Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (14): 2798-2811.doi: 10.3864/j.issn.0578-1752.2023.14.014

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles     Next Articles

Population Structure and Genetic Diversity of Lufeng Cattle and Leiqiong Cattle Based on Genome-Wide SNPs

TONG Xiong(), LUO Wei(), MIN Li, ZHANG ZhiFei, MA XinYan, LUO ChengLong, CHEN WeiDong, XU Bin(), LI DaGang()   

  1. Institute of Animal Science, Guangdong Academy of Agricultural Sciences/State Key Laboratory of Livestock and Poultry Breeding/ Heyuan Branch of Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640
  • Received:2023-01-04 Accepted:2023-04-23 Online:2023-07-16 Published:2023-07-21
  • Contact: XU Bin, LI DaGang

Abstract:

【Objective】Phylogenetic relationship among Lufeng cattle, Leiqiong cattle and domestic cattle in different regions worldwide, and genetic diversity of different domestic cattle populations were studied, so as to lay a theoretical foundation for the identification and protection of domestic cattle resources. 【Method】Tissue samples of 12 individuals of Lufeng cattle and 17 ones of Leiqiong cattle were collected for whole genome resequencing. Combined with another 92 cattle genomes from 24 breeds worldwide available in the NCBI database, a panel of cattle genomes comprising 121 individuals were generated from 25 breeds to carry out population genetics study. Bos taurus ARS-UCD1.2 assembly was selected as the reference genome. High-quality reads were obtained by genome alignment and quality control. Genomic SNPs were detected by GATK software. Population structure was analyzed by phylogenetic tree construction, PCA clustering, and Admixture evaluation. Genetic diversity of the populations was studied by estimating nucleotide diversity (Pi), heterozygosity (Hp), and linkage disequilibrium (LD). 【Result】A total of 6 905 944 306 clean reads were obtained by genome sequencing from 29 individuals of the two cattle breeds in Guangdong. Average genome coverage and average sequencing depth of each sample were 97.99% and 12.78×, respectively. After integrating the NCBI cattle genome data, 14 664 391 population SNPs were identified. The results of phylogenetic tree, PCA and Admixture showed that a primary division was found between cattle from taurine and indicine. Moreover, indicine cattle split on Chinese and Indian cattle, and Northeast Asian cattle (Hanwoo and Yanbian) and Tibetan cattle separated from European taurine group, while Wenling cattle and Zhoushan cattle differentiated from Chinese indicine group. Lufeng cattle and Leiqiong cattle belonged to pure Chinese indicine cattle. Lufeng cattle and Wannan cattle, Leiqiong cattle and Ji'an cattle showed the closest relationship, respectively. The relationships indicated that Lufeng cattle and Leiqiong cattle in the adjacent areas belonged to two independent breeds. Some Lufeng and Leiqiong individuals were genetically admixed with European taurine and Northeast Asian taurine cattle, and the admixed proportion was high, indicating that these two breeds needed to strengthen the purification and rejuvenation within the population. Compared with European taurine cattle and Korean cattle, for Chinese domestic cattle, LD decay rate was faster, and nucleotide diversity (Pi) and heterozygosity (Hp) were higher, indicating that genetic diversity of Chinese domestic cattle was richer. Compared with other Chinese domestic cattle, LD levels of Lufeng cattle and Leiqiong cattle were lower, heterozygosity (Hp) was higher, and the density distribution of nucleotide diversity (Pi) and heterozygosity (Hp) was more concentrated, indicating that the two cattle breeds were less subject to artificial selection and maintain higher genetic diversity. 【Conclusion】Population structure and genetic diversity of Lufeng cattle and Leiqiong cattle were analyzed by genome-wide SNPs, which provided data support for independent classification and conservation of these two cattle breeds.

Key words: Lufeng cattle, Leiqiong cattle, whole-genome SNPs, population structure

Fig. 1

Lufeng cattle (Male)"

Fig. 2

Leiqiong cattle (Male)"

Table 1

Information of the 121 individuals from 25 breeds in this study"

品种
Breed
品种代号
Breed code
样本量
Sample size
原产地
Origin region
数据来源
Reference
地理区域
Geographic region
安格斯牛
Angus cattle
Angus 5 英国苏格兰阿伯丁郡
Aberdeenshire, Scotland, UK
STOTHARD et al, 2015[29] 西欧
West Europe
海福特牛
Hereford cattle
Hereford 6 英国赫里福德郡
Hereford, UK
STOTHARD et al, 2015[29] 西欧
West Europe
利木赞牛
Limousin cattle
Limousin 1 法国利穆赞大区
Limousin, France
STOTHARD et al, 2015[29] 中南欧
Central-South Europe
西门塔尔牛
Simmental cattle
Simmental 6 瑞士日内瓦
Geneve, Switzerland
STOTHARD et al, 2015[29] 中南欧
Central-South Europe
西藏牛
Tibetan cattle
Tibetan 6 中国西藏自治区昌都市
Changdu, Xizang, China
CHEN et al, 2018[7] 西藏
Tibet
韩牛
Hanwoo cattle
Hanwoo 6 韩国江原道春川市
Chuncheon, Kangwon-do, Korea
SHIN et al, 2014[30] 东北亚
Northeast Asia
延边牛
Yanbian cattle
Yanbian 1 中国吉林省延边朝鲜族自治州
Yanbian, Jilin, China
CHEN et al, 2018[7] 东北亚
Northeast Asia
鲁西牛
Luxi cattle
Luxi 5 中国山东省济宁市
Jining, Shandong, China
CHEN et al, 2018[7] 中国中北部
North-Central China
渤海黑牛
Bohai Black cattle
Bohai 4 中国山东省滨州市
Binzhou, Shandong, China
CHEN et al, 2018[7] 中国中北部
North-Central China
南阳牛
Nanyang cattle
Nanyang 4 中国河南省南阳市
Nanyang, Henan, China
CHEN et al, 2018[7] 中国中北部
North-Central China
锦江牛
Jinjiang cattle
Jinjiang 3 中国江西省高安市
Gaoan, Jiangxi, China
CHEN et al, 2018[7] 中国南部
South China
皖南牛
Wannan cattle
Wannan 5 中国安徽省宣城市
Xuancheng, Anhui, China
CHEN et al, 2018[7] 中国南部
South China
广丰牛
Guangfeng cattle
Guangfeng 4 中国江西省上饶市
Shangrao, Jiangxi, China
CHEN et al, 2018[7] 中国南部
South China
吉安牛
Ji’an cattle
Jian 4 中国江西省吉安市
Ji’an, Jiangxi, China
CHEN et al, 2018[7] 中国南部
South China
雷琼牛
Leiqiong cattle
Leiqiong 3 中国广东省湛江市
Zhanjiang, Guangdong, China
CHEN et al, 2018[7] 中国南部
South China
Leiqiong 17 中国广东省湛江市
Zhanjiang, Guangdong, China
本研究 Present study 中国南部
South China
陆丰黄牛
Lufeng cattle
Lufeng 12 中国广东省汕尾市
Shanwei, Guangdong, China
本研究 Present study 中国南部
South China
文山牛
Wenshan cattle
Wenshan 6 中国云南省文山壮族苗族自治州
Wenshan, Yunnan, China
CHEN et al, 2018[7] 中国南部
South China
舟山牛
Zhoushan cattle
Zhoushan 6 中国浙江省舟山市
Zhoushan, Zhejiang, China
JIANG et al, 2021[15] 中国南部
South China
温岭高峰牛
Wenling Hump cattle
Wenling 6 中国浙江省温岭市
Wenling, Zhejiang, China
JIANG et al, 2021[15] 中国南部
South China
哈里亚娜牛
Hariana cattle
Hariana 1 印度哈里亚纳邦古尔加翁县
Gurgaon, Haryana, India
CHEN et al, 2018[7] 印巴地区
India-Paksitan
吉尔牛
Gir cattle
Gir 2 印度古吉拉特邦艾哈迈达巴德
Amblash, Gujarat, India
BICKHART et al, 2016[31] 印巴地区
India-Paksitan
沙希华牛
Sahiwal cattle
Sahiwal 1 巴基斯坦旁遮普省萨希瓦尔
Sahiwal, Punjab, Pakistan
CHEN et al, 2018[7] 印巴地区
India-Paksitan
内洛尔牛
Nelore cattle
Nelore 1 印度安得拉邦内洛尔县
Nelore, Andhra, India
BICKHART et al, 2016[31] 印巴地区
India-Paksitan
塔帕卡牛
Tharparkar cattle
Tharparkar 1 巴基斯坦信德省塔帕卡
Tharparkar, Sindh, Pakistan
CHEN et al, 2018[7] 印巴地区
India-Paksitan
婆罗门牛
Brahman cattle
Brahman 5 印度西孟加拉邦婆罗门
Brahman, West Bengal, India
BICKHART et al, 2016[31] 印巴地区
India-Paksitan
总计 Total 25品种 25 breeds 121个体 121 individuals

Fig. 3

Neighbor-joining tree of the domestic cattle in different regions based on IBS distance Angus, Angus cattle; Hereford, Hereford cattle; Limousin, Limousin cattle; Simmental, Simmental cattle; Tibetan, Tibetan cattle; Hanwoo, Hanwoo cattle; Yanbian, Yanbian cattle; Luxi, Luxi cattle; Bohai, Bohai Black cattle; Nanyang, Nanyang cattle; Jinjiang, Jinjiang cattle; Wannan, Wannan cattle; Guangfeng, Guangfeng cattle; Jian, Ji’an cattle; Leiqiong, Leiqiong cattle; Lufeng, Lufeng cattle; Wenshan, Wenshan cattle; Zhoushan, Zhoushan cattle; Wenling, Wenling Hump cattle; Hariana, Hariana cattle; Gir, Gir cattle; Sahiwal, Sahiwal cattle; Nelore, Nelore cattle; Tharparkar, Tharparkar cattle; Brahman, Brahman cattle. The number after breed code represents the number of the individual within the breed. The same as below"

Fig. 4

Principal component analysis (PCA) of the domestic cattle in different regions with genomic SNPs The dotted box in the figure shows only the PCA of Lufeng cattle and Leqiong cattle."

Fig. 5

Population structure estimated by the program Admixture with K = 2 to 5 The number after breed code represents the number of the individual within the breed."

Fig. 6

Nucleotide diversity (a, Pi) and heterozygosity (b, Hp) in the different domestic cattle populations"

Fig. 7

Linkage disequilibrium (LD) decay estimated from the different domestic cattle populations"

[1]
LOFTUS R T, MACHUGH D E, BRADLEY D G, SHARP P M, CUNNINGHAM P. Evidence for two independent domestications of cattle. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(7): 2757-2761.
[2]
HESSE B. The first steps of animal domestication. Journal of Ethnobiology, 200626(1): 171-174.
[3]
国家畜禽遗传资源委员会组. 中国畜禽遗传资源志-牛志. 北京: 中国农业出版社, 2011.
China National Commission of Animal Genetic Resources. Animal genetic resources in China. Beijing: China Agriculture Press, 2011. (in Chinese)
[4]
广东省农业厅,广东省畜牧兽医局, 广东省畜禽遗传资源委员会. 广东省地方畜禽遗传资源志. 广州: 广东科技出版社, 2018.
Department of Agriculture of Guangdong Province. Records of local livestock and poultry genetic resources in Guangdong Province. Guangzhou: Guangdong Science & Technology Press, 2018. (in Chinese)
[5]
XIA X, QU K, ZHANG G, JIA Y, MA Z, ZHAO X, HUANG Y, CHEN H, HUANG B, LEI C. Comprehensive analysis of the mitochondrial DNA diversity in Chinese cattle. Animal Genetics, 2019, 50(1): 70-73.

doi: 10.1111/age.12749 pmid: 30421479
[6]
GAO Y H, GAUTIER M, DING X D, ZHANG H, WANG Y C, WANG X, FARUQUE M O, LI J Y, YE S H, GOU X, HAN J L, LENSTRA J A, ZHANG Y. Species composition and environmental adaptation of indigenous Chinese cattle. Scientific Reports, 2017, 7(1): 1-14.

doi: 10.1038/s41598-016-0028-x
[7]
CHEN N B, CAI Y D, CHEN Q M, LI R, WANG K, HUANG Y Z, HU S M, HUANG S S, ZHANG H C, ZHENG Z Q, et al. Whole-genome resequencing reveals world-wide ancestry and adaptive introgression events of domesticated cattle in East Asia. Nature Communications, 2018, 9(1): 1-13.

doi: 10.1038/s41467-017-02088-w
[8]
MEI C G, WANG H C, LIAO Q J, WANG L Z, CHENG G, WANG H B, ZHAO C P, ZHAO S C, SONG J Z, GUANG X M, et al. Genetic architecture and selection of Chinese cattle revealed by whole genome resequencing. Molecular Biology and Evolution, 2018, 35(3): 688-699.

doi: 10.1093/molbev/msx322 pmid: 29294071
[9]
俞英, 文际坤, 朱芳贤, 赵开典, 宿兵, 王文, 张亚平, 刘爱华, 季维智, 施立明. 云南文山黄牛和迪庆黄牛遗传多样性的蛋白电泳研究. 动物学研究, 1997, 18(3): 333-339.
YU Y, WEN J K, ZHU F X, ZHAO K D, SU B, WANG W, ZHANG Y P, LIU A H, JI W Z, SHI L M. Genetic diversity of Wenshan and Diqing yellow cattle in Yunan province assayed by protein electrophoresis. Zoological Research, 1997, 18 (3): 333-339. (in Chinese)
[10]
王朝锋, 雷初朝, 陈宏, 蔡欣, 党瑞华, 欧江涛. 雷琼牛mtDNA D—loop遗传多态性研究. 黄牛杂志, 2005(5): 14-15.
WANG C F, LEI C C, CHEN H, CAI X, DANG R H, OU J T. Study on mtDNA D-loop genetic diversity in Leiqiong cattle. Journal Yellow Cattle Science, 2005(5): 14-15. (in Chinese)
[11]
YU Y, NIE L, HE Z Q, WEN J K, JIAN C S, ZHANG Y P. Mitochondrial DNA variation in cattle of South China: origin and introgression. Animal Genetics, 1999, 30(4): 245-250.

pmid: 10467698
[12]
耿荣庆, 常洪, 冀德君, 王兰萍, 常国斌, 李世平, 马国龙, 陈宏宇, 常春芳, 李永红. 雷琼牛母系起源的遗传学证据. 畜牧兽医学报, 2008, 39(7)849-852.
GENG R Q, CHANG H, JI D J, WANG L P, CHANG G B, LI S P, MA G L, CHEN H Y, CHANG C F, LI Y H. Genetic evidence of maternal origin of Leiqiong cattle. Acta Veterinaria et Zootechnica Sinica, 2008, 39(7)849-852. (in Chinese)
[13]
LIU Y Q, XU L Y, YANG L, ZHAO G Y, LI J Y, LIU D W, LI Y K. Discovery of genomic characteristics and selection signatures in southern Chinese local cattle. Frontiers in Genetics, 2020, 11: 533052.

doi: 10.3389/fgene.2020.533052
[14]
LIU Y Q, ZHAO G Y, LIN X J, ZHANG J H, HOU G Y, ZHANG L P, LIU D W, LI Y K, LI J Y, XU L Y. Genomic inbreeding and runs of homozygosity analysis of indigenous cattle populations in Southern China. PLoS ONE, 2022, 17(8): e0271718.

doi: 10.1371/journal.pone.0271718
[15]
JIANG L H, KON T, CHEN C Y, ICHIKAWA R, ZHENG Q Y, PEI L Y, TAKEMURA I, NSOBI L H, TABATA H, PAN H, OMORI Y, OGURA A. Whole-genome sequencing of endangered Zhoushan cattle suggests its origin and the association of MC1R with black coat colour. Scientific Reports, 2021, 11(1): 1-11.

doi: 10.1038/s41598-020-79139-8
[16]
WANG X G, JU Z H, JIANG Q, ZHONG J F, LIU C K, WANG J P, HOFF J L, SCHNABEL R D, ZHAO H, GAO Y P, et al. Introgression, admixture, and selection facilitate genetic adaptation to high-altitude environments in cattle. Genomics, 2021, 113(3): 1491-1503.

doi: 10.1016/j.ygeno.2021.03.023 pmid: 33771637
[17]
KIM K, KWON T, DESSIE T, YOO D, MWAI O A, JANG J, SUNG S, LEE S, SALIM B, JUNG J, et al. The mosaic genome of indigenous African cattle as a unique genetic resource for African pastoralism. Nature Genetics, 2020, 52(10): 1099-1110.

doi: 10.1038/s41588-020-0694-2 pmid: 32989325
[18]
宋娜娜, 钟金城, 柴志欣, 汪琦, 何世明, 吴锦波, 蹇尚林, 冉强, 蒙欣. 三江黄牛全基因组数据分析. 中国农业科学, 2017, 50(1): 183-194.

doi: 10.3864/j.issn.0578-1752.2017.01.016
SONG N N, ZHONG J C, CHAI Z X, WANG Q, HE S M, WU J B, JIAN S L, RAN Q, MENG X. The whole genome data analysis of Sanjiang cattle. Scientia Agricultura Sinica, 2017, 50(1): 183-194. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2017.01.016
[19]
ROSEN B D, BICKHART D M, SCHNABEL R D, KOREN S, ELSIK C G, TSENG E, ROWAN T N, LOW W Y, ZIMIN A, COULDREY C, et al. De novo assembly of the cattle reference genome with single-molecule sequencing. GigaScience, 2020, 9(3): giaa021.

doi: 10.1093/gigascience/giaa021
[20]
LI H, DURBIN R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25(14): 1754-1760.

doi: 10.1093/bioinformatics/btp324 pmid: 19451168
[21]
LI H, HANDSAKER B, WYSOKER A, FENNELL T, RUAN J, HOMER N, MARTH G, ABECASIS G, DURBIN R, SUBGROUP 1 G P D P.. The sequence alignment/map format and SAMtools. Bioinformatics, 2009, 25(16): 2078-2079.

doi: 10.1093/bioinformatics/btp352 pmid: 19505943
[22]
MCKENNA A, HANNA M, BANKS E, SIVACHENKO A, CIBULSKIS K, KERNYTSKY A, GARIMELLA K, ALTSHULER D, GABRIEL S, DALY M, DEPRISTO M A. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 2010, 20(9): 1297-1303.

doi: 10.1101/gr.107524.110 pmid: 20644199
[23]
DANECEK P, AUTON A, ABECASIS G, ALBERS C A, BANKS E, DEPRISTO M A, HANDSAKER R E, LUNTER G, MARTH G T, SHERRY S T, MCVEAN G, DURBIN R, GROUP 1 G P A. The variant call format and VCFtools. Bioinformatics, 2011, 27(15): 2156-2158.

doi: 10.1093/bioinformatics/btr330 pmid: 21653522
[24]
PURCELL S, NEALE B, TODD-BROWN K, THOMAS L, FERREIRA M A R, BENDER D, MALLER J, SKLAR P, DE BAKKER P I W, DALY M J, SHAM P C. PLINK: a tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics, 2007, 81(3): 559-575.

doi: 10.1086/519795
[25]
KUMAR S, STECHER G, LI M, KNYAZ C, TAMURA K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 2018, 35(6): 1547-1549.

doi: 10.1093/molbev/msy096 pmid: 29722887
[26]
PATTERSON N, PRICE A L, REICH D. Population structure and eigenanalysis. PLoS Genetics, 2006, 2(12): e190.

doi: 10.1371/journal.pgen.0020190 pmid: 17194218
[27]
ALEXANDER D H, NOVEMBRE J, LANGE K. Fast model-based estimation of ancestry in unrelated individuals. Genome Research, 2009, 19(9): 1655-1664.

doi: 10.1101/gr.094052.109 pmid: 19648217
[28]
ZHANG C, DONG S S, XU J Y, HE W M, YANG T L. PopLDdecay: a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics, 2019, 35(10): 1786-1788.

doi: 10.1093/bioinformatics/bty875 pmid: 30321304
[29]
STOTHARD P, LIAO X P, ARANTES A S, DE PAUW M, COROS C, PLASTOW G S, SARGOLZAEI M, CROWLEY J J, BASARAB J A, SCHENKEL F, MOORE S, MILLER S P. A large and diverse collection of bovine genome sequences from the Canadian Cattle Genome Project. GigaScience, 2015, 4(1): s13742-15.
[30]
SHIN D H, LEE H J, CHO S, KIM H J, HWANG J Y, LEE C K, JEONG J, YOON D, KIM H. Deleted copy number variation of Hanwoo and Holstein using next generation sequencing at the population level. BMC Genomics, 2014, 15: 240.

doi: 10.1186/1471-2164-15-240
[31]
BICKHART D M, XU L Y, HUTCHISON J L, COLE J B, NULL D J, SCHROEDER S G, SONG J Z, GARCIA J F, SONSTEGARD T S, VAN TASSELL C P, et al. Diversity and population-genetic properties of copy number variations and multicopy genes in cattle. DNA Research, 2016, 23(3): 253-262.

doi: 10.1093/dnares/dsw013 pmid: 27085184
[32]
ACHILLI A, BONFIGLIO S, OLIVIERI A, MALUSÀ A, PALA M, KASHANI B H, PEREGO U A, AJMONE-MARSAN P, LIOTTA L, SEMINO O, et al. The multifaceted origin of taurine cattle reflected by the mitochondrial genome. PLoS One, 2009, 4(6): e5753.

doi: 10.1371/journal.pone.0005753
[33]
DECKER J E, MCKAY S D, ROLF M M, KIM J, MOLINA ALCALÁ A, SONSTEGARD T S, HANOTTE O, GÖTHERSTRÖM A, SEABURY C M, PRAHARANI L, et al. Worldwide patterns of ancestry, divergence, and admixture in domesticated cattle. PLoS Genetics, 2014, 10(3): e1004254.

doi: 10.1371/journal.pgen.1004254
[34]
CAI D W, SUN Y, TANG Z W, HU S M, LI W Y, ZHAO X B, XIANG H, ZHOU H. The origins of Chinese domestic cattle as revealed by ancient DNA analysis. Journal of Archaeological Science, 2014, 41: 423-434.

doi: 10.1016/j.jas.2013.09.003
[35]
CHEN Y C. Four interesting endangered breeds of animals in China. Animal Genetic Resources Information, 1995, 16: 29-35.

doi: 10.1017/S101423390000047X
[36]
魏霞, 刘正刚. 明清安徽与广东的贸易往来. 安徽史学, 2001(4): 18-21.
WEI X, LIU Z G. On the trade of Anhui Province with Guangdong Province during the Ming and Qing dynasties. Historiography Anhui, 2001(4): 18-21. (in Chinese)
[37]
王海. 明清粤赣通道与两省毗邻山地互动发展研究[D]. 广州: 暨南大学, 2008.
WANG H. Study on the interactive development of Guangdong- jiangxi passage and the adjacent mountainous areas of the two provinces in Ming and Qing dynasties[D]. Guangzhou: Jinan University, 2008. (in Chinese)
[38]
XIA X T, ZHANG S J, ZHANG H J, ZHANG Z J, CHEN N B, LI Z G, SUN H X, LIU X, LYU S J, WANG X W, LI Z M, YANG P, XU J W, DING X T, SHI Q T, WANG E Y, RU B R, XU Z J, LEI C Z, CHEN H, HUANG Y Z. Assessing genomic diversity and signatures of selection in Jiaxian Red cattle using whole-genome sequencing data. BMC Genomics, 2021, 22(1): 43.

doi: 10.1186/s12864-020-07340-0 pmid: 33421990
[39]
ZHANG S J, YAO Z, LI X M, ZHANG Z J, LIU X, YANG P, CHEN N B, XIA X T, LYU S J, SHI Q T, et al. Assessing genomic diversity and signatures of selection in Pinan cattle using whole-genome sequencing data. BMC Genomics, 2022, 23(1): 460.

doi: 10.1186/s12864-022-08645-y pmid: 35729510
[40]
GUAN X W, ZHAO S P, XIANG W X, JIN H, CHEN N B, LEI C Z, JIA Y T, XU L. Genetic diversity and selective signature in Dabieshan cattle revealed by whole-genome resequencing. Biology, 2022, 11(9): 1327.

doi: 10.3390/biology11091327
[41]
杨关福, 张细权, 李加琪, 聂龙, 王文. 徐闻黄牛和海南黄牛血液蛋白的遗传多样性. 华南农业大学学报, 1996, 17(2): 23-27.
YANG G F, ZHANG X Q, LI J Q, NIE L, WANG W. Genetic diversity in Xuwen and Hainan yellow cattle based on blood protein electrophoresis. Journal of South China Agricultural University, 1996, 17(2): 23-27. (in Chinese)
[1] KOU ShuJun, HUO AHong, FU GuoQing, JI JunJian, WANG Yao, ZUO ZhenXing, LIU MinXuan, LU Ping. Genetic Diversity and Population Structure of Broomcorn Millet in China Based on Fluorescently Labeled SSR [J]. Scientia Agricultura Sinica, 2019, 52(9): 1475-1477.
[2] WEI Xiao,ZHANG QiuPing,LIU Ning,ZHANG YuPing,XU Ming,LIU Shuo,ZHANG YuJun,MA XiaoXue,LIU WeiSheng. Genetic Diversity of the Prunus salicina L. from Different Sources and Their Related Species [J]. Scientia Agricultura Sinica, 2019, 52(3): 568-578.
[3] ZHAO JiuRan, LI ChunHui, SONG Wei, WANG YuanDong, ZHANG RuYang, WANG JiDong, WANG FengGe, TIAN HongLi, WANG Rui. Genetic Diversity and Population Structure of Important Chinese Maize Breeding Germplasm Revealed by SNP-Chips [J]. Scientia Agricultura Sinica, 2018, 51(4): 626-634.
[4] DONG HeZhong,ZHANG YanJun,ZHANG DongMei,DAI JianLong,ZHANG WangFeng. New Grouped Harvesting-Based Population Structures of Cotton [J]. Scientia Agricultura Sinica, 2018, 51(24): 4615-4624.
[5] GAO Yuan, WANG Kun, WANG DaJiang, ZHAO JiRong, ZHANG CaiXia, CONG PeiHua, LIU LiJun, LI LianWen, PIAO JiCheng. The Genetic Diversity and Population Structure Analysis on   Malus baccata (L.) Borkh from 7 Sources [J]. Scientia Agricultura Sinica, 2018, 51(19): 3766-3777.
[6] XUE YanTao, LU Ping, QIAO ZhiJun, LIU MinXuan, WANG RuiYun. Genetic Diversity and Genetic Relationship of Broomcorn Millet (Panicum miliaceum L.) Germplasm Based on SSR Markers [J]. Scientia Agricultura Sinica, 2018, 51(15): 2846-2859.
[7] SHI Jia, ZHAI ShengNan, LIU JinDong, WEI JingXin, BAI Lu, GAO WenWei, WEN WeiE, HE ZhongHu, XIA XianChun, GENG HongWei. Genome-Wide Association Study of Grain Peroxidase Activity in Common Wheat [J]. Scientia Agricultura Sinica, 2017, 50(21): 4212-4227.
[8] WANG RuiYun, LIU XiaoYu, WANG HaiGang, LU Ping, LIU MinXuan, CHEN Ling, QIAO ZhiJun. Evaluation of Genetic Diversity of Common Millet (Panicum miliaceum) Germplasm Available in China Using High Motif Nucleotide Repeat SSR Markers [J]. Scientia Agricultura Sinica, 2017, 50(20): 3848-3859.
[9] LUO Kai, LU Hui-xiang, WU Zheng-dan, WU Xue-li, YIN Wang, TANG Dao-bin, WANG Ji-chun, ZHANG Kai. Genetic Diversity and Population Structure Analysis of Main Sweet Potato Breeding Parents in Southwest China [J]. Scientia Agricultura Sinica, 2016, 49(3): 593-608.
[10] LIU Xiu-yun, LI Hui, LIU Zhi-guo, ZHAO Jin, LIU Meng-jun. Genetic Diversity and Structure of 255 Cultivars of Ziziphus jujuba Mill. [J]. Scientia Agricultura Sinica, 2016, 49(14): 2772-2791.
[11] ZHANG Jia-lei, GUO Feng, YANG Dian-qing, MENG Jing-jing, YANG Sha, WANG Xing-yu, TAO Shou-xiang, LI Xin-guo, WAN Shu-bo. Effects of Single-Seed Precision Sowing on Population Structure and Yield of Peanuts with Super-High Yield Cultivation [J]. Scientia Agricultura Sinica, 2015, 48(18): 3757-3766.
[12] DONG Jun-li, WANG Hai-gang, CHEN Ling, WANG Jun-jie, CAO Xiao-ning, WANG Lun, QIAO Zhi-jun. Analysis of Genetic Diversity and Structure of Proso Millet Core Germplasm [J]. Scientia Agricultura Sinica, 2015, 48(16): 3121-3131.
[13] NIE Xin-hui, YOU Chun-yuan, BAO Jian, LI Xiao-fang, HUI Hui, LIU Hong-liang, QIN Jiang-hong, LIN Zhong-xu. Exploration of Elite Alleles of Agronomic and Fiber Quality Traits in Xinluzao Cotton Varieties by Association Analysis [J]. Scientia Agricultura Sinica, 2015, 48(15): 2891-2910.
[14] HUANG Ai-jun, SU Hua-nan, WANG Xue-feng, TANG Ke-zhi, LI Zhong-an, ZHOU Chang-yong. Population Structure of ‘Candidatus Liberibacter asiaticus’ in China Revealed by SSR Markers [J]. Scientia Agricultura Sinica, 2014, 47(22): 4488-4494.
[15] TAN Long-tao, YU Chun-ming, CHEN Ping, WANG Yan-zhou, CHEN Ji-kang, WEN Lan, ZHENG Jian-shu, XIONG He-ping. Study on Homozygous Progress Evaluation of Self-Pollination in Ramie (Boehmeria Nivea L.) [J]. Scientia Agricultura Sinica, 2014, 47(22): 4371-4379.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!