Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (3): 629-642.doi: 10.3864/j.issn.0578-1752.2021.03.016

• HORTICULTURE • Previous Articles     Next Articles

Effects of Rootstock and Scion Interaction on Salt Tolerance of Grafted Chrysanthemum Seedlings

MENG Rui(),LIU Ye,ZHAO Shuang,FANG WeiMin,JIANG JiaFu,CHEN SuMei,CHEN FaDi,GUAN ZhiYong()   

  1. College of Horticulture, Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095
  • Received:2020-05-14 Accepted:2020-08-02 Online:2021-02-01 Published:2021-02-01
  • Contact: ZhiYong GUAN E-mail:2017104098@njau.edu.cn;guanzhy@njau.edu.cn

Abstract:

【Objective】The objective of this study is to investigate the effects of Artemisia annua grafted with chrysanthemum on the salt tolerance and its interaction between the rootstocks and scions. 【Method】The physiological indexes, including the content of Na+ and K+ in the leaves and stems of chrysanthemum cutting seedlings Zhongshan Yanhong (self-rooted seedlings), self-root grafted cutting seedlings (self-grafted seedlings) and Artemisia annua rootstock grafted cutting seedlings (hetero-root grafted seedlings), were measured under 120 mmol·L-1NaCl stress. 【Result】Under NaCl stress, the damage symptom rate of hetero-root grafted seedling leaves was lower than that of self-rooted and self-grafted seedlings. The relative content of conductivity, malondialdehyde, and proline of hetero-root grafted seedlings were lower than those of self-rooted and self-grafted seedlings, and the content of chlorophyll, superoxide dismutase (SOD), and peroxidase (POD) were higher than self-rooted and self-grafted seedlings. The content of Na+ and Na+/K+ ratios of the middle and lower leaves of the hetero-root grafted seedlings showed the lowest, followed by the self-grafted seedlings, and the highest index was recorded in the self-rooted seedlings. There was no significant difference in Na+ content between the upper leaves of self-grafted seedlings and hetero-root grafted seedlings; the Na+ content of the stems above the interface of hetero-root grafted seedlings was significantly lower than that of self-grafted and self-rooted seedlings, while there was no significant difference in the Na+ content of the upper stems of self-grafted and self-rooted seedlings; the Na+ concentration and Na+/K+ of Artemisia annua stem segments below the interface were twice fold than that of the stem segments of chrysanthemum.【Conclusion】The ion transported from self-grafted seedlings of chrysanthemum to the middle and lower leaves was significantly less than that of self-rooted seedlings. The results indicated that after grafting chrysanthemum with Artemisia annua as a rootstock, the higher Na+ enrichment capacity of rootstock reduced the accumulation of Na+ in the upper part of the grafting interface, while hetero-root grafted seedlings showed stronger photosynthetic performance and antioxidant enzyme activity. Therefore, the improvement of salt tolerance of hetero-root grafted seedlings with Artemisia annua as rootstock was the combined effect of rootstock healing leading to the reduction of ions transported upward to the leaves and the accumulation of Artemisia annua rootstock with more Na+ on the rootstock.

Key words: grafting, chrysanthemum, Artemisia annua, physiological index, Na+, K+, salt tolerance

Table 1

Ratio of injured leaf area (%)"

处理
Treatment
时间 Time (d)
0 1 4 8
自根苗+NaCl
Self-rooted seedlings+NaCl
0 5.30% 7.60% 19.80%
自接苗+NaCl
Self-grafted seedlings+NaCl
0 0 0.35% 6.90%
异根嫁接苗+NaCl
Hetero-root grafted seedlings+NaCl
0 0 0 0.19%

Fig. 1

The effects of 0 NaCl (A) and 120 mmol?L-1 NaCl (B) treatment on the appearance of chrysanthemum Zhongshan Yanhong a-0, a-1, a-4, and a-8 represent the morphology of the self-rooted seedlings under 0 NaCl stress for 0, 1, 4, and 8 days, respectively; b-0, b-1, b-4 and b-8 represent the morphology of the self-grafted seedlings under 0 NaCl stress for 0, 1, 4, and 8 days, respectively; c-0, c-1, c-4 and c-8 represent the morphology of the hetero-root grafted seedlings under 0 NaCl stress for 0, 1, 4, and 8 days, respectively; d-0, d-1, d-4, d-8 represent the morphology of the self-rooted seedlings under 120 mmol?L-1 NaCl stress for 0, 1, 4, and 8 days, respectively; e-0, e-1, e-4 and e-8 represent the morphology of the self-grafted seedlings under 120 mmol?L-1 NaCl stress for 0, 1, 4, and 8 days, respectively; f-0, f-1, f-4 and f-8 represent the morphology of the hetero-root grafted seedlings under 120 mmol?L-1 NaCl stress for 0, 1, 4, and 8 days, respectively"

Fig. 2

The effects of 120 mmol·L-1 NaCl treatment on the leaf net photosynthetic rate (A), content of chlorophyll (B) of chrysanthemum Zhongshan Yanhong Different lowercase letters indicate the difference between different treatments at the same time are significant (P<0.05). The same as below"

Fig. 3

The effects of 120 mmol·L-1 NaCl treatment on the electrical conductivity and MDA content of chrysanthemum Zhongshan Yanhong"

Fig. 4

The effects of 120 mmol·L-1 NaCl treatment on the pro content of chrysanthemum Zhongshan Yanhong"

Table 2

The effect of 120 mmol·L-1 NaCl treatment on the activity of SOD, POD, CAT of chrysanthemum Zhongshan Yanhong"

指标
Index
时间
Time (d)
自根苗+CK
Self-rooted
seedlings+CK
自接苗+CK
Self-grafted
seedlings+CK
异根嫁接苗+CK
Hetero-root grafted seedlings+CK
自根苗+NaCl
Self-rooted seedlings+NaCl
自接苗+NaCl
Self-grafted seedlings+NaCl
异根嫁接苗+NaCl
Hetero-root grafted seedlings+NaCl
超氧化物歧
化酶
SOD
0 1497.541c 1723.173b 1999.418a 1565.914c 1749.872b 1926.829a
1 1515.774ab 1434.051b 1589.519a 1033.416d 1282.002c 1564.286ab
4 1437.860e 1585.461d 2110.881a 858.959f 1777.534c 1890.630b
8 1364.903c 1825.189b 2089.685a 1104.757d 1255.950c 1853.107b
过氧化物酶
POD
0 150.400ab 153.667a 147.200b 153.000a 153.100a 149.960ab
1 148.600c 153.500b 148.920bc 147.467c 159.700a 147.967c
4 152.833a 151.300ab 148.960ab 141.100c 142.500c 146.567bc
8 147.633a 148.733a 147.400a 130.700b 127.100b 144.167a
过氧化氢酶
CAT
0 30.360b 35.901a 29.672b 28.773b 31.577b 30.811b
1 27.826d 40.139c 33.855cd 34.974cd 81.653a 62.958b
4 50.822c 63.389a 57.141b 33.383d 67.180a 49.207c
8 58.834ab 65.549a 51.922bc 22.544d 50.527bc 45.853c

Fig. 5

The effects of 120 mmol·L-1 NaCl treatment on the upper leaf Na+ (A), K+ (B) content and Na+/K+ (C) of chrysanthemum Zhongshan Yanhong"

Fig. 6

The effects of 120 mmol·L-1 NaCl treatment on the middle leaf Na+ (A), K+ (B) content and Na+/K+ (C) of chrysanthemum Zhongshan Yanhong"

Fig. 7

The effects of 120 mmol·L-1 NaCl treatment on the lower leaf Na+ (A), K+ (B) content and Na+/K+ (C) of chrysanthemum Zhongshan Yanhong"

Fig. 8

The effects of 120 mmol·L-1 NaCl treatment on the upper stem Na+ (A), K+ (B) content and Na+/K+ (C) of chrysanthemum Zhongshan Yanhong"

Fig. 9

The effects of 120 mmol·L-1 NaCl treatment on the lower stem Na+ (A), K+ (B) content and Na+/K+ (C) of chrysanthemum Zhongshan Yanhong"

[1] 郝洪波. 地被小菊的特点与园林应用. 南方农业: 园林花卉版, 2007,1(6):38-40.
HAO H B. Characteristics and ground application of ground cover chrysanthemum. South China Agriculture, 2007,1(6):38-40. (in Chinese)
[2] 房伟民. 嫁接对菊花抗逆性影响及切花菊栽培技术研究[D]. 南京: 南京农业大学, 2009.
FANG W M. Effect on abiotic stress tolerance of grafting in chrysanthemum and cultivated techniques for cutting chrysanthemum[D]. Nanjing: Nanjing Agricultural University, 2009. (in Chinese)
[3] ZHANG J L, SHI H Z. Physiological and molecular mechanisms of plant salt tolerance. Photosynthesis Research, 2013,115(1):1-22.
doi: 10.1007/s11120-013-9813-6 pmid: 23539361
[4] MUNNS R, TESTER M. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 2008,59(1):651-681.
[5] ZHU J K. Plant salt tolerance. Trends in Plant Science, 2001,6(2):66-71.
[6] KRONZUCHER H J, BRITTO D T. Sodium transport in plants: Acritical review. New Phytologist, 2011,189(1):54-81.
[7] SZABADOS L, SAVOURE A. Proline: A multifunctional amino acid. Trends in Plant Science, 2010,15(2):89-97.
doi: 10.1016/j.tplants.2009.11.009 pmid: 20036181
[8] 朱士农, 郭世荣. 嫁接对盐胁迫下西瓜植株体内Na+和K+含量及其分布的影响 . 园艺学报, 2009,36(6):814-820.
ZHU S N, GUO S R. Effects of grafting on +, Na+ contents and distribution of watermelon (Citrullus vulgaris Schrad) seedlings under NaCl stress . Acta Horiculture Sinica, 2009,36(6):814-820. (in Chinese)
[9] EETAN MARIA T, MARTINEZ-RODRIGUEZ M M, PEREZ-ALFOCEA F, FLOWERS T J, BOLARIN M C . Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot. Journal of Experimental Botany, 2005,56(412):703-712.
doi: 10.1093/jxb/eri027 pmid: 15557292
[10] 雷波. 耐盐砧木通过调节Na+吸收和运转提高黄瓜耐盐性的机制研究 [D]. 武汉: 华中农业大学, 2013.
LEI B. Mechanism of salt tolerant rootstock raise the salt tolerance of cucumber through regulating the uptake transportation of Na+ [D]. Wuhan: Huazhong Agricultural University, 2013. (in Chinese)
[11] MARTINEZ-RODRIGUEZ M M, ESTA M T, MOYANO E, GARCIA-ABELLANT J O, FLORES F B, CAMPOS J F, AL- AZZAWI M J, FLOWERS T J, BOLARIN M C. The effectiveness of grafting to improve salt tolerance in tomato when an ‘excluder’ genotype is used as scion. Environmental & Experimental Botany, 2008,63(1):392-401.
[12] 杨秀玲. 黄瓜嫁接幼苗耐盐光合特性和WSC代谢生理调控研究[D]. 兰州: 甘肃农业大学, 2015.
YANG X L. Physiological regulation of salt tolerance on photosynthesis and WSC metabolism in grafted cucumber seedlings[D]. Lanzhou: Gansu Agricultural University, 2015. (in Chinese)
[13] PENELLA C, LANDI M, GUIDI L, NEBAUER S G, SAN BAUTISTA A, REMIRINI D, NALI C, LOPEZ-GALARZA S, CALATAYUD A. 盐胁迫下耐盐砧木通过保持光合能力和库强提高嫁接辣椒的产量. 刘越, 孔秋生, 译. 辣椒杂志, 2016,14(2):38-50.
PENELLA C, LANDI M, GUIDI L, NEBAUER S G, SAN BAUTISTA A, REMIRINI D, NALI C, LOPEZ-GALARZA S, CALATAYUD A. Salt-tolerant rootstocks increase the yield of grafted peppers by maintaining photosynthetic capacity and storage strength under salt stress. LIU Y, KONG Q S, Trans. Journal of China Capsicum, 2016,14(2):38-50. (in Chinese)
[14] 高俊杰, 张琳, 秦爱国, 于贤昌. 氯化钠胁迫下嫁接黄瓜叶片SOD和CAT mRNA基因表达及其活性. 应用生态学报, 2008,19(8):1754-1758.
GAO J J, ZHANG L, QIN A G, YU X C. Relative expression of SOD and CAT mRNA and activities of SOD and CAT in grafted cucumber leaves under NaCl stress. Chinese Journal of Applied Ecology, 2008,19(8):1754-1758. (in Chinese)
[15] 施先锋. 南瓜砧木嫁接提高西瓜耐冷性的生理机制及蛋白质组学研究[D]. 武汉: 华中农业大学, 2019.
SHI X F. Physiological mechanism and proteomics research of improved cold tolerance of watermelon seedlings by grafting onto pumpkin rootstock[D]. Wuhan: Huazhong Agricultural University, 2019. (in Chinese)
[16] SHAHID M A, BALAL R M, KHAN N, SIMON-GRAO S, ALFOSEA-SIMON M, CAMARA-ZAPATA J M, MATTSON N S, GARCIA-SANCHEZ F. Rootstocks influence the salt tolerance of Kinnow mandarin trees by altering the antioxidant defense system, osmolyte concentration, and toxic ion accumulation. Scientia Horticulturae, 2019,250:1-11.
[17] 林有润. 中国蒿属志—中国蒿属植物的系统分类、分布和主要经济用途. 植物研究, 1988,8(4):1-61
LIN Y R. The Chinese Artemisia Linn. -The classification, distribution and application of Artemisia Linn In China. Bulletin of Botanical Research, 1988,8(4):1-61. (in Chinese)
[18] CHEN Y, SUN X Z, ZHENG C S, ZHANG S, YANG J H. Grafting onto Artemisia annua improves drought tolerance in chrysanthemum by enhancing photosynthetic capacity. Horticultural Plant Journal, 2018,4(3):117-125.
[19] ZHANG X Y, SUN X Z, ZHANG S, YANG J H, LIU F F, FAN J. Comprehensive transcriptome analysis of grafting onto Artemisia scoparia W. to affect the aphid resistance of chrysanthemum (Chrysanthemum morifolium T.). BMC Genomics, 2019,20(1):776.
doi: 10.1186/s12864-019-6158-3 pmid: 31653200
[20] 陈思思. 嫁接缓解菊花连作障碍机制初探[D]. 南京: 南京农业大学, 2012.
CHEN S S. Effects of grafting on the relieve of continuous cropping obstacles of Chrysanthemum [D]. Nanjing: Nanjing Agricultural University, 2012.
[21] 管志勇, 陈素梅, 王艳艳, 陈发棣. 菊花近缘种属植物耐盐筛选浓度的确定及耐盐性比较. 生态学杂志, 2010,29(3):467-472.
GUAN Z Y, CHEN S M, WANG Y Y, CHEN F D. Screening of salt-tolerance concentration and comparison of salt-tolerance for chrysanthemum and its related taxa. Chinese Journal of Ecology, 2010,29(3):467-472. (in Chinese)
[22] 柏军华, 王克如, 初振东, 陈兵, 李少东. 叶面积测定方法的比较研究. 石河子大学学报(自然科学版), 2005,23(2):89-91.
BAI J H, WANG K R, CHU Z D, CHEN B, LI S D. Comparative study on the measure methods of the leaf area. Journal of Shihezi University, 2005,23(2):89-91. (in Chinese)
[23] 李志丹, 韩瑞宏, 廖桂兰, 张美华. 植物叶片中叶绿素提取方法的比较研究. 广东第二师范学院学报, 2011,31(3):80-83.
LI Z D, HAN R H, LIAO G L, ZHANG M H. A comparative study on the different extraction techniques about chlorophyll concentration of plant leaves. Journal of Guangdong University of Education, 2011,31(3):80-83. (in Chinese)
[24] SU L Y, DAI Z W, LI S H, XIN H P. A novel system for evaluating drough-cold tolerance of grapevines using chlorophyll fluorescence. BMC Plant Biology, 2015,15(1):82.
doi: 10.1186/s12870-015-0459-8
[25] 张殿忠, 汪沛洪, 赵会贤. 测定小麦叶片游离脯氨酸的方法. 植物生理学通讯, 1990(4):62-65.
ZHANG D Z, WANG P H, ZHAO H X. Determination of the content of free proline in wheat leaves. Plant Physiology Communications, 1990(4):62-65. (in Chinese)
[26] 李合生, 孙群, 赵世杰, 章文华. 植物生理实验原理与技术. 北京: 高等教育出版社, 2006: 169-170.
LI H S, SUN Q, ZHAO S J, ZHANG W H. Principles and Techniques of Plant Physiological Experiment. Beijing: Higher Education Press, 2006: 169-170. (in Chinese)
[27] 王学奎. 植物生理生化实验原理和技术. 北京: 科学出版社, 2006: 167-168, 172-173.
WANG X K. Principles and Techniques of Plant Physiological Experiment. Beijing: Science Press, 2006: 167-168, 172-173. (in Chinese)
[28] 郑书华, 蔡萍. 电感耦合等离子质谱法测定茶叶中的多种微量元素. 分析仪器, 2018,220(5):40-44.
ZHENG S H, CAI P. Determination of trace elements in tea by ICP-MS. Analytical Instrumentation, 2018,220(5):40-44. (in Chinese)
[29] 刘德兴, 荆鑫, 焦娟, 魏珉, 隋申利, 赵利华, 李艳玮, 赵娜, 巩彪, 史庆华. 嫁接对番茄产量、品质及耐盐性影响的综合评价. 园艺学报, 2017,44(6):1094-1104.
LIU D X, JING X, JIAO J, WEI M, SUI S L, ZHAO L H, LI Y W, ZHAO N, GONG B, SHI Q H. Comprehensive evaluation of yield, quality and salt stress tolerance in grafting tomato. Acta Horiculture Sinica, 2017,44(6):1094-1104. (in Chinese)
[30] 李彦, 张英鹏, 孙明, 高弼模. 盐分胁迫对植物的影响及植物耐盐机理研究进展. 中国农学通报, 2008,24(1):258-263.
LI Y, ZHANG Y P, SUN M, GAO B M. Research advance in the effects of salt stress on plant and the mechanism of plant resistance. Chinese Agricultural Science Bulletin, 2008,24(1):258-263. (in Chinese)
[31] 管志勇, 陈发棣, 滕年军, 陈素梅, 刘浦生. 5种菊花近缘种属植物的耐盐性比较. 中国农业科学, 2010,43(4):787-794.
GUAN Z Y, CHEN F D, TENG N J, CHEN S M, LIU P S. Study on the NaCl tolerance in five plant species from Dendranthema and its relatives. Scientia Agricultura Sinica, 2010,43(4):787-794. (in Chinese)
[32] 张金林, 李惠茹, 郭姝媛, 王锁民, 施华中, 韩庆庆, 包爱科, 马清. 高等植物适应盐逆境研究进展. 草业学报, 2015,24(12):220-236.
ZHANG J L, LI H R, GUO S Y, WANG S M, SHI H Z, HAN Q Q, BAO A K, MA Q. Research advances in higher plant adaptation to salt stress. Acta Prataculturae Sinica, 2015,24(12):220-236. (in Chinese)
[33] COLLA G, ROUPHAEL Y, REA E, CARDARELLI M. Grafting cucumber plants enhance tolerance to sodium chloride and sulfate salinization. Scientia Horticulturae, 2012,135:177-185.
[34] 杨立飞, 朱月林, 胡春梅, 刘正鲁, 张古文. NaCl胁迫对嫁接黄瓜膜脂过氧化、渗透调节物质含量及光合特性的影响. 西北植物学报, 2006,26(6):1195-1200.
YANG L F, ZHU Y L, HU C M, LIU Z L, ZHANG G W. Effects of NaCl stress on the contents of the substances regulating membrane lipid oxidation and osmosis and photosynthetic characteristics of grafted cucumber. Acta Botanica Boreali-Occidentalia Sinica, 2006,26(6):1195-1200. (in Chinese)
[35] 韩萌. 混合盐碱胁迫对7种禾种子萌发及生理特性的影响[D]. 哈尔滨: 哈尔滨师范大学, 2013.
HAN M. Effects of saline-alkaloid stress on the seed germination and physiological characteristics of seven grass seeds[D]. Harbin: Harbin Normal University, 2013. (in Chinese)
[36] 陈淑芳, 朱月林, 刘友良, 李式军. NaCl胁迫对番茄嫁接苗保护酶活性、渗透调节物质含量及光合特性的影响. 园艺学报, 2005,32(4):609-613.
CHEN S F, ZHU Y L, LIU Y L, LI S J. Effects of NaCl stress on activities of protective enzymes, contents of osmotic adjustment substances and photosynthetic characteristics in grafted tomato seedlings. Acta Horiculture Sinica, 2005,32(4):609-613. (in Chinese)
[37] LLOPEZ-SERRANO L, CANET-SANCHIS G, SELAK G V, PENELLA C, SAN BAUTISTA A, LOPEZ-CALARZA S, CALATAYUD A. Physiological characterization of a pepper hybrid rootstock designed to cope with salinity stress. Plant Physiology and Biochemistry, 2020,148:207-219.
[38] ZHEN A, BIE Z L, HUANG Y, LIU Z X, LI Q. Effects of scion and rootstock genotypes on the anti-oxidant defense systems of grafted cucumber seedlings under NaCl stress. Soil Science and Plant Nutrition, 2010,56(2):263-271.
[39] WANG N, QIAO W Q, LIU X H, SHI J B, XU Q H, ZHOU H, YAN G T, HUANG Q. Relative contribution of Na+/K+, homeostasis, photochemical efficiency and antioxidant defense system to differential salt tolerance in cotton (Gossypium hirsutum L.) cultivars . Plant Physiology and Biochemistry, 2017,119:121-131.
pmid: 28866234
[40] ASHRAF M, FOOLAD M R. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 2005,59(2):206-216.
[41] 杨凡. 硅肥和虫害及机械损伤对油菜抗虫性的影响[D]. 呼和浩特: 内蒙古农业大学, 2019.
YANG F. Effects of silicon fertilizer, pests and mechanical damage on insect resistance of rape[D]. Hohot: Inner Mongolia Agricultural University, 2019. (in Chinese)
[42] MUNNS R, TESTER M. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 2008,59(1):651-681.
[43] BALIBREA M E, DELL'AMICO J, BOLAR IN M C, PEREZ-ALFOCEA F. Carbon partitioning and sucrose metabolism in tomato plants growing under salinity. Physiologia Plantarum, 2000,110(4):503-511.
[44] YEO A, FLOWERS T. Plant Solute Transport. Blackwell Publishing Ltd., Oxford, UK, 2007.
[45] 李春燕, 杨廷桢, 王新平, 王淑婷, 王骞, 蔡华成, 杜学梅, 高敬东, 弓桂花. 苹果矮化中间砧对接穗品种枝条输导组织解剖结构的影响. 西北农业学报, 2019,28(3):404-411.
LI C Y, YANG T Z, WANG X P, WANG S T, WANG Q, CAI H C, DU X M, GAO J D, GONG G H. Effect of apple dwarf rootstock on anatomy structure of conducting tissue in branch of scion. Acta Agriculturae Boreali-occidentalis Sinica, 2019,28(3):404-411. (in Chinese)
[46] 阳燕娟, 郭世荣, 于文进. 嫁接对盐胁迫下西瓜幼苗体内离子和内源激素含量与分布的影响. 西北植物学报, 2015,35(3):80-87.
YANG Y J, GUO S R, YU W J. Effect of rootstock-grafting on the contents and distributions of ions and endogenous hormones in watermelon seedlings under NaCl stress. Acta Botanica Boreali-Occidentalia Sinica, 2015,35(3):80-87. (in Chinese)
[47] COBAN A, AKHOUNDNEJAD Y, DERE S, DASGAN H Y. Impact of salt-tolerant rootstock on the enhancement of sensitive tomato plant responses to salinity. Hortscience, 2020,55(1):35-39.
[48] HUANG Y, BIE Z L, LIU P Y, NIU M L, ZHEN A, LIU Z X, LEI B, GU D G, LU C, WANG B T. Reciprocal grafting between cucumber and pumpkin demonstrates the roles of the rootstock in the determination of cucumber salt tolerance and sodium accumulation. Scientia Horticulturae, 2013,149:47-54.
[49] 王幼群. 植物嫁接系统及其在植物生命科学研究中的应用. 科学通报, 2011,56(30):2478-2485.
WANG Y Q. Plant grafting and its application in biological research. Chinese Science Bulletin, 2011,56(30):2478-2485. (in Chinese)
[50] 孙敬爽, 李少峰, 董辰希, 孙长忠. 嫁接植物体中RNA分子长距离传递研究进展. 林业科学, 2014,50(11):158-165.
SUN J S, LI S F, DONG C X, SUN C Z. Research progress and prospect of long distance transmission of RNA molecules in grafted plants. Scientia Silvae Sinicae, 2014,50(11):158-165. (in Chinese)
[51] 孙静宇. 南瓜CmHKT1;1提高黄瓜嫁接苗耐盐性的机理及相关microRNAs鉴定[D]. 武汉: 华中农业大学, 2019.
SUN J Y. The mechanism of CmHKT1;1 increasing salt tolerance of grafted cucumber seedling and identification of related microRNAs[D]. Wuhan: Huazhong Agricultural University, 2019. (in Chinese)
[1] ZHANG JianJun, DANG Yi, ZHAO Gang, WANG Lei, FAN TingLu, LI ShangZhong. Influences of Mulching Periods and Nitrogen Application Rates on Maize Yield as well as Water and Nitrogen Use Efficiencies in Loess Plateau of Eastern Gansu Province [J]. Scientia Agricultura Sinica, 2022, 55(3): 479-490.
[2] HU Xin, ZHANG ZhiLiang, ZHANG Fei, DENG Bo, FANG WeiMin. Comprehensive Evaluation and Selection of Hybrid Offsprings of Large-Flowered Tea Chrysanthemum [J]. Scientia Agricultura Sinica, 2022, 55(20): 4036-4051.
[3] SHI XiaoLong,GUO Pei,REN JingYao,ZHANG He,DONG QiQi,ZHAO XinHua,ZHOU YuFei,ZHANG Zheng,WAN ShuBo,YU HaiQiu. A Salt Stress Tolerance Effect Study in Peanut Based on Peanut//Sorghum Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(15): 2927-2937.
[4] BIAN LanXing,LIANG LiKun,YAN Kun,SU HongYan,LI LiXia,DONG XiaoYan,MEI HuiMin. Effects of Trichoderma on Root and Leaf Ionic Homeostasis and Photosystem II in Chinese Wolfberry Under Salt Stress [J]. Scientia Agricultura Sinica, 2022, 55(12): 2413-2424.
[5] BI MengMeng,LIU Di,GAO Ge,ZHU PengFang,MAO HongYu. CmWRKY15-1 Regulates Resistance of Chrysanthemum White Rust Through Salicylic Acid Signaling Pathway [J]. Scientia Agricultura Sinica, 2021, 54(3): 619-628.
[6] LI JiaWei,SU JiangShuo,ZHANG Fei,FANG WeiMin,GUAN ZhiYong,CHEN SuMei,CHEN FaDi. Construction of Core Collection of Traditional Chrysanthemum morifolium Based on Phenotypic Traits [J]. Scientia Agricultura Sinica, 2021, 54(16): 3514-3526.
[7] ZHAO Juan,YIN YiZhen,WANG XiaoLu,MA ChunYing,YIN MeiQiang,WEN YinYuan,SONG XiE,DONG ShuQi,YANG XueFang,YUAN XiangYang. Physiological Response of Millet Callus with Different Herbicide-Resistance to Sethoxydim Stress [J]. Scientia Agricultura Sinica, 2020, 53(5): 917-928.
[8] LI GuiRong,QUAN Ran,CHENG ShanShan,HOU XiaoJin,FAN XiuCai,HU HuiLing. The Influencing Factors of in-vitro Ovule Development in Seedless Grape and Its Physiological Changes [J]. Scientia Agricultura Sinica, 2020, 53(22): 4646-4657.
[9] YUAN YuHao, YANG QingHua, DANG Ke, YANG Pu, GAO JinFeng, GAO XiaoLi, WANG PengKe, LU Ping, LIU MinXuan, FENG BaiLi. Salt-Tolerance Evaluation and Physiological Response of Salt Stress of Broomcorn Millet (Panicum miliaceum L.) [J]. Scientia Agricultura Sinica, 2019, 52(22): 4066-4078.
[10] LI XiaoBo,LI Zhen,DAI ShaoJun,PAN JiaoWen,WANG QingGuo,GUAN YanAn,DING GuoHua,LIU Wei. Response of Receptor-Like Protein Kinase Gene SiRLK35 of Foxtail Millet to Salt in Heterologous Transgenic Rice [J]. Scientia Agricultura Sinica, 2019, 52(22): 3976-3986.
[11] ZHANG Fei,WANG YanQiu,ZHU Kai,ZHANG ZhiPeng,ZHU ZhenXing,LU Feng,ZOU JianQiu. Comparative Transcriptome Analysis of Different Salt Tolerance Sorghum (Sorghum bicolor L. Moench) Under Salt Stress [J]. Scientia Agricultura Sinica, 2019, 52(22): 4002-4015.
[12] WANG LiFang,ZHANG XingFu. Effects of Artemisia annua Extracts on CLA Synthesis and Mechanism [J]. Scientia Agricultura Sinica, 2019, 52(18): 3271-3278.
[13] LI WanPing,LIU Min,WANG JieXing,YAO Heng,CHENG ZhengLong,DOU JunXia,ZHOU XiaoMing,FANG YuLin,SUN XiangYu. Influence of Anti-transpirant on Photosynthesis Characteristic and Qualities of Wines in Hot Climate [J]. Scientia Agricultura Sinica, 2019, 52(17): 3008-3019.
[14] MA WanRu,FANG WeiMin,WANG HaiBin,ZHANG Fei,CHEN SuMei,CHEN FaDi,GUAN ZhiYong. Establishment of Appraisal System for the Stem and Branch Characteristics and Varieties Evaluation of Spray Cut Chrysanthemum [J]. Scientia Agricultura Sinica, 2019, 52(14): 2515-2524.
[15] WEN LiZhu, SUN Xia, FAN HongMei, GUO YunHui, YU YuanYuan, REN Hong, WANG WenLi, ZHENG ChengShu. Cloning and Functional Verification of AINTEGUMENTA Gene in Chrysanthemum [J]. Scientia Agricultura Sinica, 2018, 51(9): 1771-1782.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!