Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (24): 5316-5326.doi: 10.3864/j.issn.0578-1752.2021.24.013

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles    

Advance in Genome-Wide Scan of Runs of Homozygosity in Domestic Animals

ZHANG PengFei1(),SHI LiangYu1,LIU JiaXin1,LI Yang1,WU ChengBin2,WANG LiXian1,*(),ZHAO FuPing1,*()   

  1. 1Key laborary of Animal Genetics Breeding and Reproduction (poultry), Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193
    2Quarantine Station of Animal Health Supervision and Administration Bureau in Maochikou Town, Changping District, Beijing 102202
  • Received:2020-11-13 Accepted:2021-01-06 Online:2021-12-16 Published:2021-12-28
  • Contact: LiXian WANG,FuPing ZHAO E-mail:zhangpengfei3236@163.com;iaswlx@263.net;zhaofuping@caas.cn

Abstract:

Runs of homozygosity (ROH) is a long tract of homozygous genotypes commonly found in individuals and populations, which generates on the offspring’s genome inherited identical haplotypes from each parent. ROH contains a wealth of genetic information about populations, which makes it a useful tool for providing information to study how populations change over time. Moreover, ROH can estimate the genetic relationships between individuals to minimize the inbreeding mating rates. In addition, ROH can expose harmful mutations in the genome. The frequencies, sizes and distributions of ROHs in the genome are influenced by natural and artificial selection, recombination, linkage disequilibrium, population history, mutation rate and inbreeding level. Recently, with the use of high-throughput genotype technology and the reduction of second-generation sequencing costs, livestock and poultry breeding have entered into the genomic era. The selection intensity of the elites in livestock and poultry significantly increase to improve their performances, but it will increase inbreeding and cause inbreeding depression as well. Based on ROH molecular information, it is more accurately to detect past and nearest in close relative mating. The ROH-based inbreeding coefficient (FROH) can obtain an individual's true inbreeding coefficient, i.e. the realized inbreeding coefficient, and the pedigree-based FPED is the expectation value of inbreeding coefficient. In the absence of genealogical information, FROH can be used to infer information about a group's history and the inbreeding levels. Meanwhile, the selection reshapes ROH patterns in different regions of the genome. In addition, the selection can increase the homozygosities around the target point, and harmful mutations are thought to occur more frequently in the ROH region, which can be detected by ROH to reduce the risk of complex diseases. After long-term selection, one ROH appeared in multiple individuals’ genomes in the same population, resulting in ROH islands. It has confirmed the correlation between ROH and the selected genomic region. The candidate genes related to economic traits can be annotated on the ROH islands by means of biological information. In addition, ROH also provides a new perspective for assessing the genetic diversity in domestic animals. Genome-wide ROH detection on the population can used to investigate the genetic structure of this population, and FROH can evaluate the impact of inbreeding in the current breeding program, which can adjust breeding plans to protect the genetic diversity of varieties. Therefore, ROH has gradually become an important index to explore the historical population structure, the level of inbreeding, candidate gene identification. There are mainly two kinds of methods to identify ROH: observation genotype counting method and model-based analysis. Commonly used softwares include PLINK, GERMLINE, BEAGLE, GARLIC, etc. In practical applications, PLINK is the most common ROH detection tool. Since the SNP chip for cattle was firstly used in domestic animals, the cattle population was firstly conduct genome-wide ROH detection. Now, studies on ROH are becoming more popular in pigs, sheep and other domestic animals. This review mainly described the principle of ROH formation and its detection methods, as well as progress of its application in livestock and poultry, so as to provide reference for the genetic breeding of livestock and poultry.

Key words: runs of homozygosity, livestock and poultry breeding, single nucleotide polymorphism, inbreeding evaluation, candidate genes identification

Fig. 1

Principle of ROH generation"

Fig. 2

Inbreeding coefficient values estimated by two approaches in the selfing population"

Fig. 3

ROH island"

[1] FRANCISCO C. CEBALLOS P K J, JAMES F. WILSON, DAVID W. CLARK, MICHèLE RAMSAY. Runs of homozygosity: windows into population history and trait architecture. Nature Reviews Genetics, 2018, 19(4):220-234.
doi: 10.1038/nrg.2017.109
[2] HAYES M G, KELLY A L. High pressure homogenisation of milk (b) effects on indigenous enzymatic activity. Journal of Dairy Research, 2003, 70(3):307-313.
doi: 10.1017/S0022029903006319
[3] BROMAN K W, WEBER J L. Long homozygous chromosomal segments in reference families from the centre d'Etude du polymorphisme humain. American Journal of Human Gentics, 1999, 65(6):1493-1500.
[4] GIBSON J, MORTON N E, COLLINS A. Extended tracts of homozygosity in outbred human populations. Human Molecular Genetics, 2006, 15(5):789-795.
doi: 10.1093/hmg/ddi493
[5] 刘刚, 孙飞舟, 朱芳贤, 冯海永, 韩旭. 连续性纯合片段在畜禽基因组研究中的应用. 遗传, 2019, 41(4):304-317.
LIU G, SUN F Z, ZHU F X, FENG H Y, HAN X. Runs of homozygosity and its application on livestock genome study. Hereditas(Beijing), 2019, 41(4):304-317. (in Chinese)
[6] KIRIN M, MCQUILLAN R, FRANKLIN C S, CAMPBELL H, MCKEIGUE P M, WILSON J F. Genomic runs of homozygosity record population history and consanguinity. PLoS One, 2010, 5(11):e13996.
doi: 10.1371/journal.pone.0013996
[7] CHARLESWORTH D, WILLIS J H. The genetics of inbreeding depression. Nature Reviews Genetics, 2009, 10(11):783-796.
doi: 10.1038/nrg2664
[8] ÁLVAREZ G, CEBALLOS F, BERRA FLS T. Darwin was right: inbreeding depression on malefertility in the Darwin family. Biological Journal of the Linnean Society, 2015, 114(2):474-483.
doi: 10.1111/bij.2015.114.issue-2
[9] BERRA T M, ALVAREZ G, CEBALLOS F C. Was the Darwin/ Wedgwood Dynasty Adversely Affected by Consanguinity? BioScience, 2010, 60(5):376-383.
doi: 10.1525/bio.2010.60.5.7
[10] MARRAS G, GASPA G, SORBOLINI S, DIMAURO C, AJMONE- MARSAN P, VALENTINI A, WILLIAMS J L, MACCIOTTA N P. Analysis of runs of homozygosity and their relationship with inbreeding in five cattle breeds farmed in Italy. Animal Genetics, 2015, 46(2):110-121.
doi: 10.1111/age.2015.46.issue-2
[11] 师睿, 张毅, 王雅春, 黄涛, 卢国昌, 岳涛, 卢振西, 黄锡霞, 卫新璞, 冯书堂, 陈军, 乌兰·卡格德尔, 茹先古丽·阿不力孜, 努尔胡马尔·木合塔尔. 利用SNP 芯片信息评估新疆近交牛基因组纯合度. 遗传, 2020, 42(5):493-505.
SHI R, ZHANG Y, WANG Y C, HUANG T, LU G C, YUE T, LU Z X, HUANG X X, WEI X P, FENG S T, CHEN J, Wulan Kagedeer, Ruxianguli Abulizi, Nuerhumaer Muhetaer. The evaluation of genomic homozygosity for Xinjiang inbred population by SNP panels. Hereditas(Beijing), 2020, 42(5):493-505. (in Chinese)
[12] KIM E S, COLE J B, HUSON H, WIGGANS G R, VAN TASSELL C P, CROOKER B A, LIU G, DA Y, SONSTEGARD T S. Effect of artificial selection on runs of homozygosity in U. S. Holstein cattle. PLoS One, 2013, 8(11):e80813.
doi: 10.1371/journal.pone.0080813
[13] FORUTAN M, ANSARI MAHYARI S, BAES C, MELZER N, SCHENKEL F S, SARGOLZAEI M. Inbreeding and runs of homozygosity before and after genomic selection in North American Holstein Cattle. BMC Genomics, 2018, 19(1):98.
doi: 10.1186/s12864-018-4453-z
[14] SZMATOLA T, JASIELCZUK I, SEMIK-GURGUL E, SZYNDLER- NEDZA M, BLICHARSKI T, SZULC K, SKRZYPCZAK E, GURGUL A. Detection of runs of homozygosity in conserved and commercial pig breeds in Poland. Journal of Animal Breeding and Genetics, 2020, 137(6):571-580.
doi: 10.1111/jbg.v137.6
[15] CURIK I F, MAJA SöLKNER, JOHANN. Inbreeding and runs of homozygosity: A possible solution to an old problem. Livestock Science, 2014, 166(9):26-34.
doi: 10.1016/j.livsci.2014.05.034
[16] WILLIAMS J L, HALL S J, DEL CORVO M, BALLINGALL K T, COLLI L, AJMONE MARSAN P, BISCARINI F. Inbreeding and purging at the genomic Level: the Chillingham cattle reveal extensive, non-random SNP heterozygosity. Animal Genetics, 2016, 47(1):19-27.
doi: 10.1111/age.12376
[17] MCQUILLAN R, LEUTENEGGER A L, ABDEL-RAHMAN R, FRANKLIN C S, PERICIC M, BARAC-LAUC L, SMOLEJ- NARANCIC N, JANICIJEVIC B, POLASEK O, TENESA A, MACLEOD A K, FARRINGTON S M, RUDAN P, HAYWARD C, VITART V, RUDAN I, WILD S H, DUNLOP M G, WRIGHT A F, CAMPBELL H, WILSON J F. Runs of homozygosity in European populations. American Journal of Human Genetics, 2008, 83(3):359-372.
doi: 10.1016/j.ajhg.2008.08.007
[18] WRIGHT S. Coefficients of inbreeding and relationship. Amerlcan Naturalist, 1922, 56:330-338.
[19] 杨湛澄, 黄河天, 闫青霞, 王雅春, 俞英, 陈绍祜, 孙东晓, 张胜利, 张毅. 利用高密度SNP标记分析中国荷斯坦牛基因组近交. 遗传, 2017, 39(1):41-47.
YANG Z C, HUANG H T, YAN Q X, WANG Y C, YU Y, CHEN S H, SUN D X, ZHANG S L, ZHANG Y. Estimation of genomic inbreeding coefficients based on high-density snp markers in chinese holstein cattle. Hereditas(Beijing), 2017, 39(1):41-47. (in Chinese)
[20] YANG J, LEE S H, GODDARD M E, VISSCHER P M. GCTA: a tool for genome-wide complex trait analysis. American Journal of Human Genetics, 2011, 88(1):76-82.
doi: 10.1016/j.ajhg.2010.11.011
[21] VANRADEN P M. Efficient methods to compute genomic predictions. Journal of Dairy Science, 2008, 91(11):4414-4423.
doi: 10.3168/jds.2007-0980
[22] BJELLAND D W, WEIGEL K A, VUKASINOVIC N, NKRUMAH J D. Evaluation of inbreeding depression in Holstein cattle using whole-genome SNP markers and alternative measures of genomic inbreeding. Journal of Dairy Science, 2013, 96(7):4697-4706.
doi: 10.3168/jds.2012-6435
[23] PURFIELD D C, BERRY D P, MCPARLAND S, BRADLEY D G. Runs of homozygosity and population history in cattle. BMC Genetics, 2012, 14(13):70.
doi: 10.1186/1471-2156-14-70
[24] KELLER M C, VISSCHER P M, GODDARD M E. Quantification of inbreeding due to distant ancestors and its detection using dense single nucleotide polymorphism data. Genetics, 2011, 189(1):237-249.
doi: 10.1534/genetics.111.130922
[25] PERIPOLLI E, MUNARI D P, SILVA M, LIMA A L F, IRGANG R, BALDI F. Runs of homozygosity: current knowledge and applications in livestock. Animal Genetics, 2017, 48(3):255-271.
doi: 10.1111/age.2017.48.issue-3
[26] PERIPOLLI E, STAFUZZA N B, MUNARI D P, LIMA A L F, IRGANG R, MACHADO M A, PANETTO J, VENTURA R V, BALDI F, DA SILVA M. Assessment of runs of homozygosity islands and estimates of genomic inbreeding in Gyr (Bos indicus) dairy cattle. BMC Genomics, 2018, 19(1):34.
doi: 10.1186/s12864-017-4365-3
[27] LIU J X, SHI L Y, LI Y, CHEN L, DORIAN G, ZHAO F D. Estimates of genomic inbreeding and identification of candidate regions that differ between Chinese indigenous sheep breeds. Journal of Animal Science and Biotechnology, 2021, 12(1):95.
doi: 10.1186/s40104-021-00608-9
[28] GARROD A E O M D L F R C P. The incidence of alkaptonuria: a study of chemical individuality. Molecular Medicine 1996, 2(3):274-282.
doi: 10.1007/BF03401625
[29] ZHANG Q, GULDBRANDTSEN B, BOSSE M, LUND M S, SAHANA G. Runs of homozygosity and distribution of functional variants in the cattle genome. BMC Genomics, 2015, 16(1):542.
doi: 10.1186/s12864-015-1715-x
[30] SZPIECH Z A, XU J, PEMBERTON T J, PENG W, ZOLLNER S, ROSENBERG N A, LI J Z. Long runs of homozygosity are enriched for deleterious variation. American Journal of Human Genetics, 2013, 93(1):90-102.
doi: 10.1016/j.ajhg.2013.05.003
[31] KIM Y, RYU J, WOO J, KIM J B, KIM C Y, LEE C. Genome-wide association study reveals five nucleotide sequence variants for carcass traits in beef cattle. Animal Genetics, 2011, 42(4):361-365.
doi: 10.1111/age.2011.42.issue-4
[32] SNELLING W M, ALLAN M F, KEELE J W, KUEHN L A, MCDANELD T, SMITH T P, SONSTEGARD T S, THALLMAN R M, BENNETT G L. Genome-wide association study of growth in crossbred beef cattle. American Journal of Human Genetics, 2010, 88(3):837-848.
[33] ISLAM R, LI Y, LIU X, BERIHULAY H, ABIED A, GEBRESELASSIE G, MA Q, MA Y. Genome-Wide Runs of Homozygosity, Effective Population Size, and Detection of Positive Selection Signatures in Six Chinese Goat Breeds. Genes, 2019, 10(11):938.
doi: 10.3390/genes10110938
[34] LUAN T, YU X, DOLEZAL M, BAGNATO A, MEUWISSEN T H. Genomic prediction based on runs of homozygosity. Genetics Selection Evolution, 2014, 46(1):64.
doi: 10.1186/s12711-014-0064-6
[35] PURCELL S, NEALE B, TODD-BROWN K, THOMAS L, FERREIRA M A, BENDER D, MALLER J, SKLAR P, DE BAKKER P I, DALY M J, SHAM P C. PLINK: a tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics, 2007, 81(3):559-575.
doi: 10.1086/519795
[36] MEYERMANS R, GORSSEN W, BUYS N, JANSSENS S. How to study runs of homozygosity using PLINK? A guide for analyzing medium density SNP data in livestock and pet species. BMC Genomics, 2020, 21(1):94.
doi: 10.1186/s12864-020-6463-x
[37] GUSEV A, LOWE J K, STOFFEL M, DALY M J, ALTSHULER D, BRESLOW J L, FRIEDMAN J M, PE'ER I. Whole population, genome-wide mapping of hidden relatedness. Genome Research, 2009, 19(2):318-326.
doi: 10.1101/gr.081398.108
[38] BROWNING B L, BROWNING S R. Detecting identity by descent and estimating genotype error rates in sequence data. American Journal of Human Genetics, 2013, 93(5):840-851.
doi: 10.1016/j.ajhg.2013.09.014
[39] SZPIECH Z A, BLANT A, PEMBERTON T J. GARLIC: Genomic Autozygosity Regions Likelihood-based Inference and Classification. Bioinformatics, 2017, 33(13):2059-2062.
doi: 10.1093/bioinformatics/btx102
[40] HOWRIGAN D P, SIMONSON M A, KELLER M C. Detecting autozygosity through runs of homozygosity: a comparison of three autozygosity detection algorithms. BMC Genomics, 2011, 23(12):460.
[41] KUNINGAS M, MCQUILLAN R, WILSON J F, HOFMAN A, VAN DUIJN C M, UITTERLINDEN A G, TIEMEIER H. Runs of homozygosity do not influence survival to old age. PLoS One, 2011, 6(7):e22580.
doi: 10.1371/journal.pone.0022580
[42] NARASIMHAN V, DANECEK P, SCALLY A, XUE Y, TYLER-SMITH C, DURBIN R. BCFtools/RoH: a hidden Markov model approach for detecting autozygosity from next-generation sequencing data. Bioinformatics, 2016, 32(11):1749-1751.
doi: 10.1093/bioinformatics/btw044
[43] FERENCAKOVIC M, SOLKNER J, KAPS M, CURIK I. Genome-wide mapping and estimation of inbreeding depression of semen quality traits in a cattle population. Journal of Dairy Science, 2017, 100(6):4721-4730.
doi: 10.3168/jds.2016-12164
[44] MAXIMINI L, FUERST-WALTL B, GREDLER B, BAUMUNG R. Inbreeding depression on semen quality in Austrian dual-purpose simmental bulls. Reproduction in Domestic Animals, 2011, 46(1):e102-104.
doi: 10.1111/rda.2011.46.issue-1
[45] XU L, ZHAO G, YANG L, ZHU B, CHEN Y, ZHANG L, GAO X, GAO H, LIU G E, LI J. Genomic Patterns of Homozygosity in Chinese Local Cattle. Scientific reports, 2019, 9(1):16977.
doi: 10.1038/s41598-019-53274-3
[46] FERENCAKOVIC M, HAMZIC E, GREDLER B, SOLBERG T R, KLEMETSDAL G, CURIK I, SOLKNER J. Estimates of autozygosity derived from runs of homozygosity: empirical evidence from selected cattle populations. Journal of Animal Breeding and Genetics, 2013, 130(4):286-293.
doi: 10.1111/jbg.12012
[47] MASTRANGELO S, SARDINA M T, TOLONE M, DI GERLANDO R, SUTERA A M, FONTANESI L, PORTOLANO B. Genome-wide identification of runs of homozygosity islands and associated genes in local dairy cattle breeds. Animal, 2018, 12(12):2480-2488.
doi: 10.1017/S1751731118000629
[48] GOMEZ-RAYA L, RODRIGUEZ C, BARRAGAN C, SILIO L. Genomic inbreeding coefficients based on the distribution of the length of runs of homozygosity in a closed line of Iberian pigs. Genetics Selection Evolution, 2015, 16(47):81.
[49] SHI L Y, WANG L G, LIU J X, DENG T Y, YAN H, ZHANG L C, LIU X, GAO H M, HOU X H, WANG L X, ZHAO F P. Estimation of inbreeding and identification of regions under heavy selection based on runs of homozygosity in a Large White pig population. Journal of Animal Science and Biotechnology, 2020, 28(11):46.
[50] BOSSE M, MEGENS H J, MADSEN O, PAUDEL Y, FRANTZ L A, SCHOOK L B, CROOIJMANS R P, GROENEN M A. Regions of homozygosity in the porcine genome: consequence of demography and the recombination landscape. PLoS Genetics, 2012, 8(11):e1003100.
doi: 10.1371/journal.pgen.1003100
[51] GROENEN M A, ARCHIBALD A L, UENISHI H, TUGGLE C K, TAKEUCHI Y, ROTHSCHILD M F, ROGEL-GAILLARD C, PARK C, MILAN D, MEGENS H J, et al. Analyses of pig genomes provide insight into porcine demography and evolution. Nature, 2012, 491(7424):393-398.
doi: 10.1038/nature11622
[52] HERRERO-MEDRANO J M, MEGENS H J, GROENEN M A, RAMIS G, BOSSE M, PEREZ-ENCISO M, CROOIJMANS R P. Conservation genomic analysis of domestic and wild pig populations from the Iberian Peninsula. BMC Genetics, 2013, 30(14):106.
[53] FERREIRA E, SOUTO L, SOARES A M V M, FONSECA C. Genetic structure of the wild boar population in Portugal: Evidence of a recent bottleneck. Mammalian Biology, 2009, 74(4):274-285.
doi: 10.1016/j.mambio.2008.05.009
[54] ZHANG Z, ZHANG Q, XIAO Q, SUN H, GAO H, YANG Y, CHEN J, LI Z, XUE M, MA P, YANG H, XU N, WANG Q, PAN Y. Distribution of runs of homozygosity in Chinese and Western pig breeds evaluated by reduced-representation sequencing data. Animal Genetics, 2018, 49(6):579-591.
doi: 10.1111/age.12730
[55] XIE R, SHI L Y, LIU J X, DENG T Y, WANG L G, LIU Y, ZHAO F P. Genome-Wide Scan for Runs of Homozygosity Identifies Candidate Genes in Three Pig Breeds. Animals (Basel), 2019, 9(8):518.
[56] PURFIELD D C, MCPARLAND S, WALL E, BERRY D P. The distribution of runs of homozygosity and selection signatures in six commercial meat sheep breeds. PLoS One, 2017, 12(5):e0176780.
doi: 10.1371/journal.pone.0176780
[57] 刘家鑫, 魏霞, 邓天宇, 谢锐, 韩建林, 杜立新, 赵福平, 王立贤. 绵羊全基因组ROH检测及候选基因鉴定. 畜牧兽医学报, 2019, 50(8):1554-1566.
LIU J X, WEI X, DENG T Y, RUI R, HAN J L, DU L X, ZHAO F P, WANG L X. Genome-wide scan for run of homozygosity and identification of corresponding candidate genes in sheep populations. Acta Veterinaria et Zootechnica Sinica, 2019, 50(8):1554-1566. (in Chinese)
[58] MASTRANGELO S, CIANI E, SARDINA M T, SOTTILE G, PILLA F, PORTOLANO B, BI.OV. ITA C. Runs of homozygosity reveal genome-wide autozygosity in Italian sheep breeds. Animal Genetics, 2018, 49(1):71-81.
doi: 10.1111/age.2018.49.issue-1
[59] MASTRANGELO S, TOLONE M, SARDINA M T, SOTTILE G, SUTERA A M, DI GERLANDO R, PORTOLANO B. Genome-wide scan for runs of homozygosity identifies potential candidate genes associated with local adaptation in Valle del Belice sheep. Genetics Selection Evolution, 2017, 49(1):84.
doi: 10.1186/s12711-017-0360-z
[60] BEYNON S E, SLAVOV G T, FARRE M, SUNDUIMIJID B, WADDAMS K, DAVIES B, HARESIGN W, KIJAS J, MACLEOD I M, NEWBOLD C J, DAVIES L, LARKIN D M. Population structure and history of the Welsh sheep breeds determined by whole genome genotyping. BMC Genetics, 2015, 20(16):65.
doi: 10.1186/s12863-019-0746-8
[61] FLEMING D S, KOLTES J E, MARKEY A D, SCHMIDT C J, ASHWELL C M, ROTHSCHILD M F, PERSIA M E, REECY J M, LAMONT S J. Genomic analysis of Ugandan and Rwandan chicken ecotypes using a 600 k genotyping array. BMC Genomics, 2016, 26(17):407.
[62] ZHANG M, HAN W, TANG H, LI G, ZHANG M, XU R, LIU Y, YANG T, LI W, ZOU J, WU K. Genomic diversity dynamics in conserved chicken populations are revealed by genome-wide SNPs. BMC Genomics, 2018, 19(1):598.
doi: 10.1186/s12864-018-4973-6
[63] PRYCE J E, HAILE-MARIAM M, GODDARD M E, HAYES B J. Identification of genomic regions associated with inbreeding depression in Holstein and Jersey dairy cattle. Genetics Selection Evolution, 2014, 46(1):71-84.
doi: 10.1186/s12711-014-0071-7
[64] SAURA M, FERNANDEZ A, VARONA L, FERNANDEZ A I, DE CARA M A, BARRAGAN C, VILLANUEVA B. Detecting inbreeding depression for reproductive traits in Iberian pigs using genome-wide data. Genetics Selection Evolution, 2015, 47(1):1.
doi: 10.1186/s12711-014-0081-5
[65] 史良玉, 王立刚, 张鹏飞, 莫家远, 李洋, 王立贤, 赵福平. 不同来源大白猪总产仔数近交衰退评估. 畜牧兽医学报, 2021, 52(10):2772-2782.
SHI L Y, WANG L G, ZHANG P F, MO J Y, LI Y, WANG L X, ZHAO F P. Evaluation of Inbreeding Depression on the Total Numbers of Piglets Born in Different Groups of Large White Pigs. Acta Veterinaria et Zootechnica Sinica, 2021, 52(10):2772-2782. (in Chinese)
[66] NANI J P, PENAGARICANO F. Whole-genome homozygosity mapping reveals candidate regions affecting bull fertility in US Holstein cattle. BMC Genomics, 2020, 21(1):338.
doi: 10.1186/s12864-020-6758-y
[1] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[2] Yun PENG,TianGang LEI,XiuPing ZOU,JingYun ZHANG,QingWen ZHANG,JiaHuan YAO,YongRui HE,Qiang LI,ShanChun CHEN. Verification of SNPs Associated with Citrus Bacterial Canker Resistance and Induced Expression of SNP-Related Calcium-Dependent Protein Kinase Gene [J]. Scientia Agricultura Sinica, 2020, 53(9): 1820-1829.
[3] CAO XueTao, PEI ShengWei, ZHANG Jin, LI FaDi, LI Gang, LI WanHong, YUE XiangPeng. Screening of Y Chromosome Specific Primers and Y-SNPs in Sheep [J]. Scientia Agricultura Sinica, 2018, 51(15): 2990-2999.
[4] ZENG Ji-Wu, JIANG Bo, WU Bo, ZHONG Yun, CHENG Chun-Zhen, MU Hong-Na, GAN Lian-Sheng, PENG Cheng-Ji, ZHONG Guang-Yan, YI Gan-Jun. Morphological and Molecular Studies on a Wild Citrus ‘Longmen Xiangcheng’ [J]. Scientia Agricultura Sinica, 2014, 47(2): 334-343.
[5] ZHANG Li-Qun-1, WEI Kang-1, WANG Li-Yuan-1, CHENG Hao-1, LIU Ben-Ying-2, GONG Wu-Yun-1. The Structure and Single Nucleotide Polymorphism Analysis of Chalcone Synthase Genes in Tea Plant (Camellia sinenesis) [J]. Scientia Agricultura Sinica, 2014, 47(1): 133-144.
[6] WANG Ji-Ying, WANG Hai-Xia, CHI Rui-Bin, GUO Jian-Feng, WU Ying. Progresses in Research of Genome-Wide Association Studies in Livestock and Poultry [J]. Scientia Agricultura Sinica, 2013, 46(4): 819-829.
[7] JIANG Xiao-Dong, ZHANG Jing, GUO Gang-Gang. Polymorphism of the Amy32b Gene and Its Effect on the α-Amylase Activity in Barley [J]. Scientia Agricultura Sinica, 2012, 45(5): 823-831.
[8] YUAN Ya-Nan, LIU Wen-Zhong, LIU Jian-Hua, QIAO Li-Ying, WU Jian-Liang. The Base Mutation of Ovine UCP1 Gene and Its Relationship   with Protein Structure and Function [J]. Scientia Agricultura Sinica, 2012, 45(14): 2973-2980.
[9] GENG Li-Ying, ZHANG Chuan-Sheng, YIN Chun-Guang, CAO Ding-Guo, DU Li-Xin, CHEN Juan. Analysis T>C Polymorphisms Located in the Seed Regions of Mir-1644 Gene of Chicken [J]. Scientia Agricultura Sinica, 2011, 44(13): 2808-2813 .
[10] YUE Ai-Qin,LI Ang,MAO Xin-Guo,CHANG Xiao-Ping,LI Run-Zhi,JIA Ji-Zeng,JING Rui-Lian. Single Nucleotide Polymorphism and Mapping of 6-SFT-A Gene Responsible for Fructan Biosynthesis in Common Wheat [J]. Scientia Agricultura Sinica, 2011, 44(11): 2216-2224 .
[11] ZHU Cai-mei,ZHANG Jing
. Single Nucleotide Polymorphism of Wx Gene Associated with Amylose Content in Barley Germplasm
[J]. Scientia Agricultura Sinica, 2010, 43(5): 889-898 .
[12] . Single Nucleotide Polymorphisms (SNPs) of hypocretin receptor1 (HCRTR1) Gene in Nanyang Cattle [J]. Scientia Agricultura Sinica, 2008, 41(5): 1560-1566 .
[13] ,,,. Assaying Single Nucleotide Polymorphism in Wheat (Triticum aestivum L.) with Allele-Specific PCR [J]. Scientia Agricultura Sinica, 2006, 39(7): 1313-1320 .
[14] ,,,,. Single Nucleotide Polymorphism of TaDREB1 Gene in Wheat Germplasm [J]. Scientia Agricultura Sinica, 2005, 38(12): 2387-2394 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!