Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (8): 1657-1666.doi: 10.3864/j.issn.0578-1752.2022.08.015

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

circ-13267 Regulates Egg Duck Granulosa Cells Apoptosis Through Let-7-19/ERBB4 Pathway

WU Yan1,2(),ZHANG Hao1,LIANG ZhenHua1,PAN AiLuan1,SHEN Jie1,PU YueJin1,HUANG Tao1,PI JinSong1(),DU JinPing1   

  1. 1Institute of Animal Husbandry and Vetervinary, Hubei Academy of Agricultural Science;Hubei Innovation Center of Agricultural Science and Technology, Wuhan 430064
    2Hubei Key Lab of Animal Embryo Technology and Molecular Breeding, Wuhan 430064
  • Received:2021-02-08 Accepted:2021-11-17 Online:2022-04-16 Published:2022-05-11
  • Contact: JinSong PI E-mail:wuyanwh@163.com;pijinsong@sina.com

Abstract:

【Background】 Follicle development is a key factor for laying performance of egg ducks. Previous studies have shown that follicular development is a very complex biological process in poultry. At present, the pattern of follicular development in poultry has been understood. However, as an important factor determining egg production, the specific regulation mechanism of follicular development still needs further study. Granulosa cells are the main functional cells in follicles. They can regulate the growth, differentiation and maturation of theca cells and oocytes. They also regulate the growth and development of follicles, maintain normal ovarian function, such as induce ovulation, maintain maturation division, and provide substrates for oocytes. Circular RNAs (circRNAs) are a new type of endogenous specific non-coding RNA, which plays an important role in follicular development. 【Objective】The objective of this study was to explore the effects and regulatory mechanism of circ-13267 on apoptosis in egg duck granulosa cells, through regulating the expression of circ-13267 by constructing the overexpression vector, so as to provide the evidence for analysis the regulatory mechanism of egg duck follicular development. 【Method】Firstly, the expression levels of circ-13267 in cytoplasm and nucleus of granulosa cells was detected by Q-PCR. The overexpression vector circ-13267-pLCDH was constructed. After transfection of circ-13267 in egg duck granulosa cells, the expression levels of circ-13267, let-7-19, ERBB4, FAS and BCL2 were detected by Q-PCR. The proliferation of egg duck granulosa cells was detected by EdU method after transfection circ-13267-pLCDH and pLCDH-ciR. The linear sequence of circ-13267 or the 3'UTR of ErbB4 was cloned into pmirGLo vector. At the same time, let-7-19 binding site in the wild-type sequence was mutated to obtain the vector expressing the mutant sequence. The targeting relationships between circ-13267 and let-7-19, let-7-19 and ERBB4 were verified by dual luciferase reporter assay, respectively. Then, after transfection of circ-13267-pLCDH and pLCDH-ciR into egg duck follicular granulosa cells, the flow cytometry and Annexin V-FITC were utilized to explore the effects of circ-13267 on duck granulosa cells. 【Result】 In duck granulosa cells, circ-13267 was expressed in both cytoplasm and nucleus. The dual luciferase reporter gene assay confirmed that let-7-19 could bind to ERBB4 and down regulate the activity of luciferase; when the binding site of let-7-19 in ErbB4 sequence was mutated, let-7-19 could not inhibit the expression of luciferase, indicating that ERBB4 was a target gene of let-7-19. The results of Q-PCR showed that, after overexpression of circ-13267, the expression of BCL2 gene decreased significantly (P<0.05), while the expression of FAS and ERBB4 gene increased significantly (P<0.05); after overexpression of let-7-19, the expression of ERBB4 gene increased significantly (P<0.05), while after inhibition of let-7-19, the expression of ERBB4 gene decreased significantly (P<0.05). EdU test results showed that the number of follicular granulosa cells in egg ducks decreased significantly after overexpression of circ-13267, it was shown that circ-13267 promoted the apoptosis of follicular granulosa cells in egg ducks. However, after co-transfection of circ-13267 and let-7-19 into egg duck follicular granulosa cells, compared with the control group, there was no significant change in the expression of BCL2 and FAS (P>0.05); however, compared with overexpression of circ-13267, the expression of BCL2 gene decreased significantly (P<0.01) and FAS increased significantly (P<0.01). It was shown that circ-13267 could inhibit the apoptosis of egg duck follicular granulosa cells. In addition, flow cytometry was used to detect the transfected egg duck follicular granulosa cells. Compared with the co-transfection groups of circ-13267 and let-7-19, the number of late apoptotic cells and total apoptotic cells increased significantly (P<0.05), while the number of living cells decreased significantly (P<0.05). 【Conclusion】 circ-13267 was expressed in the cytoplasm and nucleus of egg duck follicular granulosa cells. circ-13267 could sponge let-7-19 and target ERBB4 gene, which promoted the apoptosis of egg duck follicular granulosa cells. This results provided a theoretical basis for analysis of the regulatory mechanism of egg duck follicular development.

Key words: circRNA, miRNA, egg duck, follicular development, granulosa cells

Table 1

The primers for plasmid construction and quantitative"

引物名称
Primer name
引物序列
Primer sequence
产物长度
Product length (bp)
circ_13267 F:CACTAAAATAAAATCTGTTCAATTAACGAATTCGAGGAAACCCCTATGGTAACATC
R:GGCGTTATCATCCCAAATTAGTGGATCCTGGAAGGGCTCATGAAATCTTAC
1488
circ_13267-q F: CGGAATTTCCTCCAACTGA
R: CTGCTGCCTGGTCTGTTAC
104
β-actin F: CTCGCTTCGGCAGCACA
R: AACGCTTCACGAATTTGCGT
201
let-7-19 F: ACACTCCAGCTGGGTGAGGTAGTAGTTTGTG
LOOP: CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGGACAGCAC
URP: TGGTGTCGTGGAGTCG
-
U6 F: CTCGCTTCGGCAGCACA
R: AACGCTTCACGAATTTGCGT
-
FAS F: GCCCCAGTTGAAGAAAAA
R: TCCAGGCAAGTAAGACCC
171
BCL2 F: ACGGCTCTCG CTCCTGCT
R: CGGTTGACGC TCTCCACG
260
ERBB4 F: ATTTCAGGGTGTTTTCTA
R: TCTGCTTTTTTATTTCGG
244

Fig. 1

Effect of circ_013267 on proliferation and apoptosis on duck GCs A: The expression of genes related to proliferation and apoptosis upon aplacirc_013267 overexpression; B: The apoptosis results of aplacirc_013267 overexpression in GCs by EdU assay"

Fig. 2

Expression of circ-13267 in cytoplasm and nucleus"

Fig. 3

The binding sites of let-7-19 on circ-13267"

Fig. 4

The expression of let-7-19 in white follicles and yellow follicles"

Fig. 5

Validation results of targeting relationship between let-7-19 and ERBB4 A: the binding site of let-7-19 on 3’UTR of ERBB4 gene; B: verification of ERBB4 targeting let-7-19 by dual luciferase reporter gene assay; C: The expression of ERBB4 in white follicles and yellow follicles; D: The expression of ERBB4 when up-expression or down-expression let-7-19"

Fig. 6

circ-13267 regulates egg duck granulosa cells apoptosis through let-7-19/ERBB4 pathway A: The effect ofup-expression of circ-13267 and let-7-19 on proliferation and apoptosis of granulosa cells by Q-PCR; B: Apoptosis in each group detected by annexin V‐FITC/PI double staining; C: The expression of ERBB4 when up-expression circ-13267 and let-7-19"

[1] MEMCZAK S, JENS M, ELEFSINIOTI A, TORTI F, KRUEGER J, RYBAK A, MAIER L, MACKOWIAK S D, GREGERSEN L H, MUNSCHAUER M, LOEWER A, ZIEBOLD U, LANDTHALER M, KOCKS C, LE NOBLE F, RAJEWSKY N. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 2013, 495(7441): 333-338. doi: 10.1038/nature11928.
doi: 10.1038/nature11928
[2] ASHWAL-FLUSS R, MEYER M, PAMUDURTI N R, IVANOV A, BARTOK O, HANAN M, EVANTAL N, MEMCZAK S, RAJEWSKY N, KADENER S. circRNA biogenesis competes with pre-mRNA splicing. Molecular Cell, 2014, 56(1): 55-66. doi: 10.1016/j.molcel.2014.08.019.
doi: 10.1016/j.molcel.2014.08.019
[3] STARKE S, JOST I, ROSSBACH O, SCHNEIDER T, SCHREINER S, HUNG L H, BINDEREIF A. Exon circularization requires canonical splice signals. Cell Reports, 2015, 10(1): 103-111. doi: 10.1016/j.celrep.2014.12.002.
doi: 10.1016/j.celrep.2014.12.002
[4] LI X, YANG L, CHEN L L. The biogenesis, functions, and challenges of circular RNAs. Molecular Cell, 2018, 71(3): 428-442. doi: 10.1016/j.molcel.2018.06.034.
doi: 10.1016/j.molcel.2018.06.034
[5] KRISTENSEN L S, ANDERSEN M S, STAGSTED L V W, EBBESEN K K, HANSEN T B, KJEMS J. The biogenesis, biology and characterization of circular RNAs. Nature Reviews Genetics, 2019, 20(11): 675-691. doi: 10.1038/s41576-019-0158-7.
doi: 10.1038/s41576-019-0158-7
[6] ZHANG H D, JIANG L H, SUN D W, HOU J C, JI Z L. CircRNA: a novel type of biomarker for cancer. Breast Cancer (Tokyo, Japan), 2018, 25(1): 1-7. doi: 10.1007/s12282-017-0793-9.
doi: 10.1007/s12282-017-0793-9
[7] YAN Y, SU M, QIN B L. CircHIPK3 promotes colorectal cancer cells proliferation and metastasis via modulating of miR-1207-5p/FMNL2 signal. Biochemical and Biophysical Research Communications, 2020, 524(4): 839-846. doi: 10.1016/j.bbrc.2020.01.055.
doi: 10.1016/j.bbrc.2020.01.055
[8] ZHANG C R, LIU J Q, LAI M H, LI J, ZHAN J H, WEN Q D, MA H X. Circular RNA expression profiling of granulosa cells in women of reproductive age with polycystic ovary syndrome. Archives of Gynecology and Obstetrics, 2019, 300(2): 431-440. doi: 10.1007/s00404-019-05129-5.
doi: 10.1007/s00404-019-05129-5
[9] JIA W C, XU B, WU J. Circular RNA expression profiles of mouse ovaries during postnatal development and the function of circular RNA epidermal growth factor receptor in granulosa cells. Metabolism, 2018, 85: 192-204. doi: 10.1016/j.metabol.2018.04.002.
doi: 10.1016/j.metabol.2018.04.002
[10] TAO H, XIONG Q, ZHANG F, ZHANG N, LIU Y, SUO X J, LI X F, YANG Q P, CHEN M X. Circular RNA profiling reveals chi_circ_0008219 function as microRNA sponges in pre-ovulatory ovarian follicles of goats (Capra hircus). Genomics, 2018, 110(4): 257-266. doi: 10.1016/j.ygeno.2017.10.005.
doi: 10.1016/j.ygeno.2017.10.005
[11] ZHANG L, LIU X R, CHE S C, CUI J Z, LIU Y X, AN X P, CAO B Y, SONG Y X. CircRNA-9119 regulates the expression of prostaglandin- endoperoxide synthase 2 (PTGS2) by sponging miR-26a in the endometrial epithelial cells of dairy goat. Reproduction, Fertility, and Development, 2018, 30(12): 1759-1769. doi: 10.1071/RD18074.
doi: 10.1071/RD18074
[12] ZHANG L, LIU X R, MA X N, LIU Y X, CHE S C, CUI J Z, AN X P, CAO B Y, SONG Y X. Testin was regulated by circRNA3175-miR182 and inhibited endometrial epithelial cell apoptosis in pre-receptive endometrium of dairy goats. Journal of Cellular Physiology, 2018, 233(10): 6965-6974. doi: 10.1002/jcp.26614.
doi: 10.1002/jcp.26614
[13] XU G X, ZHANG H F, LI X, HU J H, YANG G S, SUN S D. Genome-wide differential expression profiling of ovarian circRNAs associated with litter size in pigs. Frontiers in Genetics, 2019, 10: 1010. doi: 10.3389/fgene.2019.01010.
doi: 10.3389/fgene.2019.01010
[14] SHEN M M, LI T T, ZHANG G X, WU P F, CHEN F X, LOU Q H, CHEN L, YIN X M, ZHANG T, WANG J Y. Dynamic expression and functional analysis of circRNA in granulosa cells during follicular development in chicken. BMC Genomics, 2019, 20(1): 96. doi: 10.1186/s12864-019-5462-2.
doi: 10.1186/s12864-019-5462-2
[15] ZHANG M, HAN Y, ZHAI Y H, MA X F, AN X L, ZHANG S, LI Z Y. Integrative analysis of circRNAs, miRNAs, and mRNAs profiles to reveal ceRNAs networks in chicken intramuscular and abdominal adipogenesis. BMC Genomics, 2020, 21(1): 594. doi: 10.1186/s12864-020-07000-3.
doi: 10.1186/s12864-020-07000-3
[16] WU Y, XIAO H W, PI J S, ZHANG H, PAN A L, PU Y J, LIANG Z H, SHEN J, DU J P. The circular RNA aplacirc_13267 upregulates duck granulosa cell apoptosis by the apla-miR-1-13/THBS1 signaling pathway. Journal of Cellular Physiology, 2020, 235(7/8): 5750-5763. doi: 10.1002/jcp.29509.
doi: 10.1002/jcp.29509
[17] MATSUDA F, INOUE N, MANABE N, OHKURA S. Follicular growth and atresia in mammalian ovaries: regulation by survival and death of granulosa cells. The Journal of Reproduction and Development, 2012, 58(1): 44-50. doi: 10.1262/jrd.2011-012.
doi: 10.1262/jrd.2011-012
[18] FAN H Y, LIU Z L, SHIMADA M, STERNECK E, JOHNSON P F, HEDRICK S M, RICHARDS J S. MAPK3/ 1 (ERK1/2) in ovarian granulosa cells are essential for female fertility. Science, 2009, 324(5929): 938-941. doi: 10.1126/science.1171396.
doi: 10.1126/science.1171396
[19] ETCHES R J, PETITTE J N. Reptilian and avian follicular hierarchies: models for the study of ovarian development. The Journal of Experimental Zoology Supplement: Published Under Auspices of the American Society of Zoologists and the Division of Comparative Physiology and Biochemistry, 1990, 4: 112-122. doi: 10.1002/jez.1402560419.
doi: 10.1002/jez.1402560419
[20] 林金杏. 局部性促生长因子对鸡卵泡发育的调控及其机理的研究[D]. 杭州: 浙江大学, 2011.
LIN J X. Regulation of local growth-promoting factors on follicular development in the laying chickens[D]. Hangzhou: Zhejiang University, 2011. (in Chinese)
[21] JOHNSON P. Follicle selection in the avian ovary. Reproduction in Domestic Animals, 2012, 47: 283-287. doi: 10.1111/j.1439-0531.2012.02087.x.
doi: 10.1111/j.1439-0531.2012.02087.x.
[22] WANG Y Y, CHEN Q Y, LIU Z M, GUO X L, DU Y Z, YUAN Z J, GUO M, KANG L, SUN Y, JIANG Y L. Transcriptome analysis on single small yellow follicles reveals that Wnt4 is involved in chicken follicle selection. Frontiers in Endocrinology, 2017, 8: 317. doi: 10.3389/fendo.2017.00317.
doi: 10.3389/fendo.2017.00317
[23] 魏泽辉, 贾存灵. 家禽卵泡选择过程中颗粒细胞的分子调控机制. 中国家禽, 2017, 39(21): 1-5. doi: 10.16372/j.issn.1004-6364.2017.21. 001.
doi: 10.16372/j.issn.1004-6364.2017.21. 001
WEI Z H, JIA C L. The molecular regulation mechanism of granulosa cells in the process of poultry follicle selection. China Poultry, 2017, 39(21): 1-5. doi: 10.16372/j.issn.1004-6364.2017.21.001. (in Chinese)
doi: 10.16372/j.issn.1004-6364.2017.21. 001
[24] 陆思羽, 何颖婷, 周小枫, 辛晓萍, 张爱玲, 袁晓龙, 张哲, 李加琪.干扰KISS1基因对猪卵巢颗粒细胞功能的影响. 中国农业科学, 2020, 53(23): 4940-4949. doi: 10.3864/j.issn.0578-1752.2020.23.018.
doi: 10.3864/j.issn.0578-1752.2020.23.018
LU S Y, HE Y T, ZHOU X F, XIN X P, ZHANG A L, YUAN X L, ZHANG Z, LI J Q.Effect of KISS1 interference on the function of porcine granulosa cells in porcine ovary. Scientia Agricultura Sinica, 2020, 53(23): 4940-4949. doi: 10.3864/j.issn.0578-1752.2020.23.018. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2020.23.018
[25] DEPALO R, NAPPI L, LOVERRO G, BETTOCCHI S, CARUSO M L, VALENTINI A M, SELVAGGI L. Evidence of apoptosis in human primordial and primary follicles. Human Reproduction, 2003, 18(12): 2678-2682. doi: 10.1093/humrep/deg507.
doi: 10.1093/humrep/deg507
[26] ROSKOSKI R J. The ErbB/HER receptor protein-tyrosine kinases and cancer. Biochemical and Biophysical Research Communications, 2004, 319(1): 1-11. doi: 10.1016/j.bbrc.2004.04.150.
doi: 10.1016/j.bbrc.2004.04.150
[27] YARDEN Y, PINES G. The ERBB network: at last, cancer therapy meets systems biology. Nature Reviews Cancer, 2012, 12 (8): 553-563. doi: 10.1038/nrc3309.
doi: 10.1038/nrc3309
[28] WU Y, XIAO H W, PI J S, ZHANG H, PAN A L, PU Y J, LIANG Z H, SHEN J, DU J P. EGFR promotes the proliferation of quail follicular granulosa cells through the MAPK/extracellular signal-regulated kinase (ERK) signaling pathway. Cell Cycle, 2019, 18(20): 2742-2756. doi: 10.1080/15384101.2019.1656952.
doi: 10.1080/15384101.2019.1656952
[29] VEIKKOLAINEN V, ALI N, DOROSZKO M, KIVINIEMI A, MIINALAINEN I, OHLSSON C, POUTANEN M, RAHMAN N, ELENIUS K, VAINIO S J, NAILLAT F. Erbb4 regulates the oocyte microenvironment during folliculogenesis. Human Molecular Genetics, 2020, 29(17): 2813-2830. doi: 10.1093/hmg/ddaa161.
doi: 10.1093/hmg/ddaa161
[30] AN R, FENG J X, XI C, XU J, SUN L J.miR-146a attenuates Sepsis-induced myocardial dysfunction by suppressing IRAK1 and TRAF6 via targeting ErbB4 expression. Oxidative Medicine and Cellular Longevity, 2018, 2018: 7163057. doi: 10.1155/2018/7163057.
doi: 10.1155/2018/7163057
[31] SONG G Y, ZHANG H C, CHEN C L, GONG L J, CHEN B, ZHAO S Y, SHI J, XU J, YE Z Y. miR-551b regulates epithelial- mesenchymal transition and metastasis of gastric cancer by inhibiting ERBB4 expression. Oncotarget, 2017, 8(28): 45725-45735. doi: 10.18632/oncotarget.17392.
doi: 10.18632/oncotarget.17392
[32] ZHANG M X, ZHANG L M, CUI M L, YE W G, ZHANG P J, ZHOU S N, WANG J J. miR-302b inhibits cancer-related inflammation by targeting ERBB4, IRF2 and CXCR4 in esophageal cancer. Oncotarget, 2017, 8(30): 49053-49063. doi: 10.18632/oncotarget.17041.
doi: 10.18632/oncotarget.17041
[33] LIANG H W, LIU M H, YAN X, ZHOU Y, WANG W G, WANG X L, FU Z, WANG N, ZHANG S Y, WANG Y B, ZEN K, ZHANG C Y, HOU D X, LI J, CHEN X. miR-193a-3p functions as a tumor suppressor in lung cancer by down-regulating ERBB4. Journal of Biological Chemistry, 2015, 290(2): 926-940. doi: 10.1074/jbc.M114.621409.
doi: 10.1074/jbc.M114.621409
[34] NISHI M, EGUCHI-ISHIMAE M, WU Z, GAO W, IWABUKI H, KAWAKAMI S, TAUCHI H, INUKAI T, SUGITA K, HAMASAKI Y, ISHII E, EGUCHI M. Suppression of the let-7b microRNA pathway by DNA hypermethylation in infant acute lymphoblastic leukemia with MLL gene rearrangements. Leukemia, 2013, 27 (2): 389-397. doi: 10.1038/leu.2012.242.
doi: 10.1038/leu.2012.242
[35] 许文前, 黄源茂, 肖慧芳.microRNA let-7b在急性淋巴细胞白血病的表达分析与表观遗传学研究. 中国试验血液学杂志, 2015, 23(6): 1535-1541. doi: 10.7534/j.issn.1009-2137.2015.06.001.
doi: 10.7534/j.issn.1009-2137.2015.06.001
XU W Q, HUANG Y M, XIAO H F.Expression analysis and epigenetics of microRNA let-7b in acute lymphoblastic leukemia. Journal of Experimental Hematology, 2015, 23(6): 1535-1541. doi: 10.7534/j.issn.1009-2137.2015.06.001. (in Chinese)
doi: 10.7534/j.issn.1009-2137.2015.06.001
[36] BALZEAU J, MENEZES M R, CAO S Y, HAGAN J P. The LIN28/let-7 pathway in cancer. Frontiers in Genetics, 2017, 8: 31. doi: 10.3389/fgene.2017.00031.
doi: 10.3389/fgene.2017.00031
[37] PELOSI A, CARECCIA S, LULLI V, ROMANIA P, MARZIALI G, TESTA U, LAVORGNA S, LO-COCO F, PETTI M C, CALABRETTA B, LEVRERO M, PIAGGIO G, RIZZO M G. miRNA let-7c promotes granulocytic differentiation in acute myeloid leukemia. Oncogene, 2013, 32(31): 3648-3654. doi: 10.1038/onc.2012.398.
doi: 10.1038/onc.2012.398
[38] AKAMINE P S, LIMA C R, LUSTOZA-COSTA G J, FUZIWARA C S, DEL DEBBIO C B, KIMURA E T, SANTOS M F, HAMASSAKI D E.Age-related increase of let-7 family microRNA in rat retina and vitreous. Experimental Eye Research, 2021, 204: 108434. doi: 10.1016/j.exer.2020.108434.
doi: 10.1016/j.exer.2020.108434
[39] ZHOU T Z, LIN K, NIE J J, PAN B, HE B S, PAN Y Q, SUN H L, XU T, WANG S K.LncRNA SPINT1-AS1 promotes breast cancer proliferation and metastasis by sponging let-7 a/b/i-5p. Pathology - Research and Practice, 2021, 217: 153268. doi: 10.1016/j.prp.2020.153268.
doi: 10.1016/j.prp.2020.153268
[40] JOHNSON D T, DAVIS A G, ZHOU J H, BALL E D, ZHANG D E. microRNA let-7b downregulates AML1-ETO oncogene expression in t(8;21) AML by targeting its 3'UTR. Experimental Hematology & Oncology, 2021, 10(1): 8. doi: 10.1186/s40164-021-00204-7.
doi: 10.1186/s40164-021-00204-7
[1] GUO ZeYuan, DU ZhangSheng, ZHANG YaQi, CHEN ChunLu, MA XiaoYan, CHENG Ying, WANG Kai, LÜ LiHua. Effects of Smad7-Mediated TGF-β Signaling Pathway on Proliferation of Sheep Granulosa Cells [J]. Scientia Agricultura Sinica, 2023, 56(13): 2597-2608.
[2] LIU YuFang,CHEN YuLin,ZHOU ZuYang,CHU MingXing. miR-221-3p Regulates Ovarian Granulosa Cells Apoptosis by Targeting BCL2L11 in Small-Tail Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(9): 1868-1876.
[3] WANG JiaMin,SHI JiaChen,MA FangFang,CAI Yong,QIAO ZiLin. Effects of Soy Isoflavones on the Proliferation and Apoptosis of Yak Ovarian Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(8): 1667-1675.
[4] LI LiYing,HE YingTing,ZHONG YuYi,ZHOU XiaoFeng,ZHANG Hao,YUAN XiaoLong,LI JiaQi,CHEN ZanMou. CTNNB1 Regulates the Function of Porcine Ovarian Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(15): 3050-3061.
[5] ZHANG Jing,ZHANG JiYue,YUE YongQi,ZHAO Dan,FAN YiLing,MA Yan,XIONG Yan,XIONG XianRong,ZI XiangDong,LI Jian,YANG LiXue. LKB1 Regulates Steroids Synthesis Related Genes Expression in Bovine Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(10): 2057-2066.
[6] WANG Yong,LI SiYan,HE SiRui,ZHANG Di,LIAN Shuai,WANG JianFa,WU Rui. Prediction and Bioinformatics Analysis of BLV-miRNA Transboundary Regulation of Human Target Genes [J]. Scientia Agricultura Sinica, 2021, 54(3): 662-674.
[7] CHEN HuiFang,HUANG QiLiang,HU ZhiChao,PAN XiaoTing,WU ZhiSheng,BAI YinShan. Expression Differences and Functional Analysis of Exosomes microRNA in Porcine Mature and Atretic Follicles [J]. Scientia Agricultura Sinica, 2021, 54(21): 4664-4676.
[8] YU BaoJun,DENG ZhanZhao,XIN GuoSheng,CAI ZhengYun,GU YaLing,ZHANG Juan. Correlation Analysis of Inosine Monophosphate Specific Deposition Related LNC_003828-gga-miR-107-3P-MINPP1 in Jingyuan Chicken Muscle Tissue [J]. Scientia Agricultura Sinica, 2021, 54(19): 4229-4242.
[9] MA MengNan,WANG HuiMing,WANG MiaoMiao,YAO Wang,ZHANG JinBi,PAN ZengXiang. Identification of circINHBB During Follicular Atresia and Its Effect on Granulosa Cell Apoptosis [J]. Scientia Agricultura Sinica, 2021, 54(18): 3998-4007.
[10] DU Xing,ZENG Qiang,LIU Lu,LI QiQi,YANG Liu,PAN ZengXiang,LI QiFa. Identification of the Core Promoter of Linc-NORFA and Its Transcriptional Regulation in Erhualian Pig [J]. Scientia Agricultura Sinica, 2021, 54(15): 3331-3342.
[11] TAN ZhaoGuo,LI YanMei,BAI JianFang,GUO HaoYu,LI TingTing,DUAN WenJing,LIU ZiHan,YUAN ShaoHua,ZHANG TianBao,ZHANG FengTing,CHEN ZhaoBo,ZHAO FuYong,ZHAO ChangPing,ZHANG LiPing. Cloning of TaBG and Analysis of Its Function in Anther Dehiscence in Wheat [J]. Scientia Agricultura Sinica, 2021, 54(13): 2710-2723.
[12] Xin ZHANG,KongLin HUO,XingXing SONG,DuoNi ZHANG,Wen HU,ChuanHuo HU,Xun LI. Effects of GnIH on Autophagy and Apoptosis of Porcine Ovarian Granulosa Cells via p38MAPK Signaling Pathway [J]. Scientia Agricultura Sinica, 2020, 53(9): 1904-1912.
[13] CHEN LuLu,WANG Hui,WANG JiKun,WANG JiaBo,CHAI ZhiXin,CHEN ZhiHua,ZHONG JinCheng. Comparative Analysis of miRNA Expression Profiles in the Hearts of Tibetan Cattle and Xuanhan Cattle [J]. Scientia Agricultura Sinica, 2020, 53(8): 1677-1687.
[14] ZhiWei ZHU,ShuNing HOU,QingLing HAO,JiongJie JING,LiHua LÜ,PengFei LI. Sequence Structure and Expression Characteristics Analysis of AGTR2 in Bovine Follicle [J]. Scientia Agricultura Sinica, 2020, 53(7): 1482-1490.
[15] ZHANG YuFei,CAO ManYuan,WANG LiYing,ZHAO WeiGang,LI XiaoXia,CHANG Tong,XU BaoZeng. Eukaryotic Expression, Purification and Biological Activity of Recombinant Cervus Nippon Activin A Protein [J]. Scientia Agricultura Sinica, 2020, 53(5): 1058-1070.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!