Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (6): 1234-1246.doi: 10.3864/j.issn.0578-1752.2020.06.015

• HORTICULTURE • Previous Articles     Next Articles

Selected Related Genes about Incompatibility of Distant Hybridization in Paeonia by iTRAQ Analysis and Transcriptome

Dan HE1,2,DongBo XIE1,JiaoRui ZHANG1,SongLin HE1,2(),ChaoMei LI1,YunBing ZHENG1,Zheng WANG1,YiPing LIU1,Yan LI1,JiuXing LU1   

  1. 1 College of Forestry, Henan Agricultural University, Zhengzhou 450002
    2 Colleg of Horticulture Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453000, Henan
  • Received:2019-08-12 Accepted:2019-10-10 Online:2020-03-16 Published:2020-04-09
  • Contact: SongLin HE E-mail:hsl213@yeah.net

Abstract:

【Objective】Distant hybrid breeding is the main method of cultivar improvement and breeding in tree peony and herbaceous peony, while cross-incompatibility is an important restriction for breeding rapid development. Based on the previous researches, the analysis on different protein of stigma in pollen-stigma interaction and transcriptome was further explored. The mechanism of cross-incompatibility between tree peony and herbaceous peony was revealed, so as to provide the theoretical support for hybridized breeding.【Method】The stigmas of combinations Paeonia lactiflora ‘Fenyunu’ × P. lactiflora ‘Fenyunu’ and P. lactiflora ‘Fenyunu’ × P. ostii ‘Fengdanbai’ were harvested at 24 h after pollination, which were used as materials for isobaric tags and analysis for relative and absolute quantitation (iTRAQ) and transcriptome, respectively. Bioinformatics was analyzed on the data of protein and transcriptome. Quantitative Real-time PCR (qRT-PCR) technique was used to validate the expression data of selected differentially expressed genes (DEGs). 【Result】iTRAQ was used to analyze DEPs of stigma of distant hybrid between tree peony and herbaceous peony, and the result showed that 685 DEPs were belonged to 188 pathways, in which 18 pathways were significantly enriched. There were four pathways with obvious difference in protein, including RNA degradation, mitogen-activated protein kinase (MAPK) signaling pathway, calcium signaling pathway, and phosphatidylinositol signaling system. In RNA degradation pathway, enolase, DnaK (HSP70), and GroEL (HSP60) were all down-regulated. In calcium signaling pathway, calmodulin (CALM) was down-regulated, while adenine nucleotide translocase (ANT) was up-regulated. In MAPK signaling pathway, Glyoxalase (GloI) was down-regulated. In phosphatidylinositol signaling system, CALM was also down-regulated. 6 genes were selected randomly to confirmed their expression by qRT- PCR, and the result showed that the expression profiles of the selected genes was in agreement with the results from protein analysis, and they were all down-regulated. A total of 52 998 annotated Unigenes were obtained by transcriptome sequencing, accounting for 40.37% of all Unigenes. Based on the RPKM (Reads Per Kilobase per Million) of six samples, 16 224 DEGs were obtained, among which13 61 were up-regulated, and 2 863 were down-regulated. Based on pathway enrichment analysis of DEGs, it indicated that the level of enrichment of DEGs in “Oxidative phosphorylation”, “ABC transporters” and “Biosynthesis of secondary metabolites” pathways were more significant and reliable than that of selfing. The genes related with incompatibility of distant hybridization were CalS-5, CalS-12 (Callose enzyme), and SPL, which were up regulating expression, but ABCF that was down regulating expression. 【Conclusion】In the data of transcriptome and protein, 6 proteins and 4 genes were closely related to incompatibility of distant hybridization. These proteins and genes might play an important role in incompatibility of distant hybridization.

Key words: Paeonia suffruticosa, Paeonia lactiflora, iTRAQ, transcriptome, distant hybridization

Table 1

List of the expression profiles selected for confirmation by qRT-PCR"

差异蛋白登记号
DEP Accessions
基因ID
Gene ID
引物序列(5′-3′)
Primer sequence (5′-3′)
gi|327424468_1 JI445505 F:TGCTCTCACCTCTCTCCCAAAC
R:GCCTTGCCTTGACGCTCTTG
gi|327436891_2 JI457928 F:GTGCTTCAAGGTGAGAGAGAGTTC
R:GCCGAGACAGATAGGATACCATTG
gi|327427673_4 JI448710 F:CGTGTTTGTAGGATTCGTTACTGC
R:ACGCCATCGGTAGTTGCTTTC
gi|327426876_5 JI447913 F:TTAGCACCAGCACCTTTGAACAG
R:ACCGTCCGAAGAAGAATGATGATG
gi|327427197_1 JI448234 F:GGACCAAAACGGCTTCATTTCTG
R:CTCGTCTACTTCCTCATCTGTCAG
gi|327433480_5 JI454517 F:CTTCAGGTCCATAGCCCATCATTG
R:GTGTCAAGTAATGCTCCGAGTAGG

Table 2

DEPs pathway involved in cross-incompatibility"

通路
Pathway
差异蛋白数
DEPs
通路编号
Pathway ID
RNA降解 RNA degradation 14 (2.05%) ko03018
MAPK信号途径 MAPK signaling pathway 9 (1.32%) ko04010
钙信号途径 Calcium signaling pathway 4 (0.59%) ko04020
磷脂酰肌醇信号系统
Phosphatidylinositol signaling system
1 (0.18%) ko04070

Table 3

DEPs involved in cross-incompatibility"

通路
Pathway
差异蛋白名称
DEP name
注释的差异基因
Different genes with pathway annotation
通路编号
Pathway ID
RNA降解RNA degradation 烯醇酶Enolase,热休克蛋白 DnaK,病菌抗原GroEL 7 ko03018
MAPK信号途径MAPK signaling pathway 乙二醛酶Ⅰ GloI 2 ko04010
钙信号途径Calcium signaling pathway 腺苷酸转运酶 ANT,钙调蛋白 CALM 2 ko04020
磷脂酰肌醇信号系统Phosphatidylinositol signaling system 钙调蛋白 CALM 1 ko04070

Table 4

The differentially expressed genes correlation with cross-incompatibility"

基因ID
Gene ID
KEGG
GO注释
GO pathway
Swissprot
基因名称
Gene name
表达量
Expression
CL268_All K11000/胼胝质酶
Callose enzyme
GO:0006075/1,3-β-D-葡聚糖生物合成过程
Biosynthesis of 1,3-β-D-glucan
GO:0003843/1,3-β-D-葡聚糖合成酶活性
1,3-β-D-glucan synthetase activity
GO:0016021/膜的整体组成部分
Integral part of membrane
GO:0000148/1,3-D-葡聚糖合成酶复合物
1,3-β-D-glucan synthetase complex
胼胝质合酶5
Callose synthase 5
CalS-5 上调
Up
Unigene36776_All 胼胝质合酶12
Callose synthase 12
CalS-12
CL8637_All ko6158/ATP结合盒
ATP-binding cassette
GO:0046686/对镉离子的反应
Reaction to cadmium ion
GO:0005524/ATP结合 ATP binding
GO:0005829/细胞质 Cytoplasm
GO:0042742/防御对细菌的反应
Defense against bacterial reactions
GO:0016887/ATP酶活性
ATP enzyme activity
ABC transporter F family member 3 ABCF 下调
Down
CL7449_All ko04075/植物激素信号转导 Phytohormone signal transduction
ko01001/蛋白激酶
Protein kinase
GO:0046872/结合重金属离子
Binding heavy metal ions
GO:0003677/DNA结合核
DNA binding nucleus
Squamosa promoter- binding-like protein 16 SPL 上调
Up

Fig. 1

Alignment of CL268_All with amino acid sequences encoded by homologous genes"

Fig. 2

Alignment of Unigene36776_All with amino acid sequences encoded by homologous genes"

Fig. 3

Alignment of CL8637_All with amino acid sequences encoded by homologous genes"

Fig. 4

Alignment of CL7449_All with amino acid sequences encoded by homologous genes"

Fig. 5

qRT-PCR Results of 6 genes (JI445505, JI457928, JI448710, JI447913, JI448234 and JI454517)"

[1] 文书生, 何绒绒, 郑家康, 田如男 . 牡丹组织培养技术研究进展. 林业科学, 2018,54(10):143-155.
WEN S S, HE R R, ZHENG J K, TIAN R N . Research advances in tissue culture of tree peony. Scientia Silvae Sinicae, 2018,54(10):143-155. (in Chinese)
[2] 景士西 . 园艺植物育种学总论. 北京: 中国农业出版社, 2000: 144-173.
JING S X . Horticultural Plant Breeding General. Beijing: China Agriculture Press, 2000: 144-173. (in Chinese)
[3] 贺丹, 解梦珺, 吕博雅, 王政, 刘艺平, 何松林 . 牡丹与芍药的授粉亲和性表现及其生理机制分析. 西北农林科技大学学报(自然科学版), 2017,46(10):129-1360.
HE D, XIE M J, LV B Y, WANG Z, LIU Y P, HE S L . Analysis of pollination affinity performance and its physiological mechanism inPaeonia suffruticosa and Paeonia lactiflora. Journal of Northwest A & F University (Natural Science Edition), 2017,46(10):129-136. (in Chinese)
[4] 何桂梅, 成仿云 . 牡丹的杂交育种及其最新进展//中国观赏园艺研究进展. 北京: 中国林业出版社, 2004: 149-155.
HE G M, CHENG F Y . Crossbreeding of Paeonia suffruticosa and its latest progress//Advances in Ornamental Horticulture in China. Beijing: China Forestry Press, 2004: 149-155. (in Chinese)
[5] 贺丹, 王雪玲, 高小峰, 吕博雅, 刘艺平, 何松林 . 牡丹芍药远缘杂交亲和性. 东北林业大学学报, 2014,42(7):65-68.
HE D, WANG X L, GAO X F, LV B Y, LIU Y P, HE S L . Intergeneric cross-compatibility between peonies. Journal of Northeast Forestry University, 2014,42(7):65-68. (in Chinese)
[6] 张振乾, 肖钢, 春云, 邬贤梦, 熊兴华, 李云昌, 胡琼, 陈社员 . 利用转录组及iTRAQ技术筛选高油酸油菜抗病相关基因. 华北农学报, 2015,30(5):16-24.
ZHANG Z Q, XIAO G, CHUN Y, WU X M, XIONG X H, LI Y C, HU Q, CHEN S Y . The study of high oleic acid rapeseed disease resistance related genes by transcriptome and iTRAQ analysis. Acta Agriculturae Boreali-Sinica, 2015,30(5):16-24. (in Chinese)
[7] 汪宝卿, 解备涛, 张海燕, 董顺旭, 段文学, 王庆美, 张立明 . 基于iTRAQ技术的不同耐旱性甘薯苗期根系差异蛋白分析. 核农学报, 2017,31(10):1904-1912.
WANG B Q, XIE B T, ZHANG H Y, DONG S X, DUAN W X, WANG Q M, ZHANG L M . Analysis of differential proteome in roots during seedling stage of sweetpotato with different drought tolerance based on iTRAQ method. Acta Agriculturae Nucleatae Sinica, 2017,31(10):1904-1912. (in Chinese)
[8] 于涛, 李耕, 刘鹏, 董树亭, 张吉旺, 赵斌 . 蛋白质组学分析揭示玉米籽粒发育过程中胁迫相关蛋白的表达特性. 中国农业科学, 2017,50(11):2114-2128.
YU T, LI G, LIU P, DONG S T, ZHANG J W, ZHAO B . Proteomic analysis of maize reveals expression characteristics of stress-related proteins during grain development. Scientia Agricultura Sinica, 2017,50(11):2114-2128. (in Chinese)
[9] 赵振利, 童琳琳, 邓敏捷, 董焱鹏, 范国强 . 泡桐丛枝病发生过程中的蛋白质组学研究. 西南林业大学学报, 2018,38(4):23-28.
ZHAO Z L, TONG L L, DENG M J, DONG Y P, FAN G Q . Proteomic study on the occurrence of Paulownia witches broom disease. Journal of Southwest Forestry College, 2018,38(4):23-28. (in Chinese)
[10] 谢秀枝, 王欣, 刘丽华, 董世雷, 皮雄娥, 刘伟 . iTRAQ技术及其在蛋白质组学中的应用. 中国生物化学与分子生物学报, 2011,20(7):616-621.
XIE X Z, WANG X, LIU L H, DONG S L, PI X E, LIU W . iTRAQ technology and its application in proteomics. Chinese Journal of Biochemistry and Molecular Biology, 2011,20(7):616-621. (in Chinese)
[11] 程云清, 齐名, 赵永斌, 邢继洋, 刘剑锋 . 榛子正常发育与败育子房差异蛋白谱对比分析. 北京林业大学学报, 2018,40(3):13-25.
CHENG Y Q, QI M, ZHAO Y B, XING J Y, LIU J F . Comparative studies on differently expressed proteomes of developing and abortive ovary in hazelnut. Journal of Beijing Forestry University, 2018,40(3):13-25. (in Chinese)
[12] CHALIVENDRA S C, LOPEZ-CASADO G, KUMAR A, KASSENBROCK A R, ROYER S TOVAR-MÈNDEZ A, COVEY P A, DEMPSEY L A, RANDLE A M, STACK S M, ROSE J K C, MCCLURE B, BEDINGER P A . Developmental onset of reproductive barriers and associated proteome changes in stigma/styles of Solanum pennellii. Journal of Experimental Botany, 2013,64(1):265-279.
[13] LI M, WANG K, LI S Q, YANG P F . Exploration of rice pistil responses during early post-pollination through a combined proteomic and transcriptomic analysis. Journal of Proteomics, 2016,131:214-226.
[14] 杨楠, 赵凯歌, 陈龙清 . 蜡梅花转录组数据分析及次生代谢产物合成途径研究. 北京林业大学学报, 2012,34(1):104-107.
YANG N, ZHAO K G, CHEN L Q . Deep sequencing-based transcriptome profiling analysis of Chimonanthus praecox reveals insights into secondary metabolites biosynthesis. Journal of Beijing Forestry University, 2012,34(1):104-107. (in Chinese)
[15] 钮世辉, 袁虎威, 陈晓阳, 李伟 . 油松雌雄球花高通量基因表达谱芯片分析. 林业科学, 2013,49(9):46-51.
NIU S H, YUAN H W, CHEN X Y, LI W . Microarray analysis of large scale gene expression profiles between male and female cones of Pinus tabulaeformis. Scientia Silvae Sinicae, 2013,49(9):46-51. (in Chinese)
[16] 孙颖, 谭晓风, 罗敏, 李建安 . 油桐花芽2个不同发育时期转录组分析. 林业科学, 2014,50(5):70-74.
SUN Y, TAN X F, LUO M, LI J A . The sequencing analysis of transcriptome of Vernicia fordii flower buds at two development stages. Scientia Silvae Sinicae, 2014,50(5):70-74. (in Chinese)
[17] ZHOU Q Y, JIA J T, HUANG X, YAN X Q, CHENG L Q, CHEN Y, LI X X, NG A J, LIU G S . The large-scale investigation of gene expression in Leymus chinensis stigmas provides a valuable resource for understanding the mechanisms of poaceae self-incompatibility. BMC Genomics, 2014,15(1):399.
[18] 贺丹, 李睿, 纪思羽, 吴静, 王政, 刘艺平, 何松林 . 牡丹不定根形成相关基因PsARRO-1的克隆及表达分析. 植物生理学报, 2014,50(8):1151-1158.
HE D, LI R, JI S Y, WU J, WANG Z, LIU Y P, HE S L . Cloning and expression analysis of adventitious rooting related gene PsARRO-1 of tree peony. Plant Physiology Communications, 2014,50(8):1151-1158. (in Chinese)
[19] 崔海芳, 张凡, 尹俊龙, 郭瑛琪, 岳艳玲 . 胼胝质沉积与花粉发育. 云南农业大学学报(自然科学), 2017,32(3):551-557.
CUI H F, ZHANG F, YIN J L, GUO Y Q, YUE Y L . Callose deposition and pollen development. Journal of Yunnan Agricultural University (Natural Science), 2017,32(3):551-557. (in Chinese)
[20] 李明, 李长生, 赵传志, 李爱芹, 王兴军 . 植物SPL转录因子研究进展. 植物学报, 2013,48(1):107-116.
LI M, LI C S, ZHAO C Z, LI A Q, WANG X J . Research advances in plant SPL transcription factors. Chinese Bulletin of Botany, 2013,48(1):107-116. (in Chinese)
[21] SHEORAN I S, PEDERSEN E J, ROSS A R S, SAWHNEY V K, . Dynamics of protein expression during pollen germination in canola ( Brassica napus). Planta, 2009,230(4):779-793.
[22] 陶璐, 岳训 . 拟南芥花粉管与柱头互作的乙醇代谢耦合模型. 生物信息学, 2015,13(1):47-53.
TAO L, YUE X . Ethanol metabolism coupling model between Arabidopsis pollen tube and stigma. Chinese Journal of Bioinformatics, 2015,13(1):47-53. (in Chinese)
[23] 于晓英, 卢向阳, 陈永华, 李达, 姚觉, 张宏志 . 瓜叶菊热胁迫下的基因差异表达. 农业生物技术学报, 2007,15(3):459-463.
YU X Y, LU X Y, CHEN Y H, LI D, YAO J, ZHANG H Z . Differential gene expression of Senecio×hybridus under heat stress. Journal of Agricultural Biotechnology, 2007,15(3):459-463. (in Chinese)
[24] QIN Y, YANG Z B . Rapid tip growth: insights from pollen tubes. Seminars in Cell & Developmental Biology, 2011,22(8):816-824.
[25] 陈坤明 . 磷酸肌醇信号途径对青扦花粉萌发和花粉管发育的调控作用及芦苇叶细胞壁结构的生理生态学研究[D]. 北京: 中国科学院, 2006.
CHEN K M . The mechanism of phosphoinositide signaling pathway involved in pollen germination and pollen tube growth of Picea wilsonii and the ecophysiology of cell wall in the reed leaves[D]. Beijing: Chinese Academy of Sciences, 2006. (in Chinese)
[26] SALEM T, MAZZELLA A, BARBERINI M L, WENGIER D, MOTILLO V, PARISI G, MUSCHIETTI J . Mutations in two putative phosphorylation motifs in the tomato pollen receptor kinase LEPRK2 show antagonistic effects on pollen tube length. Journal of Biological Chemistry, 2011,286(6):4882-4891.
[27] LI S, SAMAJ J, FRANKLIN-TONG V E . A mitogen-activated protein kinase signals to programmed cell death induced by self-incompatibility in Papaver pollen. Plant Physiology, 2007,145(1):236-245.
[28] 叶芯妤, 邱雪梅, 王月, 李忠光 . 乙二醛酶系统及其在植物响应和适应环境胁迫中的作用. 植物生理学报, 2019,55(4):401-410.
YE X Y, QIU X M, WANG Y, LI Z G . Glyoxalase system and its role in response and adaptation of plants to environmental stress. Plant Physiology Journal, 2019,55(4):401-410. (in Chinese)
[29] SINGLA-PAREEK S L, REDDY M K, SOPORY S K . Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2003,100(25):14672-14677.
[30] HAFERKAMP I, HACKSTEIN J H P, VONCKEN F G J, SCHMIT G, TJADEN J . Functional integration of mitochondrial and hydrogenosomal ADP/ATP carriers in the Escherichia coli membrane reveals different biochemical characteristics for plants, mammals and anaerobic chytrids. The Federation of European Biochemical Societies, 2010,269(13):3172-3181.
[31] 杜玉虎, 张绍铃 . 温度对果梅离体花柱S-RNase识别特异性的影响. 中国农业科学, 2008,41(9):2734-2740.
DU Y H, ZHANG S L . Effects of temperature on recognition specificity of stylar S-RNase in vitro in Prunus mume. Scientia Agricultura Sinica, 2008,41(9):2734-2740. (in Chinese)
[32] 吴巨友, 李启明, 王鹏, 张绍铃 . 梨自交不亲和性反应S-RNase新靶点—微丝骨架. 南京农业大学学报, 2018,41(5):7-9.
WU J Y, LI Q M, WANG P, ZHANG S L . Actin cytoskeleton is a new target of S-RNase in self-incompatibility of pear. Journal of Nanjing Agricultural University, 2018,41(5):7-9. (in Chinese)
[33] 孟冬 . 苹果MdABCF转运S-RNase至花粉管影响自交不亲和反应[D]. 北京: 中国农业大学, 2014.
MENG D . Apple MdABCF transport S-RNase into pollen tube effecting self-incompatibility[D]. Beijing: China Agriculture University, 2014. (in Chinese)
[1] YOU YuWan,ZHANG Yu,SUN JiaYi,ZHANG Wei. Genome-Wide Identification of NAC Family and Screening of Its Members Related to Prickle Development in Rosa chinensis Old Blush [J]. Scientia Agricultura Sinica, 2022, 55(24): 4895-4911.
[2] YOU JiaLing,LI YouMei,SUN MengHao,XIE ZhaoSen. Analysis Reveals the Differential Expression of Genes Related to Starch Accumulation in Chloroplast of Leaf with Different Ages in Pinot Noir Grape [J]. Scientia Agricultura Sinica, 2022, 55(21): 4265-4278.
[3] SUN BaoJuan,WANG Rui,SUN GuangWen,WANG YiKui,LI Tao,GONG Chao,HENG Zhou,YOU Qian,LI ZhiLiang. Transcriptome and Metabolome Integrated Analysis of Epistatic Genetics Effects on Eggplant Peel Color [J]. Scientia Agricultura Sinica, 2022, 55(20): 3997-4010.
[4] LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035.
[5] ZHANG XiaoPing,SA ShiJuan,WU HanYu,QIAO LiYuan,ZHENG Rui,YAO XinLing. Leaf Stomatal Close and Opening Orchestrate Rhythmically with Cell Wall Pectin Biosynthesis and Degradation [J]. Scientia Agricultura Sinica, 2022, 55(17): 3278-3288.
[6] GUO YongChun, WANG PengJie, JIN Shan, HOU Binghao, WANG ShuYan, ZHAO Feng, YE NaiXing. Identification of Co-Expression Gene Related to Tea Plant Response to Glyphosate Based on WGCNA [J]. Scientia Agricultura Sinica, 2022, 55(1): 152-166.
[7] HuaZhi CHEN,YuanChan FAN,HaiBin JIANG,Jie WANG,XiaoXue FAN,ZhiWei ZHU,Qi LONG,ZongBing CAI,YanZhen ZHENG,ZhongMin FU,GuoJun XU,DaFu CHEN,Rui GUO. Improvement of Nosema ceranae Genome Annotation Based on Nanopore Full-Length Transcriptome Data [J]. Scientia Agricultura Sinica, 2021, 54(6): 1288-1300.
[8] DU Yu,ZHU ZhiWei,WANG Jie,WANG XiuNa,JIANG HaiBin,FAN YuanChan,FAN XiaoXue,CHEN HuaZhi,LONG Qi,CAI ZongBing,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui. Construction and Annotation of Ascosphaera apis Full-Length Transcriptome Utilizing Nanopore Third-Generation Long-Read Sequencing Technology [J]. Scientia Agricultura Sinica, 2021, 54(4): 864-876.
[9] ZHAO WeiSong,GUO QingGang,DONG LiHong,WANG PeiPei,SU ZhenHe,ZHANG XiaoYun,LU XiuYun,LI SheZeng,MA Ping. Transcriptome and Proteome Analysis of Bacillus subtilis NCD-2 Response to L-proline from Cotton Root Exudates [J]. Scientia Agricultura Sinica, 2021, 54(21): 4585-4600.
[10] LIU Lian,TANG ZhiPeng,LI FeiFei,XIONG Jiang,LÜ BiWen,MA XiaoChuan,TANG ChaoLan,LI ZeHang,ZHOU Tie,SHENG Ling,LU XiaoPeng. Fruit Quality in Storage, Storability and Peel Transcriptome Analysis of Rong’an Kumquat, Huapi Kumquat and Cuimi Kumquat [J]. Scientia Agricultura Sinica, 2021, 54(20): 4421-4433.
[11] LIN Bing,CHEN YiQuan,ZHONG HuaiQin,YE XiuXian,FAN RongHui. Analysis of Key Genes About Flower Color Variation in Iris hollandica [J]. Scientia Agricultura Sinica, 2021, 54(12): 2644-2652.
[12] QIN QiuHong,HE XuJiang,JIANG WuJun,WANG ZiLong,ZENG ZhiJiang. The Capping Pheromone Contents and Putative Biosynthetic Pathways in Larvae of Honeybees Apis cernana [J]. Scientia Agricultura Sinica, 2021, 54(11): 2464-2475.
[13] LONG Qin,DU MeiXia,LONG JunHong,HE YongRui,ZOU XiuPing,CHEN ShanChun. Effect of Transcription Factor CsWRKY61 on Citrus Bacterial Canker Resistance [J]. Scientia Agricultura Sinica, 2020, 53(8): 1556-1571.
[14] CaiLing TENG,Xi ZHONG,HaoDi WU,Yan HU,ChangYong ZHOU,XueFeng WANG. Biologic and Transcriptomic Analysis of Citrus hystrix Responses to ‘Candidatus Liberibacter asiaticus’ at Different Infection Stages [J]. Scientia Agricultura Sinica, 2020, 53(7): 1368-1380.
[15] KunNeng ZHOU,JiaFa XIA,Peng YUN,YuanLei WANG,TingChen MA,CaiJuan ZHANG,ZeFu LI. Transcriptome Research of Erect and Short Panicle Mutant esp in Rice [J]. Scientia Agricultura Sinica, 2020, 53(6): 1081-1094.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!