Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (15): 3095-3107.doi: 10.3864/j.issn.0578-1752.2020.15.010

• PLANT PROTECTION • Previous Articles     Next Articles

Allelopathy of Six Organic Acids on Wheat Sheath Blight in the Soil of Winter Wheat-Summer Maize Double Cropping Straw Returning System

ZHAO XuSheng1,2(),QI YongZhi1,2(),YAN CuiMei1,2,ZHEN WenChao2,3,4()   

  1. 1College of Plant Protection, Hebei Agricultural University, Baoding 071001, Hebei
    2State Key Laboratory for Crop Improvement and Control in North China, Baoding 071001, Hebei
    3College of Agronomy, Hebei Agricultural University, Baoding 071001, Hebei
    4Hebei Key Laboratory of Crop Growth Control, Baoding 071001, Hebei
  • Received:2020-02-29 Accepted:2020-04-02 Online:2020-08-01 Published:2020-08-06
  • Contact: WenChao ZHEN E-mail:zhaoxusheng2000@yeah.net;qiyongzhi1981@163.com;wenchao@hebau.edu.cn

Abstract:

【Objective】Double cropping of winter wheat and summer maize is the most extensive farming system in northern China. Straw returning has been widely used in wheat and maize production. But, the effect of straw returning on the occurrence of soil borne diseases of wheat has been controversial. The objective of this study is to analyze the main chemical constituents in the cultivated-layer soil with different straw returning years and the allelopathic effects of the main organic acids on the growth of wheat seedlings, the mycelium growth and sclerotia formation of Rhizoctonia cerealis and occurrence of wheat sheath blight (WSB), and to understand the relationship between straw returning and WSB incidence.【Method】Gas chromatography-mass spectrometry (GC-MS) technique was used to analyze the types and contents of chemical substances in the extract of ethyl acetate from the cultivated soil where maize straw returning, and the effects of 6 organic acids with higher content on the root activity, root cell membrane permeability, superoxide dismutase (SOD) and peroxidase (POD) activity of wheat seedlings were determined with the TTC reduction, electrical conductivity, NBT photoreduction and guaiacol colorimetry methods, respectively. Meanwhile, the effects of these organic acids on the mycelium growth, sclerotium formation and occurrence of WSB were determined by the conventional methods.【Result】The relative contents of organic acids, alkanes, alcohols, amides, and aldehydes in the cultivated-layer soil and straw returning were 45.45%, 17.70%, 17.08%, 6.12%, and 5.44%, respectively. Organic acids mainly included o-hydroxybenzoic acid (9.24%), 3-phenyl-2-acrylic acid (4.12%), p-hydroxybenzoic acid (3.21%), 4-hydroxy-3,5- dimethoxybenzoic acid (2.26%), heneicosanoic acid (1.88%), 4-methoxy-anthranilic acid (1.73%), 8-octadecanoic acid (0.76%) and 3-(4-hydroxy-3- methoxyphenyl)-2-acrylic acid (0.52%). 4-methoxy-anthranilic acid and 3-(4-hydroxy-3-methoxyphenyl)-2-acrylic acid at 0.08-10.0 μg·mL-1had significant promoting effects on mycelial growth (expect 4-methoxy-anthranilic acid at 10.0 μg·mL-1), dry weight and sclerotium formation of R. cerealis, and the relative content of the two substances increased with the extension of straw returning years. O-hydroxybenzoic acid significantly promoted mycelial growth and sclerotia formation of R. cerealis at 0.4 and 0.08 μg·mL-1. In contrast, 50.0 μg·mL-1 of o-hydroxybenzoic acid and 4-hydroxyl-3-methoxy-benzoic acid, and 0.4-50.0 μg·mL-1 of benzoic acid all showed inhibitory effects. All 6 organic acids at concentrations of 2.0-5.0 μg·mL-1 inhibited the growth of wheat seedlings in a dose-dependent manner. The inhibitory effect of p-hydroxybenzoic acid was the strongest, followed by o-hydroxybenzoic acid, and 4-methoxy-anthranilic acid was the weakest. 3-(4-hydroxy-3-methoxyphenyl)-2-acrylic acid, 4-methoxyanthranilic acid, o-hydroxybenzoic acid, and p-hydroxybenzoic acid at concentrations of 0.4-50.0 μg·mL-1 aggravated the occurrence of WSB. 3-(4-hydroxy-3-methoxyphenyl)-2-acrylic acid had the strongest enhancing effect, with the incidence and disease index increased by 49.0% and 46.7%, respectively. Benzoic acid and 4-hydroxy-3-methoxyphenyl-benzoic acid had no significant effect on the occurrence of WSB.【Conclusion】Organic acids, esters, hydrocarbons, amides, and aldehydes were found in the cultivated-layer soil in the winter wheat-summer maize double cropping straw returning system. Organic acids were the most abundant of those chemicals. 3-(4-hydroxy-3-methoxyphenyl)-2-acrylic acid, 4-methoxyanthranilic acid, o-hydroxybenzoic acid, and p-hydroxybenzoic acid at a certain concentration can promote the occurrence of WSB. 3-(4-hydroxy-3-methoxyphenyl)-2-acrylic acid has the strongest stimulatory effect, while benzoic acid and 4-hydroxy-3-methoxy-benzoic acid have no effect on the occurrence of WSB. Allelopathic effects of organic acids in the cultivated-layer soil, including the promotion on pathogen growth and inhibition on physiological activity and growth of wheat roots, may be one of the main reasons for the serious occurrence of WSB in the straw returning region in northern China.

Key words: straw returning, wheat sheath blight, Rhizoctonia cerealis, GC-MS, allelopathy, organic acid

Table 1

Organic substances detected in ethyl acetate extracts of soil collected in different years"

保留时间a
Retention time (min)
化合物名称b
Compound name
峰面积cArea (%)
2012 2015 2018 平均Average
6.33 间二甲苯Xylene 0.83 0.92 1.02 0.92
6.49 N-乙基乙酰胺N-ethyl-acetamide 7.33 8.04 9.03 8.13
6.72 苯酚Phenol - 0.25 0.31 0.28
7.34 N,N-二乙基甲酰胺N,N-diethyl formamide 1.31 0.45 1.61 1.12
7.57 2,3-二甲基环氮乙烷2,3-dimethyl-ring nitrogen oxide 1.51 1.68 1.86 1.68
7.97 碳酸Carbonic acid 1.07 1.19 1.32 1.19
8.24 N,N-二乙基乙酰胺N,N-diethyl acetamide 4.31 4.78 5.31 4.80
8.78 N-乙基丙胺N-ethyl-propylamine 0.61 - 0.75 0.68
9.23 2-甲氧基苯酚2-methoxyphenol 1.93 1.14 2.38 1.82
10.33 己酸Hexanoate 1.57 1.74 1.93 1.75
10.57 2-甲基-3-羟基-4-吡喃酮2-methyl-3-hydroxy-4-pyrone 0.23 0.26 0.20 0.23
12.97 苯并噻唑Benzothiazole 0.25 0.28 0.31 0.28
13.76 3,5-二甲基苯甲醛3,5-dimethyl-benzaldehyde 6.83 7.58 7.42 7.28
14.23 对羟基苯甲酸P-hydroxybenzoic acid 3.11 3.20 3.31 3.21
15.36 邻羟基苯甲酸O-hydroxybenzoic acid 8.29 9.20 10.22 9.24
15.89 十四烷Tetradecane 0.23 0.26 0.08 0.19
16.13 3-羟基- 4-甲氧基-苯甲醛 3-hydroxy-4-methoxy-benzaldehyde 0.13 0.14 - 0.14
17.77 4-羟基- 3-甲氧基-苄基醇 4-hydroxy-3-methoxy-benzyl alcohol 0.15 0.17 0.18 0.17
19.87 二十一烷酸Heneicosanoic acid 1.87 2.14 1.63 1.88
20.20 4-羟基-3-甲氧基-苯甲酸4-hydroxy-3-methoxy-benzoic acid 0.85 0.94 1.05 0.95
20.37 2,3,8-三甲基萘2,3,8-trimethylnaphtho 0.37 0.41 0.16 0.31
20.92 2,6,10-三甲基十五烷2,6,10-trimethyl-pentadecane 1.21 - 1.49 1.35
21.86 4-羟基-3,5-二甲氧基苯甲酸 4-hydroxy-3,5-dimethoxybenzoic acid 2.03 2.25 2.50 2.26
22.80 1-(4-羟基-3,5-二甲氧基苯基)-乙酮1-(4-hydroxy-3,5-dimethoxy-phenyl)-ethanone 0.73 0.41 0.90 0.68
23.78 3-苯基-2-丙烯酸3-phenyl-2-acrylic acid 3.60 4.10 4.66 4.12
23.82 3-(4-羟基-3-甲氧基苯基)-2-丙烯酸3-(4-hydroxy-3-methoxyphenyl)-2-acrylic acid 0.30 0.42 0.83 0.52
25.57 2-氨基-5-甲氧基苯甲酸2-amino-5-methoxybenzoic acid 0.92 1.02 1.13 1.02
25.71 6-甲氧基-2-苯并恶唑酮6-methoxy-2-benzoxazolone 0.71 0.49 0.87 0.69
26.81 2-甲基戊基-邻苯二甲酸异二丁酯2-methyl-pentyl-isobutylphthalate dibutyl 5.77 6.11 7.11 6.33
27.28 9-十六碳烯酸Palmitoleic acid 0.35 0.39 0.43 0.39
27.63 三十一烷Hentriacontane 0.47 0.52 0.58 0.52
28.27 8-十八碳烯酸8-octadecenoic acid 0.65 0.75 0.87 0.76
29.75 三十四烷Thirty-four alkyl 9.34 10.37 11.51 10.41
32.21 乙酸三十酯Thirty acetate ester - 0.26 0.28 0.27
32.35 三十六烷Thirty-six alkyl 0.14 - 0.16 0.15
32.62 甲酸癸酯Carboxylic acid decyl ester 8.75 9.41 8.18 8.78
33.79 四十三烷Forty-three alkyl 0.22 0.24 0.27 0.24
34.76 十九酸Nineteen acid 0.25 0.18 0.31 0.25
34.88 4-甲氧基邻氨基苯甲酸4-methoxy-anthranilic acid 1.72 1.73 1.75 1.73
36.69 邻苯二甲酸二丁酯Dibutyl phthalate 6.25 6.44 7.70 6.80
36.87 二十七醇Twenty-seven alcohol 0.23 - 0.28 0.26
37.79 邻苯二甲酸异戊酯Isopentyl acetate phthalate 0.61 0.48 0.75 0.61

Table 2

Proportion of various organic substances detected in ethyl acetate extracts of soil collected in different years (%)"


Year

Acid

Alcohol
烷烃
Alkanes
酰胺
Amide

Aldehyde

Ester

Naphthalene
烯烃
Olefins
苯酸盐
Benzoate
其他
Others
2012 42.86 15.65 10.96 4.76 5.76 7.63 0.35 5.38 - 15.61
2015 43.11 17.93 27.38 7.28 4.22 0.79 - - - 12.29
2018 50.37 17.65 14.75 6.33 6.33 0.60 - - 3.09 18.78
平均Average 45.45 17.08 17.70 6.12 5.44 3.01 0.35 5.38 3.09 15.56

Table 3

Effects of 6 organic acids on mycelium growth and sclerotium formation of R. cerealis"

有机酸
Organic acid
浓度
Concentration
(μg·mL-1)
菌落直径
Diameter of colony
(cm)
菌丝干重
Dry weight of mycelium
(g per dish)
菌核数
Number of sclerotium
(per dish)
菌核干重
Dry weight of sclerotium
(mg per dish)
Mean±SD RI Mean±SD RI Mean±SD RI Mean±SD RI
邻羟基苯甲酸
O-hydroxybenzoic acid
50.0 3.4±0.1d -0.11 0.41±0.20c -0.07 20.6±1.2d -0.10 13.9±0.6c -0.05
10.0 3.8±0.1c 0.00 0.50±0.10ab 0.12 21.6±1.3cd -0.06 14.8±0.5ab 0.01
2.0 3.9±0.1b 0.03 0.51±0.10a 0.14 22.8±0.5c 0 15.7±1.2a 0.06
0.4 4.0±0.2b 0.05 0.52±0.10a 0.15 25.5±0.5b 0.10 15.7±1.2a 0.06
0.08 4.5±0.2a 0.16 0.56±0.10a 0.21 27.7±0.5a 0.17 16.5±1.3a 0.11
对羟基苯甲酸
P-hydroxybenzoic acid
50.0 3.5±0.3cd -0.08 0.45±0.20ab 0.02 19.3±1.6de -0.16 13.0±0.4c -0.12
10.0 3.6±0.2cd -0.05 0.47±0.10ab 0.06 20.2±0.8d -0.12 13.9±0.2c -0.05
2.0 3.6±0.1cd -0.05 0.47±0.10ab 0.06 21.4±1.5d -0.07 14.6±1.2ab -0.01
0.4 3.7± 0.1cd -0.03 0.48±0.10ab 0.08 23.0±1.6c 0 14.8±1.3ab 0.01
0.08 3.9±0.2bc 0.03 0.50±0.20a 0.12 26.1±2.0b 0.12 14.8±1.2a 0.01
苯甲酸
Benzoic acid
50.0 3.0±0.1e -0.21 0.34±0.10d -0.23 17.0±2.4f -0.26 11.5±0.2d -0.22
10.0 3.1±0.2de -0.18 0.41±0.10c -0.07 17.8±2.1ef -0.22 12.2±1.3cd -0.17
2.0 3.2±0.2de -0.16 0.41±0.10c -0.07 18.8±1.5e -0.18 13.0±1.5c -0.12
0.4 3.3±0.1d -0.13 0.41±0.20c -0.07 20.2±1.6d -0.12 13.0±0.5c -0.12
0.08 3.4±0.1d -0.11 0.40±0.10c -0.09 22.9±1.5c 0.00 13.2±0.3c -0.10
3-(4-羟基-3-甲氧基苯基)-2-丙烯酸3-(4-hydroxy-3-
methoxyphenyl)-
2-acrylic acid
50.0 3.9±0.2bc 0.03 0.44±0.10b 0.00 22.0±2.3d -0.04 14.8±1.2ab 0.01
10.0 4.0±0.1b 0.05 0.53±0.20a 0.17 24.8±1.6b 0.08 15.7±2.1a 0.06
2.0 4.0±0.3b 0.05 0.54±0.20a 0.19 25.3±1.4b 0.09 16.8±1.5a 0.13
0.4 4.2±0.1a 0.10 0.55±0.10a 0.20 26.1±1.5b 0.12 16.8±1.2a 0.13
0.08 4.5±0.1a 0.16 0.57±0.20a 0.23 29.6±0.6a 0.23 17.1±1.0a 0.14
4-羟基-3-甲氧基-苯甲酸
4-hydroxy-3-
methoxy-
benzoic acid
50.0 3.4±0.1d -0.11 0.38±0.20cd -0.14 19.0±0.8d -0.17 12.8±1.0cd -0.13
10.0 3.5±0.2cd -0.08 0.46±0.10b 0.04 20.9±1.3c -0.09 13.6±0.9bc -0.10
2.0 3.6±0.1cd -0.05 0.47±0.20ab 0.06 21.1±2.4c -0.08 14.5±0.7b -0.01
0.4 3.7±0.1c -0.03 0.48±0.10ab 0.08 22.6±1.6c -0.01 14.5±0.5b -0.01
0.08 3.9±0.2bc 0.03 0.49±0.20ab 0.10 25.7±1.4b 0.11 14.8±0.6ab 0.01
4-甲氧基邻氨基苯甲酸
4-methoxy-
anthranilic acid
50.0 3.8±0.1c 0 0.42±0.20b -0.05 21.2±1.6d -0.07 14.3±0.2b -0.03
10.0 3.9±0.1bc 0.03 0.51±0.10a 0.14 24.9±1.7b 0.08 15.2±0.4a 0.03
2.0 4.0±0.2b 0.05 0.52±0.10a 0.15 25.5±1.5b 0.10 16.2±1.0a 0.09
0.4 4.1±0.1b 0.07 0.53±0.10a 0.17 25.2±0.3b 0.09 16.2±1.0a 0.09
0.08 4.3±0.2ab 0.05 0.55±0.10a 0.20 28.6±1.2a 0.20 16.5±1.2a 0.11
CK 0 3.8±0.1c 0.44±0.10b 22.9±1.6c 14.7±1.1ab

Table 4

Effects of 6 organic acids on growth of wheat seedlings"

有机酸
Organic acid
浓度
Concentration (μg·mL-1)
根数
Number of root
根长
Length of root (cm)
根鲜重
Fresh weight of root (g)
地上部鲜重
Fresh weight of shoot (g)
Mean±SD RI Mean±SD RI Mean±SD RI Mean±SD RI
邻羟基苯甲酸
O-hydroxybenzoic acid
50.0 2.1±0.1e -0.60 3.4±0.5j -0.84 0.1±0g -0.98 0j -1.00
10.0 2.6±0.1d -0.51 6.4±0.6f -0.70 0.9±0.1f -0.84 1.9±0.1i -0.82
2.0 2.8±0.1d -0.47 13.5±0.2d -0.37 2.0±0.1e -0.64 3.4±0.2g -0.67
0.4 2.9±0.1d -0.45 17.7±0.3b -0.17 2.0±0.2e -0.64 5.0±0.6ef -0.52
0.08 3.4±0.2c -0.36 19.7±0.4b -0.08 3.3±0.2cd -0.41 6.8±0.3d -0.35
对羟基苯甲酸
P-hydroxybenzoic acid
50.0 - -1.00 - -1.00 - -1.00 - -1.00
10.0 2.1±0.1e -0.60 2.1±0.1j -0.90 0.3±0.1g -0.95 1.2±0.2i -0.88
2.0 2.9±0.1d -0.45 7.8±0.4f -0.64 1.1±0.2f -0.80 2.1±0.1h -0.80
0.4 4.1±0.1b -0.23 11.1±0.8d -0.48 2.5±0.3e -0.55 5.1±0.2f -0.51
0.08 4.2±0.1b -0.21 18.1±0.5b -0.15 3.1±0.2d -0.45 6.4±0.3de -0.38
苯甲酸
Benzoic acid
50.0 3.0±0.1cd -0.43 9.1±1.1ef -0.57 1.7±0.1e -0.70 2.7±0.2h -0.74
10.0 3.0±0.1cd -0.43 10.5±1.4e -0.51 2.1±0.1e -0.63 3.7±0.2g -0.64
2.0 3.2±0.1c -0.40 15.4±0.8d -0.28 2.2±0.1e -0.61 5.4±0.1e -0.48
0.4 3.7±0.1c -0.30 17.7±0.9c -0.17 3.6±0.2c -0.36 7.4±0.3d -0.29
0.08 4.7±0.1b -0.11 19.7±1.1b -0.08 4.7±0.3b -0.16 9.2±0.4b -0.12
3-(4-羟基-3-甲氧基苯基)-2-丙烯酸
3-(4-hydroxy-3-
methoxyphenyl)-
2-acrylic acid
50.0 2.8±0.1d -0.47 8.8±0.0f -0.59 1.0±0.0f -0.82 2.0±0.1h -0.81
10.0 3.0±0.1cd -0.43 10.4±0.1e -0.51 2.1±0.1e -0.63 3.7±0.1g -0.64
2.0 3.2±0.1cd -0.40 12.5±0.2d -0.42 2.2±0.1e -0.61 5.3±0.2e -0.49
0.4 3.7±0.1c -0.30 13.7±0.6cd -0.36 3.6±0.2c -0.36 7.4±0.2d -0.29
0.08 4.6±0.1b -0.13 15.5±0.7c -0.28 4.7±0.1b -0.16 9.2±0.2b -0.12
4-羟基-3-甲氧基-苯甲酸
4-hydroxy-3-
methoxy-
benzoic acid
50.0 2.9±0.1d -0.45 8.8±0.1f -0.59 1.0±0.1f -0.82 2.1±0.1h -0.80
10.0 3.1±0.1cd -0.42 10.5±0.2e -0.51 2.2±0.1e -0.61 3.8±0.2g -0.63
2.0 3.3±0.1c -0.38 12.7±0.4d -0.41 2.3±0.1e -0.59 5.6±0.3e -0.46
0.4 3.8±0.1c -0.28 15.8±0.9c -0.26 3.8±0.2c -0.32 7.7±0.2c -0.26
0.08 4.8±0.1b -0.09 18.8±0.4b -0.12 4.9±0.3b -0.13 9.6±0.2ab -0.08
4-甲氧基邻氨基苯甲酸
4-methoxy-
anthranilic acid
50.0 3.8±0.1c -0.28 8.9±0.5f -0.58 3.1±0.2d -0.45 7.3±0.1d -0.30
10.0 3.8±0.1c -0.28 10.6±0.7e -0.50 3.4±0.1cd -0.39 7.1±0.5d -0.32
2.0 4.6±0.1b -0.13 14.9±0.3c -0.30 4.5±0.1b -0.20 8.0±0.2c -0.23
0.4 5.1±0.1ab -0.04 16.1±0.5c -0.25 5.0±0.2ab -0.11 9.3±0.1b -0.11
0.08 5.2±0.1a -0.02 19.2±0.7b -0.10 5.3±0.3a -0.05 10.6±0.3a 0.02
CK 0 5.3±0.1a 21.4±0.2a 5.6±0.2a 10.4±0.5a

Table 5

Effects of 6 organic acids on physiological activity of wheat seedling roots"

有机酸
Organic acid
浓度
Concentration
(μg·mL-1)
根活性
Root activity
(μg·g-1·h-1)
相对电导率
Relative conductivity
(%)
SOD活性
SOD activity
(OD·g-1 FW)
POD活性
POD activity
(U·g-1 FW·min-1)
邻羟基苯甲酸
O-hydroxybenzoic acid
50.0 - - - -
10.0 36.9±0.8d 89.1±3.1a 14.4±0.9c 148.7±13.3d
2.0 52.4±1.2c 85.7±1.7a 16.5±0.5b 175.3±11.3c
0.4 81.6±0.6b 74.5±2.4b 18.3±0.6a 226.7±10.1b
0.08 88.8±2.0b 64.5±3.1c 20.2±2.0a 260.7±8.4a
对羟基苯甲酸
P-hydroxybenzoic acid
50.0 - - - -
10.0 37.8±0.7d 91.2±2.6a 14.5±0.8c 182.9±8.6c
2.0 53.6±0.4c 87.7±3.5a 16.8±0.4b 228.6±5.6b
0.4 83.5±1.2b 76.3±2.4b 16.9±0.5b 242.3±12.3b
0.08 90.9±2.6b 66.0±2.1c 18.7±0.7a 266.8±16.4a
苯甲酸
Benzoic acid
50.0 37.2±3.2d 97.7±2.0a 15.2±1.2c 159.5±13.5d
10.0 39.6±2.8d 95.5±3.5a 17.6±0.5b 191.6±12.6c
2.0 56.2±0.6c 91.9±2.6a 17.7±0.3b 239.5±8.4b
0.4 87.5±3.5b 79.9±2.7b 18.6±0.4b 243.8±10.3b
0.08 95.2±4.5a 69.2±2.4c 21.7±0.2a 279.6±12.3a
3-(4-羟基-3-甲氧基苯基)-2-丙烯酸
3-(4-hydroxy-3-methoxyphenyl)-
2-acrylic acid
50.0 36.4±2.3d 95.4±3.5a 14.9±0.4c 155.8±10.4d
10.0 38.7±2.4d 93.3±2.7a 17.2±0.3b 187.2±8.6c
2.0 54.9±3.5c 89.8±2.1a 17.3±1.2b 233.9±9.3b
0.4 85.5±3.7b 78.1±1.8b 19.2±0.2a 248.0±11.2a
0.08 93.0±5.4a 67.6±3.7c 21.2±0.6a 273.1±13.2a
4-羟基-3-甲氧基-苯甲酸
4-hydroxy-3-
methoxy-
benzoic acid
50.0 38.1±3.5d 100.0±1.2a 17.6±0.4b 163.2±15.4d
10.0 40.5±2.6d 97.8±2.5a 18.0±0.3b 196.1±20.3c
2.0 57.5±3.5c 94.1±3.8a 18.1±0.4b 245.1±12.3b
0.4 89.6±3.5b 81.8±10.2ab 20.1±0.3a 259.8±15.6a
0.08 97.5±5.1a 70.8±2.5b 22.2±0.2a 286.2±17.2a
4-甲氧基邻氨基苯甲酸
4-methoxy-anthranilic
acid
50.0 39.0±2.7d 102.3±3.0a 16.0±0.1c 167.1±15.4d
10.0 41.5±1.6d 100.1±2.8a 18.4±0.3b 200.8±11.6c
2.0 58.9±1.1c 96.3±2.7a 18.5±0.4ab 250.9±13.2b
0.4 91.7±2.4b 83.7±3.2ab 20.6±0.2a 265.9±11.5b
0.08 99.8±3.4a 72.5±1.5b 22.7±0.6a 292.9±13.4a
CK 0 99.5±2.9a 71.8±1.7b 21.4±0.5a 291.4±11.3a

Table 6

Effects of 6 organic acids on occurrence of WSB of different varieties"

有机酸
Organic acid
浓度
Concentration
(μg·mL-1)
发病率Incidence rate (%) 病情指数Disease index
良星66
Liangxing 66
石新 828
Shixin 828
邯6172
Han 6172
良星66
Liangxing 66
石新 828
Shixin 828
邯6172
Han 6172
邻羟基苯甲酸
O-hydroxybenzoic acid
0.08 41.3±1.2b 24.7±1.3c 27.5±1.1c 15.4±1.2c 12.2±0.4b 13.4±0.3b
0.4 41.8±0.3b 25.8±1.4c 27.9±1.3c 16.0±0.9c 12.3±0.5b 13.5±0.4b
2.0 41.4±1.5b 27.2±1.6bc 31.5±2.3c 17.7±0.9c 12.6±0.3b 13.4±0.5b
10.0 42.6±0.4b 29.1±1.2b 39.7±1.5b 18.2±0.6bc 12.4±0.5b 16.9±0.3a
50.0 44.8±2.1ab 30.1±2.1ab 42.1±1.6a 19.1±0.7a 13.6±0.7a 18.0±0.5a
对羟基苯甲酸
P-hydroxybenzoic acid
0.08 39.0±1.3b 26.2±1.3c 27.4±1.3c 14.7±0.6d 12.3±0.6c 13.1±0.5b
0.4 39.6±1.6b 26.4±1.5c 27.5±2.1c 14.3±0.7d 12.8±0.7b 13.1±0.6b
2.0 42.4±1.3b 27.8±2.1b 32.2±1.5c 18.1±1.1bc 12.9±0.1b 13.8±0.4b
10.0 43.6±0.8b 29.8±2.3ab 40.6±2.1ab 18.6±0.6b 12.7±0.2b 17.3±0.5a
50.0 45.9±0.7a 30.8±1.5a 43.1±1.8a 19.6±0.2a 13.2±0.4a 18.4±0.4a
苯甲酸
Benzoic acid
0.08 32.8±1.0d 23.8±1.4d 23.6±1.2e 14.0±0.4d 10.2±0.3d 10.1±0.5de
0.4 34.4±1.1d 24.0±1.6d 25.2±1.3d 14.7±0.9cd 11.5±0.3c 12.0±0.6c
2.0 33.4±1.0d 25.5±2.4c 23.0±1.6de 18.5±1.2b 12.2±0.5b 11.3±0.3c
10.0 34.6±0.9c 24.5±1.9cd 25.6±1.2d 18.1±0.7b 12.0±0.4b 11.8±0.5c
50.0 36.9±1.4bc 25.5±2.4c 25.1±1.4d 18.0±0.6b 12.5±0.6b 11.8±0.6c
3-(4-羟基-3-甲氧基
苯基)-2-丙烯酸3-(4-hydroxy-3-
methoxyphenyl)-
2-acrylic acid
0.08 33.6±1.4d 24.3±2.4d 24.1±1.2d 14.3±0.3d 10.4±0.4cd 10.3±0.4d
0.4 38.2±1.2b 27.7±1.7b 28.8±1.5c 15.0±0.6c 12.8±0.3b 13.3±0.2b
2.0 44.4±1.6ab 29.2±0.6b 33.8±1.1bc 19.0±0.4b 12.9±0.2b 14.4±0.3b
10.0 45.7±1.5a 31.2±1.3a 42.6±1.2a 19.5±0.7a 13.3±0.4a 18.2±0.4a
50.0 48.0±1.7a 32.3±1.4a 45.1±1.3a 20.5±0.8a 13.8±0.2a 19.3±0.4a
4-羟基-3-甲氧基-
苯甲酸
4-hydroxy-3-methoxy-
benzoic acid
0.08 34.4±2.3cd 24.9±1.2c 24.7±1.8d 14.7±0.6d 10.6±0.5c 11.5±0.2c
0.4 36.0±2.1bc 25.3±0.7c 25.5±1.4d 15.4±0.7c 12.1±0.5bc 12.6±0.3c
2.0 35.4±2.0c 24.9±1.3c 26.6±1.3cd 15.4±0.5c 12.7±0.4b 12.8±0.3c
10.0 36.8±1.8bc 26.9±0.5c 27.6±2.1c 16.0±0.9c 12.6±0.3b 12.6±0.2c
50.0 39.2±1.9b 26.0±0.8c 27.2±0.9c 15.5±0.5c 14.1±0.4a 12.7±0.6c
4-甲氧基邻氨基苯甲酸
4-methoxy-anthranilic
acid
0.08 35.2±1.3c 25.5±0.7c 25.3±2.4d 14.5±0.3d 10.9±0.5c 10.8±0.7d
0.4 36.9±2.1bc 29.0±1.4b 30.2±1.6c 15.7±0.9c 12.4±0.2b 12.9±0.5bc
2.0 46.5±2.8a 30.6±1.6a 35.4±2.1b 19.9±0.7a 13.0±0.5a 15.1±0.4b
10.0 47.9±1.8a 32.7±1.6a 44.6±1.6a 20.4±0.7a 14.0±0.4a 19.0±0.6a
50.0 50.3±1.9a 33.8±2.3a 47.3±1.1a 21.5±0.3a 14.4±0.4a 20.2±0.4a
CK 0 35.4±2.4c 24.4±1.3c 25.2±1.6d 14.4±0.9d 10.5±0.2c 11.6±0.3cd
[1] WITT C, CASSMAN K G, OLK D C, BIKER U, LIBOON S P, SAMSON M I, OTTOW J C. Crop rotation and residue management effects on carbon sequestration, nitrogen cycling and productivity of irrigated rice systems. Plant and Soil, 2000,225(1):263-278.
[2] SHARMA P, ABROL V, SHARMA R K. Impact of tillage and mulch management on economics, energy requirement and crop performance in maize-wheat rotation in rainfed subhumid inceptions, India. European Journal of Agronomy, 2011,34:46-51.
[3] 陈延熙, 唐文华, 张敦华, 简小鹰. 我国小麦纹枯病病原学的初步研究. 植物保护学报, 1986,13(1):39-44.
CHEN Y X, TANG W H, ZHANG D H, JIAN X Y. A preliminary study on etiology of sharp eyespot of wheat in China. Acta Phytophylacica Sinica, 1986,13(1):39-44. (in Chinese)
[4] KUMAR J, SCHÄFER P, HÜCKELHOVEN R, LANGEN G, BALTRUSCHAT H, STEIN E, NAGARAJAN S, KOGEL K H. Bipolaris sorokiniana, a cereal pathogen of global concern: Cytological and molecular approaches towards better control. Molecular Plant Pathology, 2002,3(4):185-195.
doi: 10.1046/j.1364-3703.2002.00120.x pmid: 20569326
[5] DAVAL S, LEBRETON L, GAZENGEL K, BOUTIN M, GUILLERM-ERCKELBOUDT A Y, SARNIGUET A. GThe biocontrol bacterium Pseudomonas fluorescens Pf29Arp strain affects the pathogenesis-related gene expression of the take-all fungus Gaeumannomyces graminis var. tritici on wheat roots. Molecular Plant Pathology, 2011,12:839-854.
pmid: 21726382
[6] LU L, RONG W, ZHOU R, HUO N, ZHANG Z. TaCML36, a wheat calmodulin-like protein, positively participates in an immune response to Rhizoctonia cerealis. The Crop Journal, 2019,7(5):608-618.
doi: 10.1016/j.cj.2019.02.001
[7] HAMADA M S, YIN Y N, CHEN H G, MA Z H. The escalating threat of Rhizoctonia cerealis, the causal agent of sharp eyespot in wheat. Pest Management Science, 2011,67(11):1411-1419.
pmid: 21726039
[8] YANG M M, MAVRODI D V, MAVRODI O V, BONSALL R F, PAREJKO J A, PAULITZ T C, THOMASHOW L S, YANG H T, WELLER D M, GUO J H. Biological control of take-all by fluorescent Pseudomonas spp. from Chinese wheat fields. Phytopathology, 2011,101(12):1481-1491.
doi: 10.1094/PHYTO-04-11-0096 pmid: 22070279
[9] QU T L, ZHANG J L, MENG Z L, LIU X L, CAO Y S, LI J Q, HAO J J. Metabolism of fungicide 2-allylphenol in Rhizoctonia cerealis. Ecotoxicology and Environmental Safety, 2014,102:136-141.
doi: 10.1016/j.ecoenv.2014.01.025
[10] 董金皋. 农业植物病理学. 2版. 北京: 中国农业出版社, 2007.
DONG J G. Agricultural Plant Pathology. 2nd ed. Beijing: China Agriculture Press, 2007. (in Chinese)
[11] 张雪松, 曹永胜, 曹克强. 保护性耕作与小麦主要土传病害问题和治理对策. 西北农林科技大学学报(自然科学版), 2005,33(增刊):47-48.
ZHANG X S, CAO Y S, CAO K Q. Management of wheat soil-borne diseases under the conservative farming system. Journal of Northwest Sci-Tech University of Agriculture and Forestry (Natural Science Edition), 2005,33(Suppl.):47-48. (in Chinese)
[12] LEMAŃCZYK G, KWAŚNA H. Effects of sharp eyespot (Rhizoctonia cerealis) on yield and grain quality of winter wheat. European Journal of Plant Pathology, 2013,135:187-200.
doi: 10.1007/s10658-012-0077-3
[13] BAILEY K L, LAZAROVITS G. Suppressing soil-borne diseases with residue management and organic amendments. Soil and Tillage Research, 2003,72(2):169-180.
doi: 10.1016/S0167-1987(03)00086-2
[14] GILL J S, SIVASITHAMPARAM K, SMETTEM K R J. Soil moisture affects disease severity and colonisation of wheat roots by Rhizoctonia solani AG-8. Soil Biology and Biochemistry, 2001,33(10):1363-1370.
doi: 10.1016/S0038-0717(01)00041-4
[15] CHOU C H, LIN H J. Autointoxication mechanism of Oryza sative. I. Phytotoxic effects of decomposing rice residues in soil. Journal of Chemical Ecology, 1976,2(3):353-367.
doi: 10.1007/BF00988282
[16] 张玉铭, 马永清. 麦秸覆盖夏玉米对其苗期生长发育的生化他感作用研究初报. 生态学杂志, 1994,13(3):70-72.
ZHANG Y M, MA Y Q. Alleopathic effect of wheat straw mulching on seedling growth and development of summer corn. Chinese Journal of Ecology, 1994,13(3):70-72. (in Chinese)
[17] 谢瑞芝, 李少昆, 李小君, 金亚征, 王克如, 初震东, 高世菊. 中国保护性耕作研究分析——保护性耕作与作物生产. 中国农业科学, 2007,40(9):1914-1924.
XIE R Z, LI S K, LI X J, JIN Y Z, WANG K R, CHU Z D, GAO S J. The analysis of conservation tillage in China—conservation tillage and crop production: Reviewing the evidence. Scientia Agricultura Sinica, 2007,40(9):1914-1924. (in Chinese)
[18] QI Y Z, ZHEN W C, LI H Y. Allelopathy of decomposed maize straw products on three soil-born diseases of wheat and the analysis by GC-MS. Journal of Integrative Agriculture, 2015,14(1):88-97.
doi: 10.1016/S2095-3119(14)60795-4
[19] VILLAGRASA M, GUILLAMON M, LABANDEIRA A, TABERNER A, ELJARRAT E, BARCELO D. Benzoxazinoid allelochemicals in wheat: Distribution among foliage, roots and seeds. Journal of Agricultural and Food Chemistry, 2006,54(4):1009-1015.
pmid: 16478210
[20] QIAN H F, XU X Y, CHEN W, JIANG H, JIN Y X, LIU W P, FU Z W. Allelochemical stress causes oxidative damage and inhibition of photosynthesis in Chlorella vulgaris. Chemosphere, 2009,75(3):368-375.
pmid: 19171365
[21] KHAMSSI N N, NAJAPHY A. Physiological and biochemical responses of durum wheat under mild terminal drought stress. Cellular and Molecular Biology, 2018,64(4):59-63.
pmid: 29631684
[22] TIAN X Y, HE M R, WANG Z L, ZHANG J W, SONG Y L, HE Z L, DONG Y J. Application of nitric oxide and calcium nitrate enhances tolerance of wheat seedlings to salt stress. Plant Growth Regulation, 2015,77(3):343-356.
doi: 10.1007/s10725-015-0069-3
[23] WILLIAMSON G B, RICHARDSON D. Bioassays for allelopathy: Measuring treatment responses with independent controls. Journal of Chemical Ecology, 1988,14(1):181-187.
doi: 10.1007/BF01022540 pmid: 24277003
[24] GONZALEZ T, RUÍZ Y, PÉREZ R, GARCÍA Y, FRANCO I, NOGUEIRAS C. Allelopathic activity of Sesbania rostrata Brem. before black glume weedy (red) rice (Oryza sativa L). Allelopathy Journal, 2006,18(2):134-137.
[25] NAKANO H, MORITA S, SHIGEMORI H, HASEGAWA K. Plant growth inhibitory compounds from aqueous leachate of wheat straw. Plant Growth Regulation, 2006,48(3):215-219.
doi: 10.1007/s10725-006-0006-6
[26] YE S F, ZHOU Y H, SUN Y, ZOU L Y, YU J Q. Cinnamic acid causes oxidative stress in cucumber roots, and promotes incidence of Fusarium wilt. Environmental and Experimental Botany, 2006,56:255-262.
doi: 10.1016/j.envexpbot.2005.02.010
[27] WANG X J, PETER S, LIU Z Q, ARMSTRONG R, ROCHFORT S, TANG C X. Allelopathic effects account for the inhibitory effect of field-pea (Pisum sativum L.) shoots on wheat growth in dense clay subsoils. Biology and Fertility of Soils, 2019,55(7):649-659.
doi: 10.1007/s00374-019-01384-5
[28] ZHAO X S, ZHEN W C, QI Y Z, LIU X J, YIN B Z. Coordinated effects of root autotoxic substances and Fusarium oxysporum Schl. f. sp. fragariae on the growth and replant disease of strawberry. Frontiers of Agriculture in China, 2009,3(1):34-39.
doi: 10.1007/s11703-009-0006-1
[29] 齐永志. 玉米秸秆还田的微生态效应及对小麦纹枯病的适应性控制技术[D]. 保定: 河北农业大学, 2014.
QI Y Z. Micro-ecological effect of maize straw returning to field and the adaptive control technology on wheat sheath blight[D]. Baoding: Hebei Agricultural University, 2014. (in Chinese)
[30] HE C N, GAO W W, YANG J X, BI W, ZHANG X S, ZHAO Y J. Identification of autotoxic compounds from fibrous roots of Panax quinquefolium L. Plant and Soil, 2009,318(1/2):63-72.
doi: 10.1007/s11104-008-9817-8
[31] GOSWAMI R S, PUNJA Z K. Molecular and biochemical characterization of defense responses in ginseng (Panax quinquefolius) roots challenged with Fusarium equiseti. Physiological and Molecular Plant Pathology, 2008,72(1):10-20.
doi: 10.1016/j.pmpp.2008.04.006
[32] NICOL R W, YOUSEF L, TRAQUAIR J A, BERNARDS M A. Ginsenosides stimulate the growth of soilborne pathogens of American ginseng. Phytochemistry, 2003,64(1):257-264.
pmid: 12946424
[33] WANG J L, LI X L, ZHANG J L, YAO T, WEI D, WANG Y F, WANG J G. Effect of root exudates on beneficial microorganisms— Evidence from a continuous soybean monoculture. Plant Ecology, 2012,213(12):1883-1892.
doi: 10.1007/s11258-012-0088-3
[34] 杨瑞秀, 高增贵, 姚远, 刘限, 孙淑清, 王莹. 甜瓜根系分泌物中酚酸物质对尖孢镰孢菌的化感效应. 应用生态学报, 2014,25(8):2355-2360.
pmid: 25509089
YANG R X, GAO Z G, YAO Y, LIU X, SUN S Q, WANG Y. Allelopathic effects of phenolic compounds of melon root exudates on Fusarium oxysporum f. sp. melonis. Chinese Journal of Applied Ecology, 2014,25(8):2355-2360. (in Chinese)
pmid: 25509089
[35] 郝文雅, 冉炜, 沈其荣, 任丽轩. 西瓜、水稻根分泌物及酚酸类物质对西瓜专化型尖孢镰刀菌的影响. 中国农业科学, 2010,43(12):2443-2452.
HAO W Y, RAN W, SHEN Q R, REN L X. Effects of root exudates from watermelon, rice plants and phenolic acids on Fusarium oxysporum f. sp. niveum. Scientia Agricultura Sinica, 2010,43(12):2443-2452. (in Chinese)
[36] LIU P, LIU Z H, WANG C B, GUO F, WANG M, ZHANG Y F, DONG L, WAN S B. Effects of three long-chain fatty acids present in peanut (Arachis hypogaea L.) root exudates on its own growth and the soil enzymes activities. Allelopathy Journal, 2012,29(1):13-24.
[37] CASPERSEN S, ALSANIUS B W, SUNDIN P, JENSÉN P. Bacterial amelioration of ferulic acid toxicity to hydroponically grown lettuce (Lactuca sativa L.). Soil Biology and Biochemistry, 2000,32(8/9):1063-1070.
doi: 10.1016/S0038-0717(00)00014-6
[38] CASPERSEN S, SUNDIN P, MUNRO M, AÐALSTEINSSON S, HOOKER J E, JENSÉN P. Interactive effects of lettuce (Lactuca sativa L.), irradiance, and ferulic acid in axenic, hydroponic culture. Plant and Soil, 1999,210(1):115-126.
doi: 10.1023/A:1004682018888
[39] CHEN L C, WANG S L, WANG P, KONG C H. Autoinhibition and soil allelochemical (cyclic dipeptide) levels in replanted Chinese fir (Cunninghamia lanceolata ) plantations. Plant and Soil, 2014,374(1/2):793-801.
doi: 10.1007/s11104-013-1914-7
[40] SCHMIDT S K. Degradation of juglone by soil bacteria. Journal of Chemical Ecology, 1988,14(7):1561-1571.
pmid: 24276429
[41] DONG L L, XU J, LI Y, FANG H L, NIU W H, LI X W, ZHANG Y J, DING W L, CHEN S L. Manipulation of microbial community in the rhizosphere alleviates the replanting issues in Panax ginseng. Soil Biology and Biochemistry, 2018,125:64-74.
[42] LIU S, QIN F, YU S. Eucalyptus urophylla root-associated fungi can counteract the negative influence of phenolic acid allelochemicals. Applied Soil Ecology, 2018,127:1-7.
doi: 10.1016/j.apsoil.2018.02.028
[43] CHEN S Y, GUO L Y, BAI J G, ZHANG Y, ZHANG L, WANG Z, CHEN J X, YANG H X, WANG X J. Biodegradation of p-hydroxybenzoic acid in soil by Pseudomonas putida CSY-P1 isolated from cucumber rhizosphere soil. Plant and Soil, 2014,389(1):197-210.
doi: 10.1007/s11104-014-2360-x
[44] CHEN A W, ZENG G M, CHEN G Q, FAN J Q, ZOU Z J, LI H, HU X J, LONG F. Simultaneous cadmium removal and 2,4-dichlorophenol degradation from aqueous solutions by Phanerochaete chrysosporium. Applied Microbiology and Biotechnology, 2011,91(3):811-821.
doi: 10.1007/s00253-011-3313-4 pmid: 21556917
[1] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[2] LIU ShuJun,LI DongChu,HUANG Jing,LIU LiSheng,WU Ding,LI ZhaoQuan,WU YuanFan,ZHANG HuiMin. Effects of Straw Returning and Potassium Fertilizer on Soil Aggregate and Potassium Distribution Under Rapeseed-Rice Rotation [J]. Scientia Agricultura Sinica, 2022, 55(23): 4651-4663.
[3] WANG Liang,LIU YuanYuan,QIAN Xin,ZHANG Hui,DAI HongCui,LIU KaiChang,GAO YingBo,FANG ZhiJun,LIU ShuTang,LI ZongXin. The Single Season Wheat Straw Returning to Promote the Synergistic Improvement of Carbon Efficiency and Economic Benefit in Wheat- Maize Double Cropping System [J]. Scientia Agricultura Sinica, 2022, 55(2): 350-364.
[4] ZHANG YingQiang,ZHANG ShuiQin,LI YanTing,ZHAO BingQiang,YUAN Liang. Conversion Characteristics of Different Carboxyl-Containing Organic Acids Modified Urea in Calcareous Fluvo-Aquic Soil [J]. Scientia Agricultura Sinica, 2022, 55(17): 3355-3364.
[5] TAN FengLing,ZHAN Ping,WANG Peng,TIAN HongLei. Effects of Thermal Sterilization on Aroma Quality of Flat Peach Juice Based on Sensory Evaluation and GC-MS Combined with OPLS-DA [J]. Scientia Agricultura Sinica, 2022, 55(12): 2425-2435.
[6] MA LiXiao,LI Jing,ZOU ZhiChao,CAI AnDong,ZHANG AiPing,LI GuiChun,DU ZhangLiu. Effects of No-Tillage and Straw Returning on Soil C-Cycling Enzyme Activities in China: Meta-Analysis [J]. Scientia Agricultura Sinica, 2021, 54(9): 1913-1925.
[7] JIN YuTing,LIU YunFeng,HU HongXiang,MU Jing,GAO MengYao,LI XianFan,XUE ZhongJun,GONG JingJing. Effects of Continuous Straw Returning with Chemical Fertilizer on Annual Runoff Loss of Nitrogen and Phosphorus in Rice-Rape Rotation [J]. Scientia Agricultura Sinica, 2021, 54(9): 1937-1951.
[8] Xu LI,WeiLing DONG,ALin SONG,YanLing LI,YuQiu LU,EnZhao WANG,XiongDuo LIU,Meng WANG,FenLiang FAN. Effects of Straw Addition on Soil Biological N2-Fixation Rate and Diazotroph Community Properties [J]. Scientia Agricultura Sinica, 2021, 54(5): 980-991.
[9] ZHANG GuiYun,ZHU JingWen,SUN MingFa,YAN GuoHong,LIU Kai,WAN BaiJie,DAI JinYing,ZHU GuoYong. Analysis of Differential Metabolites in Grains of Rice Cultivar Changbai 10 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(4): 675-683.
[10] WANG XinYuan,ZHAO SiDa,ZHENG XianFeng,WANG ZhaoHui,HE Gang. Effects of Straw Returning and Nitrogen Application Rate on Grain Yield and Nitrogen Utilization of Winter Wheat [J]. Scientia Agricultura Sinica, 2021, 54(23): 5043-5053.
[11] LIU Qiang,LIU JiWei,TIAN Tian,YAN Wei,LIU Bing,ZHAO SiQi,HU QiuHui,DING Chao. Dynamic Analysis for the Characteristics of Flavor Fingerprints for Brown Rice in Short-Term Storage Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2021, 54(2): 379-391.
[12] SUN YongBo,WANG Ya,SA RENNA,ZHANG HongFu. Effects of Chronic Ammonia Stress on Serum Metabolites of Broilers Based on GC-MS [J]. Scientia Agricultura Sinica, 2020, 53(8): 1688-1698.
[13] XinRun YANG,Bei XU,ZhiFeng HE,Jing WU,RuiHua ZHUANG,Chao MA,RuShan CHAI,Kianpoor Kalkhajeh Yusef,XinXin YE,Lin ZHU. Impacts of Decomposing Microorganism Inoculum on Straw Decomposition and Crop Yield in China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2020, 53(7): 1359-1367.
[14] ZHU XiaoQing,AN Jing,MA Ling,CHEN SongLing,LI JiaQi,ZOU HongTao,ZHANG YuLong. Effects of Different Straw Returning Depths on Soil Greenhouse Gas Emission and Maize Yield [J]. Scientia Agricultura Sinica, 2020, 53(5): 977-989.
[15] JIA LiGuo,SHI XiaoHua,SUYALA Qiqige,QIN YongLin,YU Jing,CHEN Yang,FAN MingShou. Potential Analysis of Organic Fertilizer Substitution for Chemical Fertilizer in Spring Wheat Regions of China [J]. Scientia Agricultura Sinica, 2020, 53(23): 4855-4865.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!