Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (8): 1568-1578.doi: 10.3864/j.issn.0578-1752.2022.08.008

• PLANT PROTECTION • Previous Articles     Next Articles

Effect of Three Novel Compounds on Trehalose and Chitin Metabolism and Development of Spodoptera frugiperda

WANG SiTong1(),CHEN Yan1,LUO YuJia1,YANG YuanYuan1,JIANG ZhiYang2,JIANG XinYi1,ZHONG Fan1,CHEN Hao1,XU HongXing3,WU Yan4,DUAN HongXia2(),TANG Bin1()   

  1. 1College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121
    2College of Science, China Agricultural University, Beijing 100193
    3Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021
    4Department of Biology and Engineering of Environment, Guiyang University, Guiyang 550005
  • Received:2021-11-14 Accepted:2021-12-30 Online:2022-04-16 Published:2022-05-11
  • Contact: HongXia DUAN,Bin TANG E-mail:wst20010225@163.com;tbzm611@163.com;hxduan@cau.edu.cn

Abstract:

Objective】Chitin is the main component of insect exoskeleton and peritrophic membrane. Its synthesis begins with trehalase and ends with chitin synthase. The process of molting and epidermal remodeling needs to be completed by chitinase. In this study, three novel compounds were injected to detect the activities of trehalase and chitinase, the expression levels of related genes in Spodoptera frugiperda, and their growth and development were also observed. This study aims to verify the inhibitory effects of novel compounds on trehalase and chitinase, screen the compounds with obvious effects, and to explore the mechanism of their regulation on the growth and development of S. frugiperda.【Method】Microinjection method was used to inject butenolactone analogues ZK-I-21, ZK-I-23 and piperine analogue ZK-PI-4 into the 3rd instar larvae of S. frugiperda. The changes of trehalase activity, chitinase activity and related sugar content were detected 48 h after injection, and the relative expression levels of SfTRE1, SfTRE2, SfCHS2 and SfCHT were measured at the molecular level by quantitative real-time PCR (qRT-PCR). The phenotypic changes of S. frugiperda were observed during the process from larvae to adults after injection. Besides, the mortality and deformities during developmental period were recorded.【Result】Compared with the control group, the membrane-bound trehalase activity of S. frugiperda decreased significantly after ZK-I-21 (P<0.01) and ZK-PI-4 (P<0.05) injection. The expression level of SfTRE1 was significantly increased and SfCHT was significantly decreased after ZK-I-21 injection. After ZK-I-23 injection, the expression level of SfTRE1 was significantly decreased, and the expression level of SfCHT was significantly increased. The expression level of SfCHT was significantly decreased after ZK-PI-4 injection. The observation results of developmental duration showed that ZK-I-21 significantly prolonged the developmental period of 6th instar larvae of S. frugiperda, and at the same time, the pupa weight became lighter and the pupa length became shorter. In addition, ZK-I-23 significantly shortened the length of 5th and 6th instar larvae, and ZK-PI-4 caused a significant reduction in adult emergence rate. All the three inhibitors could disrupt trehalose metabolism of S. frugiperda and then disrupt chitin metabolism, resulting in difficulties in molting and even death.【Conclusion】ZK-I-21 and ZK-PI-4 are membrane-bound trehalase inhibitor compounds, and ZK-I-23 can inhibit the expression of soluble trehalase gene. The three compounds all lead to the disturbances of chitin metabolism by affecting the process of trehalose metabolism, which results in difficulties in molting, deformities, and impaired growth and development of insects. The above results can provide a theoretical basis for the future use of novel inhibitors to regulate the growth of pests and thus control them, and support to promote the development of green and efficient pesticides.

Key words: Spodoptera frugiperda, trehalase, chitinase, qRT-PCR, inhibitor

Table 1

The information of three inhibitory compounds"

编号
Code
分子量
MW (g·mol-1)
分子式
Molecular form
ZK-I-21 394.38 C21H18N2O6
ZK-I-23 408.41 C22H20N2O6
ZK-PI-4 337.40 C20H19NO4

Table 2

Primer sequences for qRT-PCR detection"

基因
Gene
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
基因序列号
GenBank number
SfTRE1 TCAGATGAAGGTGAACTCGAAGA GGAATGATGAATCCGTGGGTA XP_035432686.1
SfTRE2 CTGCTGCTGTCGGAGATGA TAGGAGGGGAGGCTGTGAT ACF94698.1
SfCHS2 GAGTTCACAGTGCGGTTGC GCCAAAATAGCCCACATCC AAS12599.1
SfCHT AAGCGGACAGCAAAGCG CCAACTCAGGGTCAATAATAAGAAC AAS18266.1
RPL10 GACTTGGGTAAGAAGAAG GATGACATGGAATGGATG

Fig. 1

Trehalase activity and sugar content in S. frugiperda after injection of different novel compounds The independent sample T test was used for data analysis, and the error was represented by the standard error of the average. * indicated significant differences (P<0.05), ** indicated extremely significant differences (P<0.01). 2% DMSO was used as control. The same as below"

Fig. 2

mRNA expression of key genes of trehalose and chitin metabolism pathway of S. frugiperda after injection of different novel compounds"

Fig. 3

Chitinase activity of S. frugiperda after injection of different novel compounds"

Table 3

The larval length of different instars of S. frugiperda after injection of different novel compounds (cm)"

4龄
4th instar
5龄
5th instar
6龄
6th instar
2% DMSO 1.55±0.03a 2.35±0.05a 2.81±0.07a
ZK-I-21 1.69±0.04a 2.19±0.05ab 2.53±0.05b
ZK-I-23 1.53±0.05a 2.07±0.05b 2.58±0.03b
ZK-PI-4 1.68±0.06a 2.27±0.05a 2.68±0.04ab

Fig. 4

Developmental duration of S. frugiperda after injection of novel compounds"

Fig. 5

Pupal weight and pupal length of S. frugiperda after injection of different novel compounds"

Fig. 6

Mortality of S. frugiperda different periods after injection of different novel compounds"

Fig. 7

Developmental changes of mortality phenotype of S. frugiperda treated with different novel compounds"

Fig. 8

Pupation rate and emergence rate of S. frugiperda treated with different novel compounds"

[1] TODD E L, POOLE R W. Keys and illustrations for the armyworm moths of the noctuid genus Spodoptera Guenée from the Western hemisphere. Annals of the Entomological Society of America, 1980, 73(6): 722-738.
doi: 10.1093/aesa/73.6.722
[2] 姜玉英, 刘杰, 谢茂昌, 李亚红, 杨俊杰, 张曼丽, 邱坤. 2019年我国草地贪夜蛾扩散为害规律观测. 植物保护, 2019, 45(6): 10-19.
JIANG Y Y, LIU J, XIE M C, LI Y H, YANG J J, ZHANG M L, QIU K. Observation on law of diffusion damage of Spodoptera frugiperda in China in 2019. Plant Protection, 2019, 45(6): 10-19. (in Chinese)
[3] 孙晓飞. 草地贪夜蛾的形态特征与防治方法. 现代农业, 2019(12): 46-47.
SUN X F. Morphological characteristics and control methods of Spodoptera frugiperda. Modern Agriculture, 2019(12): 46-47. (in Chinese)
[4] MONTEZANO D G, SPECHT A, SOSA-GÓMEZ D R, ROQUE- SPECHT V F, SOUSA-SILVA J C, PAULA-MORAES S V, PETERSON J A, HUNT T E. Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. African Entomology, 2018, 26(2): 286-300.
doi: 10.4001/003.026.0286
[5] 张智, 林培炯, 陈智勇, 巴吐西, 姜玉英, 穆常青, 郭书臣, 王绍林, 卢润刚, 祁俊锋, 张云慧. 小麦中后期草地贪夜蛾为害特征观察. 植物保护, 2021, 47(5): 297-301.
ZHANG Z, LIN P J, CHEN Z Y, BATUXI, JIANG Y Y, MU C Q, GUO S C, WANG S L, LU R G, QI J F, ZHANG Y H. Observation on the damage characteristics of Spodoptera frugiperda to wheat in middle and late stages. Plant Protection, 2021, 47(5): 297-301. (in Chinese)
[6] 张建珍. 昆虫几丁质代谢与植物保护. 中国农业科学, 2014, 47(7): 1301-1302.
ZHANG J Z. Insect chitin metabolism and plant protection. Scientia Agricultura Sinica, 2014, 47(7): 1301-1302. (in Chinese)
[7] ZHONG H Y, WEI C, ZHANG Y L. Gross morphology and ultrastructure of salivary glands of the mute cicada Karenia caelatata Distant (Hemiptera: Cicadoidea). Micron, 2013, 45: 83-91.
doi: 10.1016/j.micron.2012.10.019
[8] ZHU K Y, MERZENDORFER H, ZHANG W, ZHANG J, MUTHUKRISHNAN S. Biosynthesis, turnover, and functions of chitin in insects. Annual Review of Entomology, 2016, 61: 177-196.
doi: 10.1146/annurev-ento-010715-023933
[9] 唐斌, 魏苹, 陈洁, 王世贵, 张文庆. 昆虫海藻糖酶的基因特性及功能研究进展. 昆虫学报, 2012, 55(11): 1315-1321.
TANG B, WEI P, CHEN J, WANG S G, ZHANG W Q. Progress in gene features and functions of insect trehalases. Acta Entomologica Sinica, 2012, 55(11): 1315-1321. (in Chinese)
[10] 刘晓健, 孙亚文, 崔淼, 马恩波, 张建珍. 飞蝗海藻糖酶基因的分子特性及功能. 中国农业科学, 2016, 49(22): 4375-4386.
LIU X J, SUN Y W, CUI M, MA E B, ZHANG J Z. Molecular characteristics and functional analysis of trehalase genes in Locusta migratoria. Scientia Agricultura Sinica, 2016, 49(22): 4375-4386. (in Chinese)
[11] 张文庆, 陈晓菲, 唐斌, 田宏刚, 陈洁, 姚琼. 昆虫几丁质合成及其调控研究前沿. 应用昆虫学报, 2011, 48(3): 475-479.
ZHANG W Q, CHEN X F, TANG B, TIAN H G, CHEN J, YAO Q. Insect chitin biosynthesis and its regulation. Chinese Journal of Applied Entomology, 2011, 48(3): 475-479. (in Chinese)
[12] KRAMER K J, DZIADIK-TURNER C, KOGA D. Chitin metabolism in insects//Comprehensive Insect Physiology Biochemistry Pharmacology, 1985, 3: 75-115.
[13] KRAMER K J, MUTHUKRISHNAN S. Chitin metabolism in insects//Comprehensive Molecular Insect Science, 2005, 4: 111-144.
[14] AVONCE N, MENDOZA-VARGAS A, MORETT E, ITURRIAGA G. Insights on the evolution of trehalose biosynthesis. BMC Evolutionary Biology, 2006, 6: 109.
doi: 10.1186/1471-2148-6-109
[15] CHEN J, TANG B, CHEN H, YAO Q, HUANG X, CHEN J, ZHANG D, ZHANG W. Different functions of the insect soluble and membrane-bound trehalase genes in chitin biosynthesis revealed by RNA interference. PLoS ONE, 2010, 5(4): e10133.
[16] ARAKANE Y, MUTHUKRISHNAN S. Insect chitinase and chitinase-like proteins. Cellular and Molecular Life Sciences, 2010, 67(2): 201-216.
doi: 10.1007/s00018-009-0161-9
[17] 唐斌, 张露, 熊旭萍, 汪慧娟, 王世贵. 海藻糖代谢及其调控昆虫几丁质合成研究进展. 中国农业科学, 2018, 51(4): 697-707.
TANG B, ZHANG L, XIONG X P, WANG H J, WANG S G. Advances in trehalose metabolism and its regulation of insect chitin synthesis. Scientia Agricultura Sinica, 2018, 51(4): 697-707. (in Chinese)
[18] 范柯琴, 金利群, 郑裕国. 海藻糖酶的酶学特性及其作为新农药靶标的开发应用. 化学与生物工程, 2009, 26(4): 7-11.
FAN K Q, JIN L Q, ZHENG Y G. The enzymatic properties of trehalase and its exploitation as a target of new pesticides. Chemistry and Bioengineering, 2009, 26(4): 7-11. (in Chinese)
[19] WEGENER G, MACHO C, SCHLÖDER P, KAMP G, ANDO O. Long-term effects of the trehalase inhibitor trehazolin on trehalase activity in locust flight muscle. The Journal of Experimental Biology, 2010, 213(22): 3852-3857.
doi: 10.1242/jeb.042028
[20] 王军娥, 刘静. 昆虫海藻糖酶的研究进展. 贵州农业科学, 2009, 37(4): 88-90.
WANG J E, LIU J. Research progress of insect trehalase. Guizhou Agricultural Sciences, 2009, 37(4): 88-90. (in Chinese)
[21] IWASA T, HIGASHIDE E, YAMAMOTO H, SHIBATA M. Studies on validamycins, new antibiotics. II. Production and biological properties of validamycins A and B. The Journal of Antibiotics, 1971, 24(2): 107-113.
doi: 10.7164/antibiotics.24.107
[22] NIWA T, INOUYE S, TSURUOKA T, KOAZE Y, NIIDA T. “Nojirimycin” as a potent inhibitor of glucosidase. Agricultural and Biological Chemistry, 1970, 34: 966-968.
doi: 10.1080/00021369.1970.10859713
[23] MATASSINI C, PARMEGGIANI C, CARDONA F. New frontiers on human safe insecticides and fungicides: An opinion on trehalase inhibitors. Molecules, 2020, 25(13): 3013.
doi: 10.3390/molecules25133013
[24] 张婧瑜, 韩清, 蒋志洋, 李慧琳, 邓鸣飞, 朱凯, 李明君, 段红霞. 几丁质酶抑制剂及噻唑烷酮类化合物合成与农用活性研究进展. 农药学学报, 2021, 23(3): 421-437.
ZHANG J Y, HAN Q, JIANG Z Y, LI H L, DENG M F, ZHU K, LI M J, DUAN H X. Chitinase inhibitors and synthesis and agricultural bioactivity of thiazolidinones: A review. Chinese Journal of Pesticide Science, 2021, 23(3): 421-437. (in Chinese)
[25] SAGUEZ J, VINCENT C, GIORDANENGO P. Chitinase inhibitors and chitin mimetics for crop protection. Pest Technology, 2008, 2(2): 81-86.
[26] GAYAKHE V, KAPDI A R, BOROZDINA Y, SCHULZKE C.Crystal structure of 5-(dibenzo-furan-4-yl)-2′-deoxy-uridine. Acta Crystallographica Section E. Crystallographic Communications, 2017, 73(10): 1493-1496.
doi: 10.1107/S2056989017013111
[27] MIKKELSEN N E, MUNCH-PETERSEN B, EKLUND H. Structural studies of nucleoside analog and feedback inhibitor binding to Drosophila melanogaster multisubstrate deoxyribonucleoside kinase. The FEBS Journal, 2008, 275(9): 2151-2160.
doi: 10.1111/j.1742-4658.2008.06369.x
[28] TANG B, YANG M, SHEN Q, XU Y, WANG H, WANG S. Suppressing the activity of trehalase with validamycin disrupts the trehalose and chitin biosynthesis pathways in the rice brown planthopper, Nilaparvata lugens. Pesticide Biochemistry and Physiology, 2017, 137: 81-90.
[29] YANG M, ZHAO L, SHEN Q, XIE G, WANG S, TANG B. Knockdown of two trehalose-6-phosphate synthases severely affects chitin metabolism gene expression in the brown planthopper Nilaparvata lugens. Pest Management Science, 2017, 73(1): 206-216.
doi: 10.1002/ps.4287
[30] GURUSAMY D, MOGILICHERLA K, SHUKLA J N, PALLI S R. Lipids help double-stranded RNA in endosomal escape and improve RNA interference in the fall armyworm, Spodoptera frugiperda. Archives of Insect Biochemistry and Physiology, 2020, 104(4): e21678.
[31] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods, 2001, 25(4): 402-408.
doi: 10.1006/meth.2001.1262
[32] 汪慧娟. 褐飞虱糖原合成酶与糖原磷酸化酶基因特性、功能鉴定与调控分析[D]. 杭州: 杭州师范大学, 2018.
WANG H J. Genetic characteristics, functional identification and regulation analysis of glycogen synthase and glycogen phosphorylase in Nilaparvata lugens[D]. Hangzhou: Hangzhou Normal University, 2018. (in Chinese)
[33] 于彩虹, 卢丹, 林荣华, 王晓军, 姜辉, 赵飞. 海藻糖--昆虫的血糖. 昆虫知识, 2008, 45(5): 832-837.
YU C H, LU D, LIN R H, WANG X J, JIANG H, ZHAO F. Trehalose-the blood sugar in insects. Chinese Bulletin of Entomology, 2008, 45(5): 832-837. (in Chinese)
[34] ZHAO L N, YANG M M, SHEN Q D, LIU X J, SHI Z K, WANG S G, TANG B. Functional characterization of three trehalase genes regulating the chitin metabolism pathway in rice brown planthopper using RNA interference. Scientific Reports, 2016, 6: 27841.
doi: 10.1038/srep27841
[35] 杨萌萌. 海藻糖酶及其抑制剂(validamycin)对褐飞虱海藻糖和几丁质代谢的调控研究[D]. 杭州: 杭州师范大学, 2016.
YANG M M. Regulating effects of trehalase and its inhibitor (validamycin) on the trehalose and chitin metabolism in Nilaparvata lugens[D]. Hangzhou: Hangzhou Normal University, 2016. (in Chinese)
[36] LÓPEZ M, HERRERA-CERVERA J A, IRIBARNE C, TEJERA N A, LLUC YANG H C. Growth and nitrogen fixation in Lotus japonicus and Medicago truncatula under NaCl stress: Nodule carbon metabolism. Journal of Plant Physiology, 2008, 165(6): 641-650.
doi: 10.1016/j.jplph.2007.05.009
[37] HIRAYAMA C, KONNO K, WASANO N, NAKAMURA M. Differential effects of sugar-mimic alkaloids in mulberry latex on sugar metabolism and disaccharidases of Eri and domesticated silkworms: Enzymatic adaptation of Bombyx mori to mulberry defense. Insect Biochemistry and Molecular Biology, 2007, 37(12): 1348-1358.
doi: 10.1016/j.ibmb.2007.09.001
[38] MERZENDORFER H, ZIMOCH L. Chitin metabolism in insects: Structure, function and regulation of chitin synthases and chitinases. The Journal of Experimental Biology, 2003, 206(24): 4393-4412.
doi: 10.1242/jeb.00709
[39] 李瑶, 范晓军. 昆虫几丁质酶及其在害虫防治中的应用. 应用昆虫学报, 2011, 48(5): 1489-1494.
LI Y, FAN X J. Insect chitinase and its application in insect pest control. Chinese Journal of Applied Entomology, 2011, 48(5): 1489-1494. (in Chinese)
[40] 马龙, 戴武, 张春妮. 氟铃脲对棉铃虫的毒力及几丁质和几丁质酶的影响. 西北农林科技大学学报(自然科学版), 2014, 42(7): 141-147.
MA L, DAI W, ZHANG C N. Toxicity of hexaflumuron and its effects on chitin and chitinase of cotton bollworm, Helicoverpa armigera. Journal of Northwest A&F University (Natural Science Edition), 2014, 42(7): 141-147. (in Chinese)
[41] SAGUEZ J, DUBOIS F, VINCENT C, LABERCHE J C, SANGWAN- NORREEL B S, GIORDANENGO P. Differential aphicidal effects of chitinase inhibitors on the polyphagous homopteran Myzus persicae (Sulzer). Pest Management Science, 2006, 62(12): 1150-1154.
doi: 10.1002/ps.1289
[42] 张露, 朱世城, 郑好, 沈祺达, 王世贵, 唐斌. 褐飞虱海藻糖酶基因在表皮几丁质代谢中的调控作用. 中国农业科学, 2017, 50(6): 1047-1056.
ZHANG L, ZHU S C, ZHENG H, SHEN Q D, WANG S G, TANG B. Regulatory function of trehalase genes on chitin metabolism in the cuticle of Nilaparvata lugens. Scientia Agricultura Sinica, 2017, 50(6): 1047-1056. (in Chinese)
[43] HUANG J, XU M, LI S, HE J, XU H. Synthesis of some ester derivatives of 4’-demethoxyepipodophyllotoxin/2’-chloro-4’- demethoxyepipodophyllotoxin as insecticidal agents against oriental armyworm, Mythimna separata Walker. Bioorganic and Medicinal Chemistry Letters, 2017, 27(3): 511-517.
doi: 10.1016/j.bmcl.2016.12.026
[44] 於卫东, 潘碧莹, 邱玲玉, 黄镇, 周泰, 叶林, 唐斌, 王世贵. 两个褐飞虱海藻糖转运蛋白基因的结构及调控海藻糖代谢功能. 中国农业科学, 2020, 53(23): 4802-4812.
YU W D, PAN B Y, QIU L Y, HUANG Z, ZHOU T, YE L, TANG B, WANG S G. The structure characteristics and biological functions on regulating trehalose metabolism of two NlTret1s in Nilaparvata lugens. Scientia Agricultura Sinica, 2020, 53(23): 4802-4812. (in Chinese)
[45] 张道伟, 康奎, 余亚娅, 匡富萍, 潘碧莹, 陈静, 唐斌. 白背飞虱酚氧化酶原PPO基因特性及其免疫应答. 中国农业科学, 2020, 53(15): 3108-3119.
ZHANG D W, KANG K, YU Y Y, KUANG F P, PAN B Y, CHEN J, TANG B. Characteristics and immune response of prophenoloxidase genes in Sogatella furcifera. Scientia Agricultura Sinica, 2020, 53(15): 3108-3119. (in Chinese)
[46] CHEN X F, TIAN H G, ZOU L Z, TANG B, HU J, ZHANG W Q. Disruption of Spodoptera exigua larval development by silencing chitin synthase gene A with RNA interference. Bulletin of Entomological Research, 2008, 98(6): 613-619.
doi: 10.1017/S0007485308005932
[47] CHEN J, ZHANG D, YAO Q, ZHANG J, DONG X, TIAN H, CHEN J, ZHANG W. Feeding-based RNA interference of a trehalose phosphate synthase gene in the brown planthopper, Nilaparvata lugens. Insect Molecular Biology, 2010, 19(6): 777-786.
doi: 10.1111/j.1365-2583.2010.01038.x
[1] XIAO Tao, LI Hui, LUO Wei, YE Tao, YU Huan, CHEN YouBo, SHI YuShi, ZHAO DePeng, WU Yun. Screening of Candidate Genes for Green Shell Egg Shell Color Traits in Chishui Black Bone Chicken Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2023, 56(8): 1594-1605.
[2] WANG ShuaiYu,ZHANG ZiTeng,XIE AiTing,DONG Jie,YANG JianGuo,ZHANG AiHuan. Mutation Analysis of Insecticide Target Genes in Populations of Spodoptera frugiperda in China [J]. Scientia Agricultura Sinica, 2022, 55(20): 3948-3959.
[3] WU Wei,XU HuiLi,WANG ZhengLiang,YU XiaoPing. Cloning and Function Analysis of a Serine Protease Inhibitor Gene Nlserpin2 in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2022, 55(12): 2338-2346.
[4] WU QiuLin,JIANG YuYing,LIU Yuan,LIU Jie,MA Jing,HU Gao,YANG MingJin,WU KongMing. Migration Pathway of Spodoptera frugiperda in Northwestern China [J]. Scientia Agricultura Sinica, 2022, 55(10): 1949-1960.
[5] LI XueRu,SHI XiXiong,WANG JianZhong,ZHANG PanGao,TIAN Zhu,HAN Ling. Effect of Nitric Oxide Synthetase Inhibitor on Yak Meat Quality During Post-Mortem Aging [J]. Scientia Agricultura Sinica, 2020, 53(8): 1617-1626.
[6] KANG JunMei,ZHANG QiaoYan,JIANG Xu,WANG Zhen,ZHANG TieJun,LONG RuiCai,CUI HuiTing,YANG QingChuan. Cloning MsSQE1 from Alfalfa and Functional Analysis in Saponin Synthesis [J]. Scientia Agricultura Sinica, 2020, 53(2): 247-260.
[7] GAO XingXiang,LI Jian,ZHANG YueLi,LI Mei,FANG Feng. Resistance Level, Mechanism of Alopecurus myosuroides and Control Efficacy in Wheat Field in Shandong Province [J]. Scientia Agricultura Sinica, 2020, 53(17): 3518-3526.
[8] ZHANG DaoWei,KANG Kui,YU YaYa,KUANG FuPing,PAN BiYing,CHEN Jing,TANG Bin. Characteristics and Immune Response of Prophenoloxidase Genes in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2020, 53(15): 3108-3119.
[9] WANG EnZhao,FAN FenLiang,LI YanLing,LIU XiongDuo,LU YuQiu,SONG ALin. Noncontact Inhibitory of Volatile Organic Compounds from Rice Root Bacteria on Rhizopus microsporus [J]. Scientia Agricultura Sinica, 2020, 53(10): 1986-1996.
[10] LIU YiRan,ZHANG Hong,JIN JiSu,ZHOU ZhongShi,GUO JianYing. Identification and Expression Analysis of the Halloween Gene Family in Agasicles hygrophila [J]. Scientia Agricultura Sinica, 2020, 53(10): 2009-2019.
[11] DING YanJuan,LIU YongKang,LUO YuJia,DENG YingMei,XU HongXing,TANG Bin,XU CaiDi. Potential Functions of Nilaparvata lugens GSK-3 in Regulating Glycogen and Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2019, 52(7): 1237-1246.
[12] HU AnHua,QI JingJing,ZHANG QingWen,CHEN ShanChun,ZOU XiuPing,XU LanZhen,PENG AiHong,LEI TianGang,YAO LiXiao,LONG Qin,HE YongRui,LI Qiang. Cloning and Expression Analysis of the Citrus Bacterial Canker-Related Gene CsPGIP in Citrus [J]. Scientia Agricultura Sinica, 2019, 52(4): 639-650.
[13] TANG Bin,SHEN QiDa,ZENG BoPing,XIAO ZhongJiu,QIU LingYu,PAN BiYing,LI Kun,ZHANG DaoWei. Characteristics, Developmental Expression and RNAi Effect Analysis of a Novel Trehalose-6-Phosphate Synthase Gene in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2019, 52(3): 466-477.
[14] CHEN Peng,BAO XiYan,KANG TaoTao,DONG ZhanQi,ZHU Yan,PAN MinHui,LU Cheng. Screening and Identification of Proteins Interacting with Bombyx mori IAP and Their Effects on BmNPV Proliferation [J]. Scientia Agricultura Sinica, 2019, 52(3): 558-567.
[15] JunBo PENG,XingHong LI,Wei ZHANG,Ying ZHOU,JinBao HUANG,JiYe YAN. Pathogenicity and Gene Expression Pattern of the Exocrine Protein LtGH61A of Grape Canker Fungus [J]. Scientia Agricultura Sinica, 2019, 52(24): 4518-4526.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!