Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (14): 2965-2976.doi: 10.3864/j.issn.0578-1752.2021.14.004
• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles Next Articles
LI PengLei1(),ZHANG Xiao1,WANG WenHui1,ZHENG HengBiao1,YAO Xia1,2,ZHU Yan1,CAO WeiXing1,CHENG Tao1,2(
)
[1] |
ALOLA A, ALOLA U V. The dynamic nexus of crop production and population growth: housing market sustainability pathway. Environmental Science and Pollution Research, 2018, 26:6472-6480.
doi: 10.1007/s11356-018-04074-1 |
[2] | UN Food Agriculture Organization. How to feed the word in 2050. Discussion paper prepared for expert forum: 12-13. October 2009, released 23. |
[3] | INTERPRETERS S. FAO-food and agriculture organization of the united nations. Science, 2013, 118(3077):13-23. |
[4] | JULIAN P, MARK B, SARAH M. Food waste within food supply chains: quantification and potential for change to 2050. Philosophical Transactions of the Royal Society of London, 2010, 365(1554):3065-3081. |
[5] |
LIU J G, PATTEY E, MILLER J R, MCNAIRN H, SMITH A, HU B X. Estimating crop stresses, aboveground dry biomass and yield of corn using multi-temporal optical data combined with a radiation use efficiency model. Remote Sensing of Environment, 2010, 114(6):1167-1177.
doi: 10.1016/j.rse.2010.01.004 |
[6] |
MUTANGA O, ADAM E, CHO M A. High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm. International Journal of Applied Earth Observations and Geoinformation, 2012, 18(1):399-406.
doi: 10.1016/j.jag.2012.03.012 |
[7] | 亓雪勇, 田庆久. 光学遥感大气校正研究进展. 国土资源遥感, 2005, 45(4):4-9. |
QI X Y, TIAN Q J. The advance in the study of atmospheric correction for optical remote sensing. Remote Sensing for Land and Resources, 2005, 45(4):4-9. (in Chinese) | |
[8] | 唐延林, 黄敬峰, 王人潮, 王福民. 水稻遥感估产模拟模式比较. 农业工程学报, 2004, 3(1):167-172. |
TANG Y L, HUANG J F, WANG R C, WANG F M. Comparsion of yield estimation simulated models of rice by remote sensing. Transactions of The Chinese Society of Agricultural Engineering, 2004, 3(1):167-172. (in Chinese) | |
[9] |
OWERS, C J, ROGERS K, WOODROFFE C D. Terrestrial laser scanning to quantify above-ground biomass of structurally complex coastal wetland vegetation. Estuarine Coastal and Shelf Science, 2018, 204:164-176.
doi: 10.1016/j.ecss.2018.02.027 |
[10] |
EITEL J U H, MAGNEY T S, VIERLING L A, BROWN T T, HUGGINS D R. LiDAR based biomass and crop nitrogen estimates for rapid, non-destructive assessment of wheat nitrogen status. Field Crops Research, 2014, 159:21-32.
doi: 10.1016/j.fcr.2014.01.008 |
[11] |
TILLY N, HOFFMEISTER D, CAO Q, LENZ-WIEDEMANN V, BARETH G. Precise plant height monitoring and biomass estimation with Terrestrial Laser Scanning in paddy rice. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2013, II-5/W2:295-300.
doi: 10.5194/isprsannals-II-5-W2-295-2013 |
[12] |
TILLY N, AASEN H, BARETH G. Fusion of plant height and vegetation indices for the estimation of barley biomass. Remote Sensing, 2015, 7:11449-11480.
doi: 10.3390/rs70911449 |
[13] | GUO Q H, WU F F, PANG S X, ZHAO X Q, CHEN L H, LIU J, XUE B L, XU G C, LI L, JING H C. Crop 3D: a platform based on LiDAR for 3D high-throughput crop phenotyping. Scientia Sinica, 2016, 12:121-141. |
[14] |
LUMME J, KARJALAINEN M, KAARTINEN H, KUKKO A, HYYPPÄ J, HYYPPÄ H, JAAKKOLA A, KLEEMOLA J. Terrestrial laser scanning of agricultural crops. International Journal of Remote Sensing, 2008, 26(7):563-566.
doi: 10.1080/01431160512331299270 |
[15] |
MCKINION J M, WILLERS J L, JENKINS J N. Comparing high density LIDAR and medium resolution GPS generated elevation data for predicting yield stability. Computers and Electronics in Agriculture, 2010, 74(2):244-249.
doi: 10.1016/j.compag.2010.08.011 |
[16] | LI Z H, WANG J H, XU X G, ZHAO C J, JIN X L, YANG G J, FENG H K. Assimilation of two variables derived from hyperspectral data into the DSSAT-CERES model for grain yield and quality estimation. Remote Sensing, 2015, 35(9):12400-12418. |
[17] | 王延颐. 植被指数与水稻长势及产量结构要素关系的研究. 国土资源遥感, 1996, 2(1):56-59. |
WANG Y Y. The relationship between vegetation index and rice growth and rice yield components. Remote Sensing for Land and Resources, 1996, 2(1):56-59. (in Chinese) | |
[18] | 李卫国, 王纪华, 赵春江, 李存军, 王永华. 基于生态因子的冬小麦产量遥感估测研究. 麦类作物学报, 2009, 29(5):213-220. |
LI W G, WANG J H, ZHAO C J, LI C J, WANG Y H. Study on remote sensing estimation of winter wheat yield based on eco-environmental factors. Journal of Triticeae Crop, 2009, 29(5):213-220. (in Chinese) | |
[19] | 薛利红, 曹卫星, 罗卫红. 基于冠层反射光谱的水稻产量预测模型. 遥感学报, 2005, 7(1):102-107. |
XUE L H, CAO W X, LUO W H. Rice yield forecasting model with canopy reflectance spectra. Journal of Remote Sensing, 2005, 7(1):102-107. (in Chinese) | |
[20] |
CHENG T, RIVARD B, SÁNCHEZ-AZOFEIFA A G, FÉRET J B, JACQUEMOUD S, USTIN S L. Deriving leaf mass per area (LMA) from foliar reflectance across a variety of plant species using continuous wavelet analysis. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 87:28-38.
doi: 10.1016/j.isprsjprs.2013.10.009 |
[21] | 宋开山, 刘殿伟, 王宗明, 吕冬梅, 张柏, 任春颖, 杜嘉. 基于小波分析的玉米叶绿素a与LAI高光谱反演模型研究. 农业系统科学与综合研究, 2011, 3(2):28-34. |
SONG K S, LIU D W, WANG Z M, LÜ D M, ZHANG B, REN C Y, DU J. Corn chlorophyll-a concentration and LAI estimation models based on wavelet transformed canopy hyperspectral reflectance. System Sciences and Comprehensive Studies in Agriculture, 2011, 3(2):28-34. (in Chinese) | |
[22] | 宋开山, 张柏, 王宗明, 刘殿伟, 刘焕军. 基于小波分析的大豆叶绿素a含量高光谱反演模型. 植物生态学报, 2008, 2(1):157-165. |
SONG K S, ZHANG B, WANG Z M, LIU D W, LIU H J. Soybean chlorophyll a concentration estimation models based on wavelet- transformed, in situ collected, canopy hyperspectral data. Journal of Plant Ecology, 2008, 2(1):157-165. (in Chinese) | |
[23] | 洪雪. 基于水稻高光谱遥感数据的植被指数产量模型研究[D]. 沈阳: 沈阳农业大学, 2017. |
HONG X. Rice yield model research based on vegetation index of hyperspectral remote sensing data[D]. Shenyang: Shenyang Agricultural University, 2017. (in Chinese) | |
[24] | 王娣. 高光谱与多光谱遥感水稻估产研究[D]. 武汉: 武汉大学, 2017. |
WANG D. Hyperspectral and multispectral remote sensing study on yield estimation of rice[D]. Wuhan: Wuhan University, 2017. (in Chinese) | |
[25] | 黄春燕, 王登伟, 陈冠文, 袁杰, 祁亚琴, 陈燕, 程诚. 基于高光谱植被指数的棉花干物质积累估算模型研究. 棉花学报, 2006, 18(2):115-119. |
HUANG C Y, WANG D W, CHEN G W, YUAN J, QI Y Q, CHEN Y, CHENG C. Estimation modeling of cotton dry matter accumulation based on hyperspectral vegetation index. Cotton Science, 2006, 18(2):115-119. (in Chinese) | |
[26] | 许童羽, 洪雪, 陈春玲, 周云成, 曹英丽, 于丰华, 李娜. 基于冠层NDVI数据的北方粳稻产量模型研究. 浙江农业学报, 2016, 28(10):1790-1795. |
XU T Y, HONG X, CHEN C L, ZHOU Y C, CAO Y L, YU F H, LI N. Study on northern japonica rice yield model based on canopy date of NDVI. Acta Agriculturae Zhejiangensis, 2016, 28(10):1790-1795. (in Chinese) | |
[27] | 宋红燕, 胡克林, 彭希. 基于高光谱技术的覆膜旱作水稻植株氮含量及籽粒产量估算. 中国农业大学学报, 2016, 4(8):27-34. |
SONG H Y, HU K L, PENG X. Crop nitrogen content diagnosis and yield estimation in ground cover rice production system based on hyperspectral data. Journal of China Agricultural University, 2016, 4(8):27-34. (in Chinese) | |
[28] |
SHIBAYAMA M. AKIYAMA T. Estimating grain yield of maturing rice canopies using high spectral resolution reflectance measurements. Remote Sensing of Environment, 1991, 36(1):45-53.
doi: 10.1016/0034-4257(91)90029-6 |
[29] |
BAI J H, LI S K, WANG K R, SUI X Y, CHEN B, WANG F Y. Estimating aboveground fresh biomass of different cotton canopy types with homogeneity models based on hyper spectrum parameters. Agricultural Sciences in China, 2007, 6(4):437-445.
doi: 10.1016/S1671-2927(07)60067-4 |
[30] | LI P, ZHANG X, WANG W H, ZHENG H B, YAO X, TIAN Y C, ZHU Y, CAO W X, CHEN Q, CHENG T. Estimating aboveground and organ biomass of plant canopies across the entire season of rice growth with terrestrial laser scanning. International Journal of Applied Earth Observation and Geoinformation, 2020, 91:102-132. |
[31] | GITELSON A A, VIÑA A, ARKEBAUER T J, RUNDQUIST D C, KEYDAN G P, LEAVITT B, KEYDAN G. Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophysical Research Letters, 2003, 30:335-343. |
[32] |
HUDAK A T, LEFSKY M A, COHEN W B, BERTERRETCHE M. Integration of LiDAR and Landsat ETM+ data for estimating and mapping forest canopy height. Remote Sensing of Environment, 2015, 82(2/3):397-416.
doi: 10.1016/S0034-4257(02)00056-1 |
[33] |
WEI F, HUI F, YANG W N, DUAN L F, CHEN G X, XIONG L Z, LIU Q. High-throughput volumetric reconstruction for 3D wheat plant architecture studies. Journal of Innovative Optical Health Sciences, 2016, 9(5):1650037.
doi: 10.1142/S1793545816500371 |
[34] |
HUANG J F, BLACKBURN G A. Optimizing predictive models for leaf chlorophyll concentration based on continuous wavelet analysis of hyperspectral data. International Journal of Remote Sensing, 2011, 32(24):9375-9396.
doi: 10.1080/01431161.2011.558130 |
[35] |
CHEN Q. Modeling aboveground tree woody biomass using national- scale allometric methods and airborne LiDAR. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 106:95-106.
doi: 10.1016/j.isprsjprs.2015.05.007 |
[36] | DAI B, GU C S, ZHAO E, QIN X N. Statistical model optimized random forest regression model for concrete dam deformation monitoring. Structural Control and Health Monitoring, 2018, 25(6):1-15. |
[37] |
TILLY N, HOFFMEISTER D, CAO Q, LENZ-WIEDEMANN V, MIAO Y X, BARETH G. Transferability of models for estimating paddy rice biomass from spatial plant height data. Agriculture, 2015, 5:538-552.
doi: 10.3390/agriculture5030538 |
[1] | WEI YaNan, BO QiFei, TANG An, GAO JiaRui, MA Tian, WEI XiongXiong, ZHANG FangFang, ZHOU XiangLi, YUE ShanChao, LI ShiQing. Effects of Long-Term Film Mulching and Application of Organic Fertilizer on Yield and Quality of Spring Maize on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(9): 1708-1717. |
[2] | WEN YuanYuan, LI Yan, LI JianGuo, WANG MeiMei, YU ChangHui, SHEN YiZhao, GAO YanXia, LI QiuFeng, CAO YuFeng. Effects of Holstein Bulls Fed Mixed Silage of Potato Chips Processing by Product with Rice Straw on Fattening Performance and Blood Biochemical Indexes [J]. Scientia Agricultura Sinica, 2023, 56(9): 1800-1812. |
[3] | SUN QiBin, WANG JianNan, LI YiNian, HE RuiYin, DING QiShuo. Study on the Dynamics of Root Length Density in Soil Layers of Single Plant Wheat Under Controlled Seed-to-Seed Distance [J]. Scientia Agricultura Sinica, 2023, 56(8): 1456-1470. |
[4] | HAN ZiXuan, FANG JingJing, WU XuePing, JIANG Yu, SONG XiaoJun, LIU XiaoTong. Synergistic Effects of Organic Carbon and Nitrogen Content in Water-Stable Aggregates as well as Microbial Biomass on Crop Yield Under Long-Term Straw Combined Chemical Fertilizers Application [J]. Scientia Agricultura Sinica, 2023, 56(8): 1503-1514. |
[5] | LIU MengJie, LIANG Fei, LI QuanSheng, TIAN YuXin, WANG GuoDong, JIA HongTao. Effects of Drip Irrigation Under Film and Trickle Furrow Irrigation on Maize Growth and Yield [J]. Scientia Agricultura Sinica, 2023, 56(8): 1515-1530. |
[6] | WANG Ning, FENG KeYun, NAN HongYu, CONG AnQi, ZHANG TongHui. Effects of Combined Application of Organic Manure and Chemical Fertilizer Ratio on Water and Nitrogen Use Efficiency of Cotton Under Water Deficit [J]. Scientia Agricultura Sinica, 2023, 56(8): 1531-1546. |
[7] | WANG PengFei, YU AiZhong, WANG YuLong, SU XiangXiang, LI Yue, LÜ HanQiang, CHAI Jian, YANG HongWei. Effects of Returning Green Manure to Field Combined with Reducing Nitrogen Application on the Dry Matter Accumulation, Distribution and Yield of Maize [J]. Scientia Agricultura Sinica, 2023, 56(7): 1283-1294. |
[8] | WEN YiBo, CHEN ShuTing, XU ZhengJin, SUN Jian, XU Quan. Combination of DEP1, Gn1a, and qSW5 Regulates the Panicle Architecture in Rice [J]. Scientia Agricultura Sinica, 2023, 56(7): 1218-1227. |
[9] | LI RuXiang, ZHOU Kai, WANG DaChuan, LI QiaoLong, XIANG AoNi, LI Lu, LI MiaoMiao, XIANG SiQian, LING YingHua, HE GuangHua, ZHAO FangMing. Analysis of QTLs and Breeding of Secondary Substitution Lines for Panicle Traits Based on Rice Chromosome Segment Substitution Line CSSL-Z481 [J]. Scientia Agricultura Sinica, 2023, 56(7): 1228-1247. |
[10] | ZHAO ZiJun, WU RuHui, WANG Shuo, ZHANG Jun, YOU Jing, DUAN QianNan, TANG Jun, ZHANG XinFang, WEI Mi, LIU JinYan, LI YunFeng, HE GuangHua, ZHANG Ting. Mutation of PDL2 Gene Causes Degeneration of Lemma in the Spikelet of Rice [J]. Scientia Agricultura Sinica, 2023, 56(7): 1248-1259. |
[11] | ZHU HongHui, LI YingZi, GAO YuanZhuo, LIN Hong, WANG ChengYang, YAN ZiYi, PENG HanPing, LI TianYe, XIONG Mao, LI YunFeng. Map-Based Cloning of the SHORT AND WIDEN GRAIN 1 Gene in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2023, 56(7): 1260-1274. |
[12] | ZHANG Ji, ZHOU ShangLing, HE Fa, LIU LiSha, ZHANG YuJuan, HE JinYu, DU XiaoQiu. Expression Pattern of the Rice α-Amylase Genes Related with the Process of Floret Opening [J]. Scientia Agricultura Sinica, 2023, 56(7): 1275-1282. |
[13] | NAN Rui, YANG YuCun, SHI FangHui, ZHANG LiNing, MI TongXi, ZHANG LiQiang, LI ChunYan, SUN FengLi, XI YaJun, ZHANG Chao. Identification of Excellent Wheat Germplasms and Classification of Source-Sink Types [J]. Scientia Agricultura Sinica, 2023, 56(6): 1019-1034. |
[14] | HE Jiang, DING Ying, LOU XiangDi, JI DongLing, ZHANG XiangXiang, WANG YongHui, ZHANG WeiYang, WANG ZhiQin, WANG WeiLu, YANG JianChang. Difference in the Comprehensive Response of Dry Matter Accumulation of Rice at Tillering Stage to Rising Atmospheric CO2 Concentration and Nitrogen Nutrition and Its Physiological Mechanism [J]. Scientia Agricultura Sinica, 2023, 56(6): 1045-1060. |
[15] | LI XiaoYong, HUANG Wei, LIU HongJu, LI YinShui, GU ChiMing, DAI Jing, HU WenShi, YANG Lu, LIAO Xing, QIN Lu. Effect of Nitrogen Rates on Yield Formation and Nitrogen Use Efficiency in Oilseed Under Different Cropping Systems [J]. Scientia Agricultura Sinica, 2023, 56(6): 1074-1085. |
|