 202 228
m0=2 上限 Upper limit 117 166 213 259 304 350 394 439 483
下限 Lower limit 43 74 107 141 176 210 246 281 317
[1] 王振营, 王晓鸣, 石洁. 中国农作物病虫害:上册. 3版. 北京: 中国农业出版社, 2015: 705-712.
WANG Z Y, WANG X M, SHI J. Crop Diseases and Insect Pests in China:Part Ⅰ. 3rd ed. Beijing: China Agriculture Press, 2015: 705-712. (in Chinese)
[2] DU Y L, LI J, WANG Z Y. Research progress of Conogethes punctiferalis (Lepidoptera:Crambidae) in China//CHAKRAVARTHY A K. The Black Spotted, Yellow Borer, Conogethes punctiferalis Guenée and Allied Species. Berlin: Springer, 2018: 45-66.
[3] 丁岩钦. 昆虫数学生态学. 北京: 科学出版社, 1994: 22-69, 256-270.
DING Y Q. Insect Mathematical Ecology. Beijing: Science Press, 1994: 22-69, 256-270. (in Chinese)
[4] SCHOWALTER T D. Insect Ecology:An Ecosystem Approach. 4th ed. London: Academic Press, 2016: 141-175.
[5] GARCIÁ F J M. Analysis of the spatio-temporal distribution of Helicoverpa armigera Hb. in a tomato field using a stochastic approach. Biosystems Engineering, 2006, 93(3): 253-259.
doi: 10.1016/j.biosystemseng.2005.12.011
[6] GOZÉ E, NIBOUCHE S, DEGUINE J P. Spatial and probability distribution of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in cotton: Systematic sampling, exact confidence intervals and sequential test. Environmental Entomology, 2003, 32(5): 1203-1210.
doi: 10.1093/ee/32.5.1203
[7] 周海波, 陈林, 陈巨莲, 程登发, 刘勇, 孙京瑞. 基于GIS的小麦-豌豆间作对麦长管蚜种群空间格局的影响. 中国农业科学, 2009, 42(11): 3904-3913.
ZHOU H B, CHEN L, CHEN J L, CHENG D F, LIU Y, SUN J R. Effect of intercropping between wheat and pea on spatial distribution of Sitobion avenae based on GIS. Scientia Agricultura Sinica, 2009, 42(11): 3904-3913. (in Chinese)
[8] 闫香慧, 赵志模, 刘怀, 肖晓华, 谢雪梅, 程登发. 白背飞虱若虫空间格局的地统计学分析. 中国农业科学, 2010, 43(3): 497-506.
YAN X H, ZHAO Z M, LIU H, XIAO X H, XIE X M, CHENG D F. Geostatistical analysis on spatial distribution of white-backed planthopper nymphs. Scientia Agricultura Sinica, 2010, 43(3): 497-506. (in Chinese)
[9] 高丙涛, 任利利, 蒋琦, 刘漪舟, 俞琳锋, 骆有庆. 不同受害油松林内红脂大小蠹空间格局的地统计学研究. 应用昆虫学报, 2020, 57(6): 1427-1435.
GAO B T, REN L L, JIANG Q, LIU Y Z, YU L F, LUO Y Q. Geostatistical analysis of the spatial distribution of Dendroctonus valens in Pinus tabuliformis forests with different levels of infestation. Chinese Journal of Applied Entomology, 2020, 57(6): 1427-1435. (in Chinese)
[10] PARK Y L, OBRYCKI J J. Spatio-temporal distribution of corn leaf aphids (Homoptera: Aphididae) and lady beetles (Coleoptera: Coccinellidae) in Iowa cornfields. Biological Control, 2004, 31(2): 210-217.
doi: 10.1016/j.biocontrol.2004.06.008
[11] 赵静, 赵鑫, 王玉军, 李光强, 刘丽平, 孟家华, 郑方强. 烟盲蝽及其天敌蜘蛛空间格局的地统计学分析. 生态学报, 2010, 30(15): 4196-4205.
ZHAO J, ZHAO X, WANG Y J, LI G Q, LIU L P, MENG J H, ZHENG F Q. Geostatistical analysis of spatial patterns of Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae) and its natural enemy spiders. Acta Ecologica Sinica, 2010, 30(15): 4196-4205. (in Chinese)
[12] 洪波, 张云慧, 李超, 吐尔逊, 陈林, 程登发. 马铃薯甲虫空间分布型及序贯抽样. 植物保护学报, 2010, 37(3): 206-210.
HONG B, ZHANG Y H, LI C, TU E X, CHEN L, CHENG D F. Spatial distribution pattern and sequential sampling of Colorado potato beetle, Leptinotarsa decemlineata Say. Journal of Plant Protection, 2010, 37(3): 206-210. (in Chinese)
[13] 孙小旭, 赵胜园, 靳明辉, 赵慧媛, 李国平, 张浩文, 姜玉英, 杨现明, 吴孔明. 玉米田草地贪夜蛾幼虫的空间分布型与抽样技术. 植物保护, 2019, 45(2): 13-18.
SUN X X, ZHAO S Y, JIN M H, ZHAO H Y, LI G P, ZHANG H W, JIANG Y Y, YANG X M, WU K M. Larval spatial distribution pattern and sampling technique of the fall army worm Spodoptera frugiperda in maize fields. Plant Protection, 2019, 45(2): 13-18. (in Chinese)
[14] 杨紫涵, 何沐阳, 李建芳, 张富春, 王磊, 陆永跃. 草地贪夜蛾幼虫在苗期玉米田的空间分布格局及其抽样技术. 环境昆虫学报, 2020, 42(4): 817-828.
YANG Z H, HE M Y, LI J F, ZHANG F C, WANG L, LU Y Y. Spatial pattern of Spodoptera frugiperda larvae at seedling corn field and its sampling method. Journal of Environmental Entomology, 2020, 42(4): 817-828. (in Chinese)
[15] 吴立民. 玉米田桃蛀螟分布型及抽样技术. 江苏农业科学, 1995(3): 33-35, 53.
WU L M. Spatial distribution pattern and sampling technique of Conogethes punctiferalis in the corn fields. Jiangsu Agricultural Sciences, 1995(3): 33-35, 53. (in Chinese)
[16] 周洪旭, 乔晓明, 孙立宁, 顾颂东, 郑伯平, 赵春生. 玉米田桃蛀螟越冬幼虫空间分布型的研究. 山东农业大学学报 (自然科学版), 2004, 35(4): 543-546.
ZHOU H X, QIAO X M, SUN L N, GU S D, ZHENG B P, ZHAO C S. Studies on the spatial distribution pattern of overwintering larvae of Dichocrocis punctiferalis Guenée in the corn field. Journal of Shandong Agricultural University (Natural Science Edition), 2004, 35(4): 543-546. (in Chinese)
[17] 陈炳旭, 董易之, 陆恒. 桃蛀螟幼虫在板栗上的空间分布型研究. 环境昆虫学报, 2008, 30(4): 301-304.
CHEN B X, DONG Y Z, LU H. Studies on the spatial distribution pattern of Dichocrocis punctiferalis larvae in chestnut trees. Journal of Environmental Entomology, 2008, 30(4): 301-304. (in Chinese)
[18] 郝立武. 山东省夏玉米主要害虫种群发生动态及基于GIS和GS的空间分析[D]. 泰安: 山东农业大学, 2012.
HAO L W. The population dynamics of the main insect pests on summer corn field and their spatial analyses based on GIS and GS in Shandong Province[D]. Taian: Shandong Agricultural University, 2012. (in Chinese)
[19] 王其武. 无棣县玉米田桃蛀螟幼虫时空动态和抽样技术研究[D]. 泰安: 山东农业大学, 2016.
WANG Q W. The temporal-spatial dynamics and sampling techniques of yellow peach borer larvae population on corn in Wudi County[D]. Taian: Shandong Agricultural University, 2016. (in Chinese)
[20] 唐启义. DPS数据处理系统--实验设计、统计分析及数据挖掘. 2版. 北京: 科学出版社, 2010: 489-491.
TANG Q Y. DPS Data Processing System--Experimental Design, Statistical Analysis and Date Mining. 2nd ed. Beijing: Science Press, 2010: 489-491. (in Chinese)
[21] TAYLOR L R. Aggregation, variance and the mean. Nature, 1961, 189: 732-735.
doi: 10.1038/189732a0
[22] TAYLOR L R. Aggregation, migration and population mechanics. Nature, 1977, 265: 415-421.
doi: 10.1038/265415a0
[23] IWAO S. Application of m*-m method to the analysis of spatial patterns by changing the quadrat size. Researches on Population Ecology, 1972, 14(1): 97-128.
doi: 10.1007/BF02511188
[24] IWAO S. The m*-m statistics as a comprehensive method for analyzing spatial patterns of biological populations and its application to sampling technique problems//MORISITA M. Studies on Methods of Estimating Population Density, Biomass and Productivity in Terrestrial Animals. Japanese Committee for the International Biological Program. Tokyo: University of Tokyo Press, 1977: 21-46.
[25] LIEBHOLD A M, ROSSI R E, KEMP W P. Geostatistics and geographic information systems in applied insect ecology. Annual Review of Entomology, 1993, 38: 303-327.
doi: 10.1146/annurev.en.38.010193.001511
[26] IWAO S. A new method of sequential sampling to classify populations relative to a critical density. Researches on Population Ecology, 1975, 16(2): 281-288.
doi: 10.1007/BF02511067
[27] 周国法, 徐汝梅. 生物地理统计学:生物种群时空分析的方法及其应用. 北京: 科学出版社, 1998: 22, 47-48.
ZHOU G F, XU R M. Biogeostatistics:Methodology and Application of Spatial Analysis of Biology Species. Beijing: Science Press, 1998: 22, 47-48. (in Chinese)
[28] ROSSI R E, MULLA D J, JOURNEL A G, FRANZ E H. Geostatistical tools for modeling and interpreting ecological spatial dependence. Ecological Monographs, 1992, 62(2): 277-314.
doi: 10.2307/2937096
[29] 王荣成. 桃蛀螟为害夏玉米的损失估计与经济阈值研究[D]. 泰安: 山东农业大学, 2020.
WANG R C. Research on loss estimation and economic threshold of the yellow peach moth, Conogethes punctiferalis, on summer maize[D]. Taian: Shandong Agricultural University, 2020. (in Chinese)
[30] KUNO E. Some notes on population estimation by sequential sampling. Researches on Population Ecology, 1972, 14(1): 58-73.
doi: 10.1007/BF02511185
[1] ZHANG WeiLi,FU BoJie,XU AiGuo,YANG Peng,CHEN Tao,ZHANG RenLian,SHI Zhou,WU WenBin,LI JianBing,JI HongJie,LIU Feng,LEI QiuLiang,LI ZhaoJun,FENG Yao,LI YanLi,XU YongBing,PEI Wei. Geostatistical Characteristics of Soil Data from National Soil Survey Works in China [J]. Scientia Agricultura Sinica, 2022, 55(13): 2572-2583.
[2] ZHANG Ling-E, SHUANG Wen-Yuan, YUN An-Ping, NIU Ling-An, HU Ke-Lin. Spatio-temporal Variability and the Influencing Factors of Soil Available Potassium in 30 Years in Quzhou County, Hebei Province [J]. Scientia Agricultura Sinica, 2014, 47(5): 923-933.
[3] WANG Di, CHEN Zhong-xin, ZHOU Qing-bo, LIU Jia. Optimization of Samples Layout in Spatial Sampling Schemes    for Estimating Winter Wheat Planting Acreage [J]. Scientia Agricultura Sinica, 2014, 47(18): 3545-3556.
[4] ZHANG Shi-Wen-1, 2 , ZHANG Li-Ping-2, YUAN Jun-3, SHEN Zhong-Yang-2, CHEN Xiao-Yang-1, YE Hui-Chun-2, HUANG Yuan-Fang-2. Characterizing Variation of Topsoil Particle Size Distribution Based on Fractal Theory and Geostatistics [J]. Scientia Agricultura Sinica, 2014, 47(13): 2591-2601.
[5] YAN Xiang-hui,ZHAO Zhi-mo,LIU Huai,XIAO Xiao-hua,XIE Xue-mei,CHENG Deng-fa
. Geostatistical Analysis on Spatial Distribution of White-Backed Planthopper Nymphs
[J]. Scientia Agricultura Sinica, 2010, 43(3): 497-506 .
[6] Yi JIAN Wan-qin YANG. Investigation and Assessment on Soil Residual Pesticide Contamination in the Mountain-Hilly Transitive Zone: A Case from Wutongqiao County in Sichuan [J]. Scientia Agricultura Sinica, 2008, 41(7): 2048-2054 .
[7] ,,. Study on the Spatial Pattern of Rainfall Erosivity Based on Geostatistics of Hebei Province [J]. Scientia Agricultura Sinica, 2006, 39(11): 2270-2277 .
[8] ,,,. The Spatial-Temporal Variability of Soil Organic Matter and Its Influencing Factors in Suburban Area of Beijing [J]. Scientia Agricultura Sinica, 2006, 39(04): 764-771 .
[9] ,,,,,,,,. Geostatistical and GIS Analyses on Total Soil P in the Typical Area of Dongting Lake Plain [J]. Scientia Agricultura Sinica, 2005, 38(06): 1204-1212 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!