Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (8): 1630-1641.doi: 10.3864/j.issn.0578-1752.2022.08.013

• HORTICULTURE • Previous Articles     Next Articles

Screening and Verification of CsHIPP26.1 Interaction Protein in Tea Plant

FAN YanGen(),WANG Yu(),LIU FuHao,ZHAO XiuXiu,XIANG QinZeng,ZHANG LiXia()   

  1. College of Horticulture Science and Engineering, Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai’an 271018, Shandong
  • Received:2021-08-20 Accepted:2021-12-10 Online:2022-04-16 Published:2022-05-11
  • Contact: LiXia ZHANG E-mail:876562801@qq.com;1113405407@qq.com;lxzhang@sdau.edu.cn

Abstract:

【Background】 Huangjinya is a light sensitive chlorotic tea (Camellia sinensis) variety, the leaf color of which presents yellow under strong light and presents green under weak light, but the chlorotic mechanism of leaf color in response to light is not clear. Previous proteomic studies on etiolated leaves, shaded green leaves and evergreen leaves found that the expression of heavy metal-associated isoprenylated plant protein CsHIPP26.1 (TEA000549) responded to light intensity, indicating that CsHIPP26.1 may be involved in regulating the light response process of leaf color etiolation of Huangjinya. 【Objective】The proteins related to the light signal response interacting with CsHIPP26.1 were screened to provide a scientific basis for leaf color response to light signal changes. 【Method】The gene were cloned from one bud and two leaves of Huangjinya. And the screened target protein was further verified by yeast two hybrid point-to-point verification, in vivo bimolecular fluorescence complementarity (BiFC), and in vitro pull-down techniques. 【Result】 The tea cDNA library was screened by yeast two hybrid, and a total of 26 candidate interaction proteins were screened, which mainly played a role in cell components, binding and catalytic activity. Among them, the enrichment degree of biotin anabolism process was high, and the proteins related to light signal pathway and chlorophyll synthesis were only the bHLH30 transcription factor, and its gene ID was TEA026466.1. After cloning the gene of bHLH30 transcription factor, it was found that the transcription factor was in the same evolutionary tree branch as tea light signal transduction pathway protein PIF4, and contained the same HLH and ACT domains as tea PIF4 protein. Therefore, the bHLH30 transcription factor was named CsPIF4.2, GenBank registration number: MW16834. And through the pull-down protein interaction in vitro and bimolecular fluorescence complementarity (BiFC) in vivo, it was found that CsHIPP26.1 and CsPIF4.2 proteins could indeed interact, and the site of interaction was in the nucleus. 【Conclusion】 26 proteins interacting with CsHIPP26.1 were preliminarily screened, and it was found that CsHIPP26.1 could interact with one of the phytochrome interacting factors CsPIF4.2 in the nucleus.

Key words: HIPP, PIF4, protein interaction, yellowing varieties, light response

Table 1

Primers of CsHIPP26.1 and CsPIF4.2"

引物名称 The Primer 序列 Sequence (5′-3′) 序列 Sequence (3′-5′)
BD-CsHIPP26.1 CATATGATGGGTGCTCTGGATCATCTC GGATCCCATGACAACACAAGCAGCAG
AD-CsPIF4.2 GAATTCATGATGTGTGGGAAAAAGG GGATCCAAGAGACCTGTGTTCAAGGAT
His-CsHIPP26.1 GGATCCATGGGTGCTCTGGATCATCTC GTCGACCATGACAACACAAGCAGCAG
GST-CsPIF4.2 GAATTCATGATGTGTGGGAAAAAGG GTCGACAAAAGAGACCTGTGTTCAAG
BiFC-N-CsHIPP26.1 GGATCCATGGGTGCTCTGGATCATCTC GTCGACCATGACAACACAAGCAGCAG
BiFC-C-CsPIF4.2 GGATCCATGATGTGTGGGAAAAAGGA GTCGACAAGAGACCTGTGTTCAAGGAT

Fig. 1

Vector construction map and detection of self-activation of BD bait protein"

Table 2

Information of interactive protein"

编号Number 蛋白
Protein
名称
Definition
KEGG通路注释
Annotation of KEGG pathway
1 TEA026466.1 转录因子bHLH30
Transcription factor bHLH30 (CsPIF4-like)
ko04010 MAPK信号通路
ko04010 MAPK signaling pathway
2 TEA017417.1 类Barwin内切葡聚糖酶 Barwin-like endoglucanase ko04010 MAPK信号通路 ko04010 MAPK signaling pathway
3 TEA006996.1 BRI1激酶抑制剂1 BRI1 kinase inhibitor 1 ko04075植物激素信号转导 Ko04075 Plant hormone signal transduction
4 TEA027305.1 细胞周期蛋白 Cyclin-like protein ko03022基础转录因子 ko03022 Basal transcription factors
5 TEA028934.1 生物素合成酶 Biotin synthase ko00780生物素代谢 ko00780 Biotin metabolism
6 TEA032431.1 未表征的蛋白质 Uncharacterized protein ko00790叶酸生物合成 ko00790 Folate biosynthesis
7 TEA006267.1 未表征的蛋白质 Uncharacterized protein ko00790叶酸生物合成 ko00790 Folate biosynthesis
8 TEA016398.1 未表征的蛋白质 Uncharacterized protein ko00941 黄酮类生物合成 ko00941 Flavonoid biosynthesis
9 TEA022238.1 UDP-糖基转移酶 UDP-glycosyltransferase ko00942花青素生物合成 ko00942 Anthocyanin biosynthesis
10 TEA030717.1 HXXXD 型酰基转移酶家族蛋白
HXXXD-type acyl-transferase family protein
ko00940苯丙烷生物合成 ko00940 Phenylpropanoid biosynthesis
ko00941黄酮类生物合成 ko00941 Flavonoid biosynthesis
ko00945芪、二芳基庚烷和姜酚的生物合成
ko00945 Stilbenoid, diarylheptanoid and gingerol biosynthesis
11 TEA032735.1 咖啡酰莽草酸酯酶 Caffeoylshikimate esterase ko00561甘油脂代谢 ko00561 Glycerolipid metabolism
12 TEA011538.1 未表征的蛋白质 Unnamed protein product ko03010核糖体 ko03010 Ribosome
13 TEA019010.1 30S核糖体蛋白S17 30S ribosomal protein S17 ko03010核糖体 ko03010 Ribosome
14 TEA028503.1 U2小核核糖核蛋白B
U2 small nuclear ribonucleoprotein B
ko03040剪接体 ko03040 Spliceosome
15 TEA019956.1 导入-5 Importin-5 ko03013核质运输 ko03013 Nucleocytoplasmic transport
16 TEA014840.1 圈套蛋白YKt
Snare protein YKt
ko04130囊泡运输中的SNARE相互作用
ko04130 SNARE interactions in vesicular transport
17 TEA015767.1 蛋白质STAY-GREEN Protein STAY-GREEN -
18 TEA033782.1 Poly(rC)结合蛋白 Poly(rC)-binding protein -
19 TEA011052.1 胚花2 Embryonic flower 2 -
20 TEA012266.1 Phragmoplast定向驱动蛋白2
Phragmoplast orienting kinesin 2
-
21 TEA015624.1 质脂相关蛋白 Plastid-lipid-associated protein -
22 TEA011412.1 肽基-脯氨酰顺反异构酶CYP95
Peptidyl-prolyl cis-trans isomerase CYP95
-
23 TEA005217.1 DnaJ同源物1 DnaJ homolog 1 -
24 TEA027912.1 UDP-糖基转移酶 UDP-glycosyltransferase -
25 TEA012996.1 未表征的蛋白质 Uncharacterized protein -
26 TEA010659.1 未命名的蛋白质产物 Unnamed protein product -

Fig. 2

GO analysis of candidate interaction protein about CsHIPP26.1"

Fig. 3

Phylogenetic tree analysis and protein sequence alignment of tea PIFs"

Fig. 4

Verification of protein interaction between CsHIPP26.1 and CsPIF4.2 “+” means adding, and “-” means not adding. It can only be detected in the final eluent after the addition of CsHIPP26.1-His and CsPIF4.2-GST, and the yellow fluorescence could be observed only in onion epidermal cells co-infected with pSPYNE-35s::CsHIPP26.1 and pSPYCE-35s::CsPIF4.2, indicating that CsHIPP26.1 and CsPIF4.2 could interact with each other"

[8] FAN Y G, ZHAO X X, WANG H Y, TIAN Y Y, XIANG Q Z, ZHANG L X. Effects of light intensity on metabolism of light-harvesting pigment and photosynthetic system in Camellia sinensis L. cultivar ‘Huangjinya’. Environmental and Experimental Botany, 2019, 166: 103796).
[9] 范延艮, 刘富浩, 赵秀秀, 王域, 张丽霞. 茶树‘黄金芽’ CsHIPP26.1基因克隆与光响应表达分析. 植物生理学报, 2021, 57(5): 1087-1097. doi: 10.13592/j.cnki.ppj.2021.0018.
doi: 10.13592/j.cnki.ppj.2021.0018
FAN Y G, LIU F H, ZHAO X X, WANG Y, ZHANG L X. Cloning of CsHIPP26.1 in Camellia sinensis ‘Huangjinya’ and analysis of its expression level in response to light intensity. Plant Physiology Journal, 2021, 57(5): 1087-1097. doi: 10.13592/j.cnki.ppj.2021.0018. (in Chinese)
doi: 10.13592/j.cnki.ppj.2021.0018
[10] DE ABREU-NETO J B, TURCHETTO-ZOLET A C, DE OLIVEIRA L F V, ZANETTINI M H B, MARGIS-PINHEIRO M. Heavy metal-associated isoprenylated plant protein (HIPP): Characterization of a family of proteins exclusive to plants. The FEBS Journal, 2013, 280(7): 1604-1616. doi: 10.1111/febs.12159.
doi: 10.1111/febs.12159
[11] TEHSEEN M, CAIRNS N, SHERSON S, COBBETT C S. Metallochaperone-like genes in Arabidopsis thaliana. Metallomics, 2010, 2(8): 556-564. doi: 10.1039/c003484c.
doi: 10.1039/c003484c
[12] GAO W, XIAO S, LI H Y, TSAO S W, CHYE M L. Arabidopsis thaliana acyl-CoA-binding protein ACBP2 interacts with heavy-metal-binding farnesylated protein AtFP6. The New Phytologist, 2009, 181(1): 89-102. doi: 10.1111/j.1469-8137.2008.02631.x.
doi: 10.1111/j.1469-8137.2008.02631.x.
[13] CHANDRAN D, SHAROPOVA N, IVASHUTA S, GANTT J S, VANDENBOSCH K A, SAMAC D A. Transcriptome profiling identified novel genes associated with aluminum toxicity, resistance and tolerance in Medicago truncatula. Planta, 2008, 228(1): 151-166. doi: 10.1007/s00425-008-0726-0.
doi: 10.1007/s00425-008-0726-0
[14] SUZUKI N, YAMAGUCHI Y, KOIZUMI N, SANO H. Functional characterization of a heavy metal binding protein CdI19 from Arabidopsis. The Plant Journal, 2002, 32(2): 165-173. doi: 10.1046/j.1365-313x.2002.01412.x.
doi: 10.1046/j.1365-313x.2002.01412.x.
[15] BARTH O, VOGT S, UHLEMANN R, ZSCHIESCHE W, HUMBECK K. Stress induced and nuclear localized HIPP26 from Arabidopsis thaliana interacts via its heavy metal associated domain with the drought stress related zinc finger transcription factor ATHB29. Plant Molecular Biology, 2009, 69(1/2): 213-226. doi: 10.1007/s11103-008-9419-0.
doi: 10.1007/s11103-008-9419-0
[16] BARTH O, ZSCHIESCHE W, SIERSLEBEN S, HUMBECK K. Isolation of a novel barley cDNA encoding a nuclear protein involved in stress response and leaf senescence. Physiologia Plantarum, 2004, 121(2): 282-293. doi: 10.1111/j.0031-9317.2004.00325.x.
doi: 10.1111/j.0031-9317.2004.00325.x.
[17] WIEBKE Z, OLAF B, KATHARINA D, SANDRA B, JULIANE R, KLAUS H. The zinc-binding nuclear protein HIPP3 acts as an upstream regulator of the salicylate-dependent plant immunity pathway and of flowering time in Arabidopsis thaliana. The New Phytologist, 2015, 207(4): 1084-96. doi: 10.1111/nph.13419.
doi: 10.1111/nph.13419
[18] RADAKOVIC Z S, ANJAM M S, ESCOBAR E, CHOPRA D, CABRERA J, SILVA A C, ESCOBAR C, SOBCZAK M, GRUNDLER F M W, SIDDIQUE S. Arabidopsis HIPP27 is a host susceptibility gene for the beet cyst nematode Heterodera schachtii. Molecular Plant Pathology, 2018: 1917-1928.
[1] TIAN Y Y, WANG H Y, SUN P, FAN Y G, QIAO M M, ZHANG L X, ZHANG Z Q. Response of leaf color and the expression of photoreceptor genes of Camellia sinensis cv. Huangjinya to different light quality conditions. Scientia Horticulturae, 2019, 251: 225-232.
doi: 10.1016/j.scienta.2019.03.032
[2] TIAN Y Y, WANG H Y, ZHANG Z Q, ZHAO X X, WANG Y, ZHANG L X. An RNA-seq analysis reveals differential transcriptional responses to different light qualities in leaf color of Camellia sinensis cv. Huangjinya. Journal of Plant Growth Regulation, 2001, 19(4): 463-470. doi: 10.1007/s003440010017.
doi: 10.1007/s003440010017
[19] 赵强. 苹果BTB-TAZ蛋白MdBTs调控MdbHLH104影响PMH+-ATP酶的活性和铁的动态平衡[D]. 泰安: 山东农业大学, 2015.
ZHAO Q. BTB-TAZ protein MdBTs target MdbHLH 104 to regulate the activity of PMH+-ATPase and the homeostasis of iron in apple[D]. Taian: Shandong Agricultural University, 2015. (in Chinese)
[20] SU M Y, WANG N, JIANG S H, FANG H C, XU H F, WANG Y C, ZHANG Z, ZHANG J, XU L, ZHANG Z Y, CHEN X S. Molecular characterization and expression analysis of the critical floral gene MdAGL24-like in red-fleshed apple. Plant Science, 2018, 276: 189-198. doi: 10.1016/j.plantsci.2018.08.021.
doi: 10.1016/j.plantsci.2018.08.021
[21] 崔红军, 魏玉清. 酵母双杂交系统及其应用研究进展. 安徽农业科学, 2015, 43(13): 45-47. doi: 10.13989/j.cnki.0517-6611.2015.13.152.
doi: 10.13989/j.cnki.0517-6611.2015.13.152
CUI H J, WEI Y Q. Review on application status of yeast two hybrid system. Journal of Anhui Agricultural Sciences, 2015, 43(13): 45-47. doi: 10.13989/j.cnki.0517-6611.2015.13.152. (in Chinese)
doi: 10.13989/j.cnki.0517-6611.2015.13.152
[22] HASHIDA-OKADO T, OGAWA A, ENDO M, YASUMOTO R, TAKESAKO K, KATO I. AUR1, a novel gene conferring aureobasidin resistance on Saccharomyces cerevisiae: a study of defective morphologies in Aur1p-depleted cells. Molecular and General Genetics, 1996, 251(2): 236-244. doi: 10.1007/BF02172923.
doi: 10.1007/BF02172923
[23] 田月月, 张丽霞, 张正群, 李智, 侯剑, 乔明明. 主要气象因子对‘黄金芽’茶树叶片日灼伤害的影响. 山东农业科学, 2017, 49(7): 42-48. doi: 10.14083/j.issn.1001-4942.2017.07.009.
doi: 10.14083/j.issn.1001-4942.2017.07.009
TIAN Y Y, ZHANG L X, ZHANG Z Q, LI Z, HOU J, QIAO M M. Influences of main meteorological factors on leaf sunburn of tea cultivar ‘huangjinya'. Shandong Agricultural Sciences, 2017, 49(7): 42-48. doi: 10.14083/j.issn.1001-4942.2017.07.009. (in Chinese)
doi: 10.14083/j.issn.1001-4942.2017.07.009
[24] XU D Q. Multifaceted roles of PIF4 in plants. Trends in Plant Science, 2018, 23(9): 749-751. doi: 10.1016/j.tplants.2018.07.003.
doi: 10.1016/j.tplants.2018.07.003
[25] HUQ E, QUAIL P H. PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis. The EMBO Journal, 2002, 21(10): 2441-2450. doi: 10.1093/emboj/21.10.2441.
doi: 10.1093/emboj/21.10.2441
[26] INAGAKI N, KINOSHITA K, KAGAWA T, TANAKA A, UENO O, SHIMADA H, TAKANO M. Phytochrome B mediates the regulation of chlorophyll biosynthesis through transcriptional regulation of ChlH and GUN4 in rice seedlings. PLoS ONE, 2015, 10(8): e0135408.
[27] 赵杰, 周晋军, 顾建伟, 钱凤芹, 谢先芝. 光敏色素B正调控水稻叶绿素合成和叶绿体的发育. 中国水稻科学, 2012, 26(6): 637-642. doi: 10.3969/j.issn.1001-7216.2012.06.001.
doi: 10.3969/j.issn.1001-7216.2012.06.001
ZHAO J, ZHOU J J, GU J W, QIAN F Q, XIE X Z. Phytochrome B positively regulates chlorophyll biosynthesis and chloroplast development in rice. Chinese Journal of Rice Science, 2012, 26(6): 637-642. doi: 10.3969/j.issn.1001-7216.2012.06.001. (in Chinese)
doi: 10.3969/j.issn.1001-7216.2012.06.001
[28] TOLEDO-ORTIZ G, JOHANSSON H, LEE K P, BOU-TORRENT J, STEWART K, STEEL G, RODRIGUEZ-CONCEPEION M, HALLIDAY K J. The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription. PLoS Genetics, 2014, 10(6): e1004416.
[29] TANG W J, WANG W Q, CHEN D Q, JI Q, JING Y J, WANG H Y, LIN R C. Transposase-derived proteins FHY3/FAR1 interact with PHYTOCHROME-INTERACTING FACTOR1 to regulate chlorophyll biosynthesis by modulating HEMB1 during deetiolation in Arabidopsis. The Plant Cell, 2012, 24(5): 1984-2000. doi: 10.1105/tpc.112.097022.
doi: 10.1105/tpc.112.097022
[30] LORRAIN S, ALLEN T, DUEK P D, WHITELAM G C, FANKHAUSER C. Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors. The Plant Journal, 2008, 53(2): 312-323. doi: 10.1111/j.1365-313X.2007.03341.x.
doi: 10.1111/j.1365-313X.2007.03341.x.
[31] MIGUEL D L, JEAN-MICHEL D, MARIANA R F, MARIELA P, MANUEL I P J, SÉVERINE L, CHRISTIAN F, ANGEL B M, ELENA T, SALOMÉ P. A molecular framework for light and gibberellin control of cell elongation. Nature, 2008, 451(7177): 480-484. doi: 10.1038/nature06520.
doi: 10.1038/nature06520
[32] 陈笑笑. PIF4介导光质调控番茄低温抗性的作用机制[D]. 杭州: 浙江大学, 2019.
CHEN X X. The mechanisms of PIF4-mediated light quality- regulated cold tolerance in tomato[D]. Hangzhou: Zhejiang University, 2019. (in Chinese)
[33] LAU O S, SONG Z J, ZHOU Z M, DAVIES K A, CHANG J, YANG X, WANG S Q, LUCYSHYN D, TAY I H Z, WIGGE P A, BERGMANN D C. Direct control of SPEECHLESS by PIF4 in the high-temperature response of stomatal development. Current Biology, 2018, 28(8): 1273-1280. doi: 10.1016/j.cub.2018.02.054.
doi: 10.1016/j.cub.2018.02.054
[34] BO Z, MATTIAS H, SEVERINE L, MIKAEL N, LÁSZLÓ B, CHRISTIAN F, OVE N. Blade-on-petiole proteins act in an e3 ubiquitin ligase complex to regulate phytochrome interacting factor 4 abundance. eLife, 2017, 6: e26759. doi: 10.7554/eLife.26759.
doi: 10.7554/eLife.26759
[35] NIETO C, LÓPEZ-SALMERÓN V, DAVIÈRE J M, PRAT S. ELF3-PIF 4 interaction regulates plant growth independently of the evening complex. Current Biology, 2015, 25(2): 187-193. doi: 10.1016/j.cub.2014.10.070.
doi: 10.1016/j.cub.2014.10.070
[3] 王开荣, 李明, 梁月荣, 张龙杰, 沈立铭, 王盛彬. 茶树新品种黄金芽选育研究. 中国茶叶, 2008, 30(4): 21-23. doi: 10.3969/j.issn.1000-3150.2008.04.007.
doi: 10.3969/j.issn.1000-3150.2008.04.007
WANG K R, LI M, LIANG Y R, ZHANG L J, SHEN L M, WANG S B. Research on the breeding of new tea variety Huangjinya. China Tea, 2008, 30(4): 21-23. doi: 10.3969/j.issn.1000-3150.2008.04.007. (in Chinese)
doi: 10.3969/j.issn.1000-3150.2008.04.007
[4] 刘丁丁, 梅菊芬, 王君雅, 汤榕津, 陈亮, 马春雷. 茶树白化突变研究进展. 中国茶叶, 2020, 42(4): 24-35. doi: 10.3969/j.issn.1000-3150.2020.04.006.
doi: 10.3969/j.issn.1000-3150.2020.04.006
LIU D D, MEI J F, WANG J Y, TANG R J, CHEN L, MA C L. Research progress on albino trait of tea plant. China Tea, 2020, 42(4): 24-35. doi: 10.3969/j.issn.1000-3150.2020.04.006. (in Chinese)
doi: 10.3969/j.issn.1000-3150.2020.04.006
[5] 王开荣, 李明, 张龙杰, 梁月荣. 白化茶种质资源分类研究. 茶叶, 2015, 41(3): 126-129. doi: 10.3969/j.issn.0577-8921.2015.03.002.
doi: 10.3969/j.issn.0577-8921.2015.03.002
WANG K R, LI M, ZHANG L J, LIANG Y R. Studies on classification of albino tea resources. Journal of Tea, 2015, 41(3): 126-129. doi: 10.3969/j.issn.0577-8921.2015.03.002. (in Chinese)
doi: 10.3969/j.issn.0577-8921.2015.03.002
[6] 王开荣, 李明, 梁月荣. 光照敏感型白化茶. 杭州: 浙江大学出版社, 2014.
WANG K R, LI M, LIANG Y R. Light-sensitive albino tea. Hangzhou: Zhejiang University Press, 2014. (in Chinese)
[7] 范延艮, 赵秀秀, 王翰悦, 田月月, 向勤锃, 张丽霞. 黄金芽不同色泽叶片生理特性研究. 茶叶科学, 2019, 39(5): 530-536. doi: 10.13305/j.cnki.jts.2019.05.004.
doi: 10.13305/j.cnki.jts.2019.05.004
FAN Y G, ZHAO X X, WANG H Y, TIAN Y Y, XIANG Q Z, ZHANG L X. Study on physiological characteristics of leaves with different colors of ‘huangjinya’. Journal of Tea Science, 2019, 39(5): 530-536. doi: 10.13305/j.cnki.jts.2019.05.004. (in Chinese)
doi: 10.13305/j.cnki.jts.2019.05.004
[1] DANG WenWen, LIU Bing, CHU Dong, LU YanHui. Dominated Species and the Predation Assessment of Natural Enemies on Thrips in Cotton Fields in Xinjiang [J]. Scientia Agricultura Sinica, 2023, 56(17): 3347-3357.
[2] WANG XiaoHong, XING MingJie, GU XianHong, HAO Yue. Screening of Anti-Apoptotic Protein GRP94 Interaction Proteins in Porcine Hepatic Stellate Cells by Immunoprecipitation Combined with LC-MS/MS [J]. Scientia Agricultura Sinica, 2023, 56(15): 3020-3031.
[3] LIU DeShuai, FENG Mei, SUN YuTong, WANG Ye, CHI JingNan, YAO WenKong. Analysis of the Interaction Between VvGAI1 and VvJAZ9 Proteins in Grape and Its Expression Pattern Under Low Temperature [J]. Scientia Agricultura Sinica, 2023, 56(15): 2977-2994.
[4] ZHANG ZhiXing,MIN XiuMei,SONG Guo,CHEN Hua,XU HaiLong,LIN WenXiong. Identification of 14-3-3 Client Proteins in Rice Grains and Their Response to Exogenous Hormones During the Grain Filling Stage [J]. Scientia Agricultura Sinica, 2021, 54(12): 2523-2537.
[5] YUAN XinBo,CHENG TingTing,XI XiaoHan,CHEN ZhangYu,WANG RuiHong,KE WeiDong,GUO HongBo. Screening of Polyphenol Oxidase Interaction Proteins from Nelumbo nucifera and Their Verification [J]. Scientia Agricultura Sinica, 2020, 53(18): 3777-3791.
[6] LIU HuiFang,HE Zheng,JIA Biao,LIU Zhi,LI ZhenZhou,FU JiangPeng,MU RuiRui,KANG JianHong. Photosynthetic Response Characteristics of Maize Under Drip Irrigation Based on Machine Learning [J]. Scientia Agricultura Sinica, 2019, 52(17): 2939-2950.
[7] LI JiangPeng,LIU HaiJun,HUANG ZhiWu,LIU XiaoYing,YOU Jie,XU ZhiGang. Effects of Spectral Distribution on Photosynthetic and Chlorophyll Fluorescence Characteristics of Flag Leaves at Grain Filling Stage in Rice [J]. Scientia Agricultura Sinica, 2019, 52(16): 2768-2775.
[8] ZHANG HuiYuan,LIU YongWei,YANG JunFeng,ZHANG ShuangXi,YU TaiFei,CHEN Jun,CHEN Ming,ZHOU YongBin,MA YouZhi,XU ZhaoShi,FU JinDong. Identification and Analysis of Salt Tolerance of Wheat Transcription Factor TaWRKY33 Protein [J]. Scientia Agricultura Sinica, 2018, 51(24): 4591-4602.
[9] ZHAO QingQing, LI JunPing, LIANG LiBin, HUANG ShanYu, ZHOU ChenChen, ZHAO YuHui, WANG Qian, ZHOU Yuan, JIANG Li, CHEN HuaLan, LI ChengJun. Interaction between Influenza Virus PA Protein and Host Protein PCBP1 [J]. Scientia Agricultura Sinica, 2018, 51(17): 3389-3396.
[10] RU JingNa, YU TaiFei, CHEN Jun, CHEN Ming, ZHOU YongBin, MA YouZhi, XU ZhaoShi, MIN DongHong. Response of Wheat Zinc-Finger Transcription Factor TaDi19A to Cold and Its Screening of Interacting Proteins [J]. Scientia Agricultura Sinica, 2017, 50(13): 2411-2422.
[11] ZHAO JuanYing, LIU JiaMing, FENG ZhiJuan, CHEN Ming, ZHOU YongBin, CHEN Jun, XU ZhaoShi, GUO ChangHong. The Response to Heat and Screening of the Interacting Proteins of Zinc Finger Protein GmDi19-5 in Soybean [J]. Scientia Agricultura Sinica, 2017, 50(12): 2389-2398.
[12] AN Xiu-hong, LI En-mao, LI Min, LI Zhuang, ZHANG Xiu-de, CHENG Cun-gang. The Gene Expression Assays and Protein Interactions of MdJAZ1 in Apple [J]. Scientia Agricultura Sinica, 2016, 49(13): 2642-2650.
[13] BAO Jian-jun, SU Rui, WANG Qing-zeng, Lü Xiao-yang, GAO Wen, YU Jia-rui, WANG Li-hong, CHEN Ling, WU Wen-zhong, SHENG Shui-xing, ZHOU Hong, SUN Wei, DAI Guo-jun. Study on the Temporal and Spatial Expression and Correlation Analysis of Smads and YAP1 Gene in the Hippo Pathway in Sheep Muscle Tissue [J]. Scientia Agricultura Sinica, 2016, 49(11): 2203-2213.
[14] LI Hui-feng, WANG Xiao-fei, RAN Kun, HE Ping, WANG Hai-bo, LI Lin-guang. Expression and Protein Interaction Analysis of Light Responsive bZIP Transcription Factor MdHY5 [J]. Scientia Agricultura Sinica, 2014, 47(21): 4318-4327.
[15] GUO Meng-meng;CHEN Ming; LIU Rong-bang; MA You-zhi; LI Lian-cheng; XU Zhao-shi; ZHANG Xiao-hong;. Vacuolar Protein Sorting AtVPS25 Regulates Auxin Responses in Arabidopsis thaliana [J]. Scientia Agricultura Sinica, 2014, 47(17): 3501-3512.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!