Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (16): 3369-3380.doi: 10.3864/j.issn.0578-1752.2021.16.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Function of Sucrose Transporter OsSUT5 in Rice Pollen Development and Seed Setting

ZHANG YaWen1(),BAO ShuHui1,TANG ZhenJia1,WANG XiaoWen1,2,YANG Fang3,ZHANG DeChun4(),HU YiBing1()   

  1. 1College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing 210095
    2College of Horticulture, Nanjing Agricultural University, Nanjing 210095
    3State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072
    4Bio-technology Research Center, China Three Gorges University, Yichang 443002, Hubei
  • Received:2020-12-18 Accepted:2021-02-12 Online:2021-08-16 Published:2021-08-24
  • Contact: DeChun ZHANG,YiBing HU E-mail:zyw0615yaya@163.com;zhangdc227@163.com;huyb@njau.edu.cn

Abstract:

【Objective】 Sucrose is the main form of photosynthates transported in the plant, and sucrose transporters (or sucrose carrier, SUT/SUC) play important roles in the transport of sucrose across the plasma membrane between cells and allocation of sucrose among different tissues and organs. The rice SUT family possesses 5 members. Knockout of the genes encoding OsSUT1, OsSUT2, OsSUT3 or OsSUT4 confers significant effects on rice indicating that the functions of these genes are indispensable. However, the physiological role of OsSUT5 has not been systematically characterized. This study aims at elucidating the function of OsSUT5 in rice growth and development and provides new evidence for a comprehensive understanding of SUT’s role in model plant rice. 【Method】In this study, the temporal and spatial expression pattern of OsSUT5 was analyzed via quantitative real-time PCR. The tissue localization of OsSUT5 in rice was tested via GUS represented expressions driven by the putative promoter of OsSUT5 and subcellular localization of transiently expressed OsSUT5-GFP fusion protein was observed in leaf cells of tobacco. In addition, CRISPR-Cas9 mediated gene editing was employed to create mutant lines of the gene for the characterization of OsSUT5. 【Result】Our results show that OsSUT5 was expressed in culm, leaf, inflorescence, and caryopsis of rice but it was predominantly expressed in inflorescence and developing caryopsis at the transcriptional level. At the protein level, it was prominently expressed in the vascular bundles of rice vegetative organs. In reproductive organs, the protein was mainly expressed in the anther and developing caryopsis, particularly in the scutellum and coleorhiza. Transient expression of OsSUT5-GFP fusion protein in epidermis cells of tobacco leaf indicated that it was localized on the plasma membrane. Compared with the wild-type control, three homozygous mutant lines of OsSUT5 created via CRISPR-Cas9 gene-editing system consistently showed reduced pollen viability, a lower percentage of germination rates. Accordingly, the percentage of unpollinated florets and seed-setting rate decreased significantly. Comparison of OsSUT5 mutant lines and the wild-type control showed that more chalk was observed in the mutant caryopses than that of the wild type. In the mutant lines, caryopsis length increased but 1000 grain weight didn’t show a significant difference between the mutants and the wild-type control based on statistics. 【Conclusion】These results indicate that OsSUT5 played an important role in pollen development and probably also in the fertilization process. Knockout of the gene affected the morphology and quality of rice caryopsis. Given the sucrose transport capacity of OsSUT5 and its plasma membrane localization, it can be deduced that function of OsSUT5 including its influence on rice pollen viability and endosperm development is related to its sucrose transport activity at the cellular level.

Key words: rice, OsSUT5, CRISPR-Cas9, pollen germination, seed setting rate, chalk

Fig. 1

Expression of OsSUT5 analyzed via qRT-PCR"

Fig. 2

Histochemical staining results of GUS expression in rice tissues driven by OsSUT5 prompter A: Root of 3 d seedling after germination; B: Cross-section of seedling stem; C: Leaf blade of mature plant; D: Floret about to blossom; E: Longitudinal section of 9 d caryopsis after pollination; F: The embryo of 9 d caryopsis after pollination. White arrow heads indicate vascular bundles; red arrow heads indicate the scutellum; yellow arrow heads indicate the coleorhiza. Bars=1 mm"

Fig. 3

Subcellular localization of OsSUT5-GFP fusion protein transiently expressed in tobacco leaf cells"

Fig. 4

Gene editing site certification and phenotype of the OsSUT5 mutant lines WT: Wild type. ossut5-1, ossut5-17, and ossut5-25 are three homozygous rice lines created via the gene editing system. A: OsSUT5 mutants and the wild-type rice comparison; B: Panicle comparison; C: Editing site identification; D: Caryopsis length comparison; E: A column diagram of grain composition; F: Caryopsis morphology comparison; G: A column diagram of caryopsis length; H: A column diagram of 1000 grain weight. Different lowercase letters in E, G, and H represent significantly different values (P<0.05). The same as below"

Fig. 5

Pollen viabilities tested by I2-KI staining and germination ratio in vitro of OsSUT5 mutants and wild-type rice A, B, C, D: Pollens of wild type rice and ossut5-1, ossut5-17, ossut5-25 mutants stained with KI-I2 solution observed under a microscope. E, F, G, H: Germination of wild type rice and ossut5-1, ossut5-17, ossut5-25 mutants in vitro observed under a microscope. I: Pollen viabilities. J: Pollen germination rates. Scale bars =200 μm"

Fig. 6

A phylogenetic tree (Neighbor-Joining) of SUT(C) proteins Red dots indicate rice SUTs; Blue dot indicates Arabidopsis SUT5. Accession numbers of 153 SUT(C) proteins in the figure are listed in the supplementary table 2"

[1] KHUSH G S. Green revolution: The way forward. Nature Review Genetics, 2001, 2(10):815-822.
doi: 10.1038/35093585
[2] LEMOINE R, LA CAMERA S, ATANASSOVA R, DÉDALDÉCHAMP F, ALLARIO T, POURTAU N, BONNEMAIN J L, LALOI M, COUTOS-THÉVENOT P, MAUROUSSET L, FAUCHER M, GIROUSSE C, LEMONNIER P, PARRILLA J, DURAND M. Source-to-sink transport of sugar and regulation by environmental factors. Frontiers in Plant Science, 2013, 4:272.
[3] BIHMIDINE S, HUNTER C T 3RD, JOHNS C E, KOCH K E, BRAUN D M. Regulation of assimilate import into sink organs: update on molecular drivers of sink strength. Frontiers in Plant Science, 2013, 4:177.
[4] YADAV U P, AYRE B G, BUSH D R. Transgenic approaches to altering carbon and nitrogen partitioning in whole plants: Assessing the potential to improve crop yields and nutritional quality. Frontiers in Plant Science, 2015, 6:275.
[5] SAUER N. Molecular physiology of higher plant sucrose transporters. FEBS Letters, 2007, 581(12):2309-2317.
doi: 10.1016/j.febslet.2007.03.048
[6] LEMOINE R. Sucrose transporters in plants: Update on function and structure. Biochimica et Biophysica Acta, 2000, 1465(1/2):246-262.
[7] ABRAMSON J, SMIRNOVA I, KASHO V, VERNER G, KABACK H R, IWATA S. Structure and mechanism of the lactose permease of Escherichia coli. Science, 2003, 301(5633):610-615.
doi: 10.1126/science.1088196
[8] RIESMEIER J W, WILLMITZER L, FROMMER W B. Isolation and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast. The EMBO Journal, 1992, 11(13):4705-4713.
doi: 10.1002/embj.1992.11.issue-13
[9] HIROSE T, IMAIZUMI N, SCOFIELD G N, FURBANK R T, OHSUGI R. cDNA cloning and tissue-specific expression of a gene for sucrose transporter from rice (Oryza sativa L.). Plant and Cell Physiology, 1997, 38(12):1389-1396.
doi: 10.1093/oxfordjournals.pcp.a029134
[10] AOKI N, HIROSE T, SCOFIELD G N, WHITFELD P R, FURBANK R T. The sucrose transporter gene family in rice. Plant and Cell Physiology, 2003, 44(3):223-232.
doi: 10.1093/pcp/pcg030
[11] LALONDE S, WIPF D, FROMMER W B. Transport mechanisms for organic forms of carbon and nitrogen between source and sink. Annual Review of Plant Biology, 2004, 55:341-372.
doi: 10.1146/annurev.arplant.55.031903.141758
[12] AYRE B G. Membrane-transport systems for sucrose in relation to whole-plant carbon partitioning. Molecular Plant, 2011, 4(3):377-394.
doi: 10.1093/mp/ssr014
[35] 杜琳. OsSUT对水稻灌浆生理的分子调控[D]. 福州: 福建农林大学, 2010.
DU L. Molecular regulation of OsSUT on rice filling physiology[D]. Fuzhou: Fujian Agricultural & Forestry University, 2010. (in Chinese)
[13] DUO P, GU X, XUE L J, LEEBENS-MACK J H, TSAI C J. Bayesian phylogeny of sucrose transporters: Ancient origins, differential expansion and convergent evolution in monocots and dicots. Frontiers in Plant Science, 2014, 5:615.
[14] ZHANG C K, HAN L, SLEWINSKI T L, SUN J L, ZHANG J, WANG Z Y, TURGEON R. Symplastic phloem loading in poplar. Plant Physiology, 2014, 166(1):306-313.
doi: 10.1104/pp.114.245845
[36] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Methods, 2001, 25:402-408.
doi: 10.1006/meth.2001.1262
[37] MA L, ZHANG D C, MIAO Q, YANG J, XUAN Y H, HU Y B. Essential role of sugar transporter OsSWEET11 during the early stage of rice grain filling. Plant and Cell Physiology, 2017, 58(5):863-873.
doi: 10.1093/pcp/pcx040
[15] KÜHN C, GROF C P. Sucrose transporters of higher plants. Current Opinion in Plant Biology, 2010, 13(3):287-297.
doi: 10.1016/j.pbi.2010.02.001
[16] HACKEL A, SCHAUER N, CARRARI F, FERNIE A R, GRIMM B C, KÜHN C. Sucrose transporter LeSUT1 and LeSUT2 inhibition affects tomato fruit development in different ways. The Plant Journal, 2006, 45(2):180-192.
doi: 10.1111/tpj.2006.45.issue-2
[17] SIVITZ A B, REINDERS A, WARD J M. Arabidopsis sucrose transporter AtSUC1 is important for pollen germination and sucrose-induced anthocyanin accumulation. Plant Physiology, 2008, 147(1):92-100.
doi: 10.1104/pp.108.118992
[18] PAYYAVULA R S, TAY K H C, TSAI C J, HARDING S A. The sucrose transporter family in Populus: The importance of a tonoplast PtaSUT4 to biomass and carbon partitioning. The Plant Journal, 2011, 65(5):757-770.
doi: 10.1111/tpj.2011.65.issue-5
[19] CHINCINKA I, GIER K, KRÜGEL U, LIESCHE J, HE H, GRIMM B, HARREN F J M, CRISTESCU S M, KÜHN C. Photoperiodic regulation of the sucrose transporter StSUT4 affects the expression of circadian-regulated genes and ethylene production. Frontiers in Plant Science, 2013, 4:26.
[20] FURBANK R T, SCOFIELD G N, HIROSE T, WANG X D, PATRICK J, OFFLER C E. Cellular localization and function of a sucrose transporter OsSUT1 in developing rice seeds. Australian Journal of Plant Physiology, 2001, 28(12):1187-1196.
[21] HIROSE T, TAKANO M, TERAO T. Cell wall invertase in developing rice caryopsis: Molecular cloning of OsCIN1 and analysis of its expression in relation to its role in grain filling. Plant and Cell Physiology, 2002, 43(4):452-459.
doi: 10.1093/pcp/pcf055
[22] HIROSE T, ZHANG Z, MIYAO A, HIROCHIKA H, OHSUGI R, TERAO T. Disruption of a gene for rice sucrose transporter, OsSUT1 impairs pollen function but pollen maturation is unaffected. Journal of Experimental Botany, 2010, 61(13):3639-3646.
doi: 10.1093/jxb/erq175
[23] ISHIMARU K, HIROSE T, AOKI N, TAKAHASHI S, ONO K, YAMAMOTO S, WU J, SAJI S, BABA T, UGAKI M, MATSUMOTO T, OHSUGI R. Antisense expression of a rice sucrose transporter OsSUT1 in rice (Oryza sativa L.). Plant and Cell Physiology, 2001, 42(10):1181-1185.
doi: 10.1093/pcp/pce148
[24] ISHIBASHI Y, OKAMURA K, MIYAZAKI M, PHAN T, YUASA T, IWAYA-INOUE M. Expression of rice sucrose transporter gene OsSUT1 in sink and source organs shaded during grain filling may affect grain yield and quality. Environmental and Experimental Botany, 2014, 97:49-54.
doi: 10.1016/j.envexpbot.2013.08.005
[25] SCOFIELD G N, HIROSE T, AOKI N, FURBANK R. Involvement of the sucrose transporter, OsSUT1, in the long- distance pathway for assimilate transport in rice. Journal of Experimental Botany, 2007, 58(12):3155-3169.
doi: 10.1093/jxb/erm153
[26] SCOFIELD G N, HIROSE T, GAUDRON J A, FURBANK R T. Antisense suppression of the rice transporter gene, OsSUT1, leads to impaired grain filling and germination but does not affect photosynthesis. Functional Plant Biology, 2002, 29(7):815-826.
doi: 10.1071/PP01204
[27] ZHANG J, LI D, XU X, ZISKA L H, ZHU J, LIU G, ZHU C. The potential role of sucrose transport gene expression in the photosynthetic and yield response of rice cultivars to future CO2 concentration. Physiologia Plantarum, 2020, 168:218-226.
doi: 10.1111/ppl.v168.1
[28] EOM J S, CHO J I, REINDERS A, LEE S W, YOO Y, TUAN P Q, CHOI S B, BANG G, PARK Y I, CHO M H, BHOO S H, AN G, HAHN T R, WARD J M, JEON J S. Impaired function of the tonoplast-localized sucrose transporter in rice, OsSUT2, limits the transport of vacuolar reserve sucrose and affects plant growth. Plant Physiology, 2011, 157(1):109-119.
doi: 10.1104/pp.111.176982
[29] 李孟珠, 王高鹏, 巫月, 任怡, 李刚华, 刘正辉, 丁艳锋, 陈琳. 水稻蔗糖转运蛋白OsSUT4参与蔗糖转运的功能研究. 中国水稻科学, 2020, 34(6):491-498.
LI M Z, WANG G P, WU Y, REN Y, LI G H, LIU Z H, DING Y F, CHEN L. Function analysis of sucrose transporter OsSUT4 in sucrose transport in rice. Chinese Journal of Rice Science, 2020, 34(6):491-498. (in Chinese)
[30] 岳萌萌. 水稻蔗糖转运蛋白OsSUT4的功能分析[D]. 泰安: 山东农业大学, 2020.
YUE M M. Functional analysis of a rice sucrose transporter OsSUT4[D]. Taian: Shandong Agricultural University, 2020. (in Chinese)
[31] SUN Y, REINDERS A, LAFLEUR K R, MORI T, WARD J M. Transport activity of rice sucrose transporters OsSUT1 and OsSUT5. Plant and Cell Physiology, 2010, 51(1):114-122.
doi: 10.1093/pcp/pcp172
[32] BAUD S, WUILLÈME S, LEMOINE R, KRONENBERGER J, CABOCHE M, LEPINIEC L, ROCHAT C. The AtSUC5 sucrose transporter specifically expressed in the endosperm is involved in early seed development in Arabidopsis. The Plant Journal, 2005, 43(6):824-836.
doi: 10.1111/tpj.2005.43.issue-6
[33] LUDWIG A, STOLZ J, SAUER N. Plant sucrose-H + symporters mediate the transport of vitamin H. The Plant Journal, 2000, 24(4):503-509.
[34] 张武君, 管其龙, 付艳萍, 苏军. 反义抑制水稻蔗糖转运蛋白基因(OsSUT5)的表达降低其愈伤组织诱导和植株再生频率. 农业生物技术学报, 2014, 22:825-831.
ZHANG W J, GUAN Q L, FU Y P, SU J. Antisense suppression of rice sucrose transporter gene (OsSUT5) expression reduces its callus induction and plant regeneration frequency. Journal of Agricultural Biotechnology, 2014, 22:825-831. (in Chinese)
[38] MIAO J, GUO D, ZHANG J, HUANG Q, QIN G, ZHANG X, WAN J, GU H, QU L J. Targeted mutagenesis in rice using CRISPR-Cas system. Cell Research, 2013, 23:1233-1236.
doi: 10.1038/cr.2013.123
[39] 戚继艳, 阳江华, 唐朝荣. 植物蔗糖转运蛋白的基因与功能. 植物学通报, 2007, 24:532-543.
QI J Y, YANG J H, TANG C R. Sucrose transporter genes and their functions in plants. Chinese Bulletin of Botany, 2007, 24:532-543. (in Chinese)
[40] 陈钢, 母天燕, 曹光球, 林强, 郑宏, 曹世江. 杉木蔗糖转运蛋白SUT基因的克隆和功能分析. 西北林学院学报, 2020, 35(2):8-14.
CHEN G, MU T Y, CAO G Q, LIN Q, ZHENG H, CAO S J. Cloning and functional analysis of Chinese Fir sucrose transporter SUT gene. Journal of Northwest Forestry University, 2020, 35(2):8-14. (in Chinese)
[41] 康爽, 贺红霞, 王铭, 郭嘉, 薛晶. 杏蔗糖转运蛋白基因PaSUC4的获得及其生物信息学分析. 生物技术进展, 2016, 6:105-112.
KANG S, HE H X, WANG M, GUO J, XUE J. The acquisition and bioinformatic analysis of sucrose transporter protein gene PaSUC4 from apricot. Current Biotechnology, 2016, 6:105-112. (in Chinese)
[42] 齐素坤, 侯夫云, 秦桢, 李爱贤, 王庆美, 张立明. 植物蔗糖转运蛋白研究进展. 山东农业科学, 2016, 48(2):149-153.
QI S K, HOU F Y, QIN Z, LI A X, WANG Q M, ZHANG L M. Research progress of sucrose transporters in plant. Shandong Agricultural Science, 2016, 48(2):149-153. (in Chinese)
[43] 张清, 胡伟长, 张积森. 植物蔗糖转运蛋白研究进展. 热带作物学报, 2016, 37(1):193-202.
ZHANG Q, HU W C, ZHANG J S. Sucrose transporters in plants. Chinese Journal of Tropical Crops, 2016, 37(1):193-202. (in Chinese)
[44] 张立军, 李晓宇, 阮燕晔. 双子叶与单子叶植物蔗糖转运蛋白的研究进展. 沈阳农业大学学报, 2008, 39(3):259-264.
ZHANG L J, LI X Y, RUAN Y Y. Progress on sucrose transporters in dicotyledons and monocotyledons. Journal of Shenyang Agricultural University, 2008, 39(3):259-264. (in Chinese)
[45] 王忠. 水稻的开花与结实. 北京: 科学出版社, 2014: 91-109.
WANG Z. The Flowering and Fruiting of Rice. Beijing: Science Press, 2014: 91-109. (in Chinese)
[46] 杨宏远. 水稻生殖生物学. 杭州: 浙江大学出版社, 2005: 91-98.
YANG H Y. Rice Reproductive Biology. Hangzhou: Zhejiang University Press, 2005: 91-98. (in Chinese)
[47] 周立军, 江玲, 翟虎渠, 万建民. 水稻垩白的研究现状与改良策略. 遗传, 2009, 31(6):563-572.
ZHOU L J, JIANG L, ZHAI H Q, WAN J M. Research status and improvement strategies of rice chalkiness. Heredity, 2009, 31(6):563-572. (in Chinese)
[48] LI D, XU R, LV D, ZHANG C, YANG H, ZHANG J, WEN J, LI C, TAN X. Identification of the core pollen-specific regulation in the rice OsSUT3 promoter. International Journal of Molecular Sciences, 2020, 21(6):1909.
doi: 10.3390/ijms21061909
[49] 李丹丹, 李娟, 栾一方, 张春龙, 徐汝聪, 吕东, 谭亚玲, 谭学林. 水稻OsSUT3基因启动子的克隆及表达分析. 分子植物育种, 2018, 16:7225-7233.
LI D D, LI J, LUAN Y F, ZHANG C L, XU R C, LÜ D, TAN Y L, TAN X L. Cloning and expression analysis of OsSUT3 gene promoter from Oryza sativa. Molecular Plant Breeding. 2018, 16:7225-7233. (in Chinese)
[1] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[2] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[3] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[4] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[5] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[6] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[7] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[8] HAN XiaoTong,YANG BaoJun,LI SuXuan,LIAO FuBing,LIU ShuHua,TANG Jian,YAO Qing. Intelligent Forecasting Method of Rice Sheath Blight Based on Images [J]. Scientia Agricultura Sinica, 2022, 55(8): 1557-1567.
[9] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[10] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
[11] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[12] JIANG JingJing,ZHOU TianYang,WEI ChenHua,WU JiaNing,ZHANG Hao,LIU LiJun,WANG ZhiQin,GU JunFei,YANG JianChang. Effects of Crop Management Practices on Grain Quality of Superior and Inferior Spikelets of Super Rice [J]. Scientia Agricultura Sinica, 2022, 55(5): 874-889.
[13] ZHANG YaLing, GAO Qing, ZHAO Yuhan, LIU Rui, FU Zhongju, LI Xue, SUN Yujia, JIN XueHui. Evaluation of Rice Blast Resistance and Genetic Structure Analysis of Rice Germplasm in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2022, 55(4): 625-640.
[14] WANG YaLiang,ZHU DeFeng,CHEN RuoXia,FANG WenYing,WANG JingQing,XIANG Jing,CHEN HuiZhe,ZHANG YuPing,CHEN JiangHua. Beneficial Effects of Precision Drill Sowing with Low Seeding Rates in Machine Transplanting for Hybrid Rice to Improve Population Uniformity and Yield [J]. Scientia Agricultura Sinica, 2022, 55(4): 666-679.
[15] CHEN TingTing, FU WeiMeng, YU Jing, FENG BaoHua, LI GuangYan, FU GuanFu, TAO LongXing. The Photosynthesis Characteristics of Colored Rice Leaves and Its Relation with Antioxidant Capacity and Anthocyanin Content [J]. Scientia Agricultura Sinica, 2022, 55(3): 467-478.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!