Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (14): 2931-2940.doi: 10.3864/j.issn.0578-1752.2021.14.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Production of High Linoleic Acid Rice by Genome Editing

CHEN XiaoJun1(),WU KaiShen2,HUI Jian1,BAI HaiBo1,MA SiShuang1,LI JingYu2   

  1. 1Agricultural Biotechnology Center, Ningxia Academy of Agriculture and Forestry Sciences/Key Lab of Agricultural Biotechnology of Ningxia, Yinchuan 750002
    2College of Biological Science & Engineering, North Minzu University, Yinchuan 750021
  • Received:2020-11-02 Accepted:2021-01-29 Online:2021-07-16 Published:2021-07-26

Abstract:

【Objective】 Linoleic acid is one of essential fatty acid for human, which can accelerate the metabolism and decomposition of fat in the body, reduce the accumulation of cholesterol on the wall of blood vessels, effectively prevent the occurrence of arteriosclerosis, improve human immunity, promote bone development, improve memory and prevent brain function degradation. Rice bran is a by-product of rice processing, and is an edible oil with high nutritional value. In this paper, we precisely edited the gene of ω-3 fatty acid desaturase, which is the key enzyme controlling fatty acid synthesis pathway. It can enrich the upstream linoleic acid, while closing the synthesis pathway of downstream products. 【Method】There are two copies of the key enzyme ω-3 fatty acid desaturase gene ( OsFAD3) in the fatty acid synthesis pathway in rice, which are located on chromosome 11 and chromosome 12, and their cDNA homology is 97.32%. According to the basic principles of gene editing, the specificity of edit depends on the characteristics of the guide RNA (gRNA). In this study, two gRNAs were designed and synthesized in the exon region of two homologous genes, and were constructed into editing vectors respectively. The local receptor material (Fuyuan 4) was successfully transformed by Agrobacterium mediated method. The editing efficiency and genotype of the two sites were analyzed. At the same time, the main agronomic characters of OsFAD3 double mutant were measured, such as grain width and grain length. The contents of 37 fatty acids were figured by GC-MS in the grains of OsFAD3double mutants. 【Result】The results showed two homozygous editing materials were obtained, and other editing materials with different genotypes were obtained. Compared with the control materials, the main agronomic traits such as grain width and grain length of OsFAD3 double mutant materials had no significant changes, however, the relative content of linoleic acid in rice increased by 3.36%. 【Conclusion】One gRNA vector knock out two ω-3 fatty acid desaturase genes at the same time, which improves the relative content of linoleic acid in grains without changing the main agronomic traits of seeds.

Key words: rice, gene edit, high linoleic, rice bran

Fig. 1

The pathway of fatty acid synthesis in rice[4] "

Fig. 2

Structure comparison of OsFAD3.1 and OsFAD3.2 "

Fig. 3

Design of gRNA1 target site"

Fig. 4

Plant gene editing vector"

Fig. 5

Sequence gene editing vector"

Fig. 6

Simultaneous editing of OsFAD3.1 and OsFAD3.2 A, B: FAD3-S1-PC1300 editing plant; C, D: FAD3-S2-PC1300 editing plant. A, C: The target of OsFAD3.1; B, D: The target of OsFAD3.2.Arrows indicate editing position "

Fig. 7

The sequence of editing plants A: The sequence of editing plants with FAD3-S1-PC1300; B: The sequence of editing plants with FAD3-S2-PC1300"

Fig. 9

Distribution of nine genotypes in the progeny of gene editing"

Fig. 10

Agronomic trait of grain in OsFAD3 double mutant A: Thousand grain weight; B: Average grain length; C: Average grain width"

Fig. 11

Comparison of fatty acid content"

[1] 刘丽娜, 缪锦来, 郑洲. 共轭亚油酸的生理功能综述. 食品安全质量检测学报, 2020. 11(8):2552-2557.
LIU L N, MIAO J L, ZHENG Z. Review on the physiological function of conjugated linoleic acid. Journal of Food Safety & Quality, 2020, 11(8):2552-2557. (in Chinese)
[2] 戚登斐, 张润光, 韩海涛, 杨涛, 张有林. 核桃油中亚油酸分离纯化技术研究及其降血脂功能评价. 中国油脂, 2019, 44(2):104-108.
QI D F, ZHANG R G, HAN H T, YANG T, ZHANG Y L. Separation and purification of linoleic acid from walnut oil and its hypolipidemic function evaluation. China Oils and Fats, 2019, 44(2):104-108. (in Chinese)
[3] 欧阳建勋. 米糠油资源开发应用探讨. 粮食科技与经济, 2011, 36(3):24-26, 33.
OUYAN J X. Discussion on development and application of rice bran oil resources. Grain Science and Technology and Economy, 2011, 36(3):24-26, 33. (in Chinese)
[4] ABE K, ARAKI E, SUZUKI Y, TOKI S, SAIKA H. Production of high oleic/low linoleic rice by genome editing. Plant Physiology and Biochemistry, 2018, 131:58-62.
doi: 10.1016/j.plaphy.2018.04.033
[5] HANNA R E, DOENCH J G. Design and analysis of CRISPR-Cas experiments. Nature Biotechnology, 2020, 38:813-823.
doi: 10.1038/s41587-020-0490-7
[6] MING M, REN Q, PAN C, HE Y, ZHANG Y, LIU S, ZHONG Z, WANG J, MALZAHN A A, WU J, ZHENG X, ZHANG Y, QI Y. CRISPR-Cas12b enables efficient plant genome engineering. Nature Plants, 2020, 6(3):202-208.
doi: 10.1038/s41477-020-0614-6
[7] TOMLINSON L, YANG Y, EMENECKER R, SMOKER M, TAYLOR J, PERKINS S, SMITH J, MACLEAN D, OLSZEWSKI N E, JONES J D G. Using CRISPR/Cas9 genome editing in tomato to create a gibberellin-responsive dominant dwarf DELLA allele. Plant Biotechnology Journal, 2019, 17(1):132-140.
doi: 10.1111/pbi.2019.17.issue-1
[8] NADAKUDUTI S S, STARKER C G, VOYTAS D F, BUELL C R, DOUCHES D S. Genome editing in potato with CRISPR/Cas9. Methods Molecular Biology, 2019, 1917:183-201.
[9] LI T, YANG X, YU Y, SI X, ZHAI X, ZHANG H, DONG W, GAO C, XU C. Domestication of wild tomato is accelerated by genome editing. Nature Biotechnology, 2018, 36:1160-1163.
doi: 10.1038/nbt.4273
[10] WANG X, TU M, WANG D, LIU J, LI Y, LI Z, WANG Y, WANG X. CRISPR/Cas9-mediated efficient targeted mutagenesis in grape in the first generation. Plant Biotechnology Journal, 2018, 16(4):844-855.
doi: 10.1111/pbi.2018.16.issue-4
[11] LIN Q, ZONG Y, XUE C, WANG S, JIN S, ZHU Z, WANG Y, ANZALONE A V, RAGURAM A, DOMAN J L, LIU D R, GAO C. Prime genome editing in rice and wheat. Nature Biotechnology, 2020, 38(5):582-585.
doi: 10.1038/s41587-020-0455-x
[12] HUA K, JIANG Y, TAO X, ZHU J K. Precision genome engineering in rice using prime editing system. Plant Biotechnology Journal, 2020, 18(11):2167-2169.
doi: 10.1111/pbi.v18.11
[13] LI H, LI J, CHEN J, YAN L, XIA L. Precise modifications of both exogenous and endogenous genes in rice by prime editing. Molecular Plant, 2020, 13(5):671-674.
doi: 10.1016/j.molp.2020.03.011
[14] TANG X, SRETENOVIC S, REN Q, JIA X, LI M, FAN T, YIN D, XIANG S, GUO Y, LIU L, ZHENG X, QI Y, ZHANG Y. Plant prime editors enable precise gene editing in rice cells. Molecular Plant, 2020, 13(5):667-670.
doi: 10.1016/j.molp.2020.03.010
[15] TOKI S, HARA N, ONO K, ONODERA H, TAGIRI A, OKA S, TANAKA H. Early infection of scutellum tissue with Agrobacteriumallows high-speed transformation of rice. The Plant Journal, 2006, 47(6):969-976.
doi: 10.1111/tpj.2006.47.issue-6
[16] 陈晓军, 王敬东, 宋海丽, 李树华, 樊云芳. 一种简单、极快的植物叶片DNA提取方法. 种子, 2018, 37(11):26-29, 34.
CHEN X J, WANG J D, SONG H L, LI S H, FAN Y F. A simple and rapid method of DNA extraction from plant leaf. seed. 2018, 37(11):26-29, 34. (in Chinese)
[17] E Z, CHEN C, YANG J, TONG H, LI T, WANG L, CHEN H. Genome-wide analysis of fatty acid desaturase genes in rice (Oryza sativaL.). Science Report, 2019, 9(1):19445.
doi: 10.1038/s41598-019-55648-z
[18] ARONDEL V, LEMIEUX B, HWANG I, GIBSON S, GOODMAN H M, SOMERVILLE C R. Map-based cloning of a gene controlling omega-3 fatty acid desaturation inArabidopsis. Science, 1992, 258(5086):1353-1355.
doi: 10.1126/science.1455229
[19] LIU K, ZHAO S, WANG S, WANG H, ZHANG Z. Identification and analysis of the FAD gene family in walnuts (Juglans regia L.) based on transcriptome data. BMC Genomics, 2020, 21(1):299.
doi: 10.1186/s12864-020-6692-z
[20] XUE Y, CHEN B, WIN A N, FU C, LIAN J, LIU X, WANG R, ZHANG X, CHAI Y. Omega-3 fatty acid desaturase gene family from two ω-3 sources, S alvia hispanicaand Perilla frutescens: Cloning, characterization and expression. PLoS ONE, 2018, 13(1):e0191432.
doi: 10.1371/journal.pone.0191432
[21] LEE K R, LEE Y, KIM E H, LEE S B, ROH K H, KIM J B, KANG H C, KIM H U. Functional identification of oleate 12-desaturase and ω-3 fatty acid desaturase genes from Perilla frutescens var. frutescens. Plant Cell Report, 2016, 35(12):2523-2537.
doi: 10.1007/s00299-016-2053-4
[22] YUAN L, LI R. Metabolic engineering a model oilseed camelina sativa for the sustainable production of high-value designed oils. Front Plant Science, 2020, 11:11.
doi: 10.3389/fpls.2020.00011
[23] ZHAO Q, WU J, CAI G, YANG Q, SHAHID M, FAN C, ZHANG C, ZHOU Y. A novel quantitative trait locus on chromosome A9 controlling oleic acid content in Brassica napus. Plant Biotechnology Journal, 2019, 17(12):2313-2324.
doi: 10.1111/pbi.v17.12
[24] DAMPANABOINA L, JIAO Y, CHEN J, GLADMAN N, CHOPRA R, BUROW G, HAYES C, CHRISTENSEN S A, BURKE J, WARE D, XIN Z. Sorghum MSD3 encodes an ω-3 fatty acid desaturase that increases grain number by reducing jasmonic acid levels. International Journal of Molecular Sciences, 2019, 20(21):5359-5370.
doi: 10.3390/ijms20215359
[25] YEOM W W, KIM H J, LEE K R, CHO H S, KIM J Y, JUNG H W, OH S W, JUN S E, KIM H U, CHUNG Y S. Increased production of α-linolenic acid in soybean seeds by overexpression of lesquerella FAD3-1. Front Plant Science, 2019, 10:1812.
doi: 10.3389/fpls.2019.01812
[26] 曹英萍, 石金磊, 李钟, 明凤. 水稻OsFAD2、OsFAD6的克隆及其家族成员对非生物胁迫的响应. 遗传, 2010, 32(8):839-847.
CAO Y P, SHI J L, LI Z, MING F. Isolation of OsFAD2, OsFAD6 and FAD family members response to abiotic stresses in Oryza sativaL . Hereditas(Beijing), 2010, 32(8):839-847. (in Chinese)
[27] KODAMA1 H, AKAGI H, KUSUMI K, FUJIMURA T, IBA1 K. Structure, chromosomal location and expression of a rice gene encoding the microsome ω-3 fatty acid desaturase. Plant Molecular Biology, 1997(33):493-502.
[28] YIN Z J, LIU H L, DONG X, TIAN L, XIAO L, XU Y N, QU L Q. Increasing α-linolenic acid content in rice bran by embryo-specific expression of ω3/Δ15-desaturase gene. Molecular Breeding, 2014, 33(4):987-996.
doi: 10.1007/s11032-013-0014-y
[29] LIU H L, YIN Z J, XIAO L, XU Y N, QU L Q. Identification and evaluation of omega-3 fatty acid desaturase genes for hyperfortifying alpha-linolenic acid in transgenic rice seed. Journal of Experiment Botany, 2012, 63(8):3279-3287.
doi: 10.1093/jxb/ers051
[30] MIAO C, WANG D, HE R, LIU S, ZHU J K. Mutations in MIR396e and MIR396f increase grain size and modulate shoot architecture in rice. Plant Biotechnology Journal, 2020, 18(2):491-501.
doi: 10.1111/pbi.v18.2
[1] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[2] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[3] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[4] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[5] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[6] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[7] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[8] HAN XiaoTong,YANG BaoJun,LI SuXuan,LIAO FuBing,LIU ShuHua,TANG Jian,YAO Qing. Intelligent Forecasting Method of Rice Sheath Blight Based on Images [J]. Scientia Agricultura Sinica, 2022, 55(8): 1557-1567.
[9] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[10] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
[11] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[12] JIANG JingJing,ZHOU TianYang,WEI ChenHua,WU JiaNing,ZHANG Hao,LIU LiJun,WANG ZhiQin,GU JunFei,YANG JianChang. Effects of Crop Management Practices on Grain Quality of Superior and Inferior Spikelets of Super Rice [J]. Scientia Agricultura Sinica, 2022, 55(5): 874-889.
[13] ZHANG YaLing, GAO Qing, ZHAO Yuhan, LIU Rui, FU Zhongju, LI Xue, SUN Yujia, JIN XueHui. Evaluation of Rice Blast Resistance and Genetic Structure Analysis of Rice Germplasm in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2022, 55(4): 625-640.
[14] WANG YaLiang,ZHU DeFeng,CHEN RuoXia,FANG WenYing,WANG JingQing,XIANG Jing,CHEN HuiZhe,ZHANG YuPing,CHEN JiangHua. Beneficial Effects of Precision Drill Sowing with Low Seeding Rates in Machine Transplanting for Hybrid Rice to Improve Population Uniformity and Yield [J]. Scientia Agricultura Sinica, 2022, 55(4): 666-679.
[15] CHEN TingTing, FU WeiMeng, YU Jing, FENG BaoHua, LI GuangYan, FU GuanFu, TAO LongXing. The Photosynthesis Characteristics of Colored Rice Leaves and Its Relation with Antioxidant Capacity and Anthocyanin Content [J]. Scientia Agricultura Sinica, 2022, 55(3): 467-478.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!