Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (18): 3818-3832.doi: 10.3864/j.issn.0578-1752.2020.18.016

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Cloning and Function Analysis of MsNST in Lignin and Cellulose Biosynthesis Pathway from Alfalfa

JIANG Xu(),CUI HuiTing,WANG Zhen,ZHANG TieJun,LONG RuiCai,YANG QingChuan,KANG JunMei()   

  1. Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193
  • Received:2019-10-08 Accepted:2019-12-26 Online:2020-09-16 Published:2020-09-25
  • Contact: JunMei KANG E-mail:jiangxu2009@yeah.net;kangjunmei@caas.cn

Abstract:

【Objective】Lignin and cellulose, one of the main components in the secondary cell wall of higher planta, are one of the important factors affecting the quality and digestibility of legume forage alfalfa. The model plant, Arabidopsis thaliana, NST genes belong to the NAC transcription factor family were shown to have a key role in regulating secondary cell wall biosynthesis. However, the function of MsNST in alfalfa was still elusive. In this study, the aim was to investigate the expression patterns of MsNST gene induced by exogenous hormones and its function in lignin and cellulose biosynthesis pathway. 【Method】MsNST was isolated from alfalfa by homology-based cloning. Bioinformatic analysis was conducted by online tools. In order to investigate the functions of MsNST in cell wall cellulose and lignin synthesis pathway, overexpression of MsNST in transgenic alfalfa plants was programed. In this study, qRT-PCR was applied to reveal the expression pattern of genes related to lignin and cellulose biosynthesis pathway, and expression level under gibberellin (GA3), salicylic acid (SA) and paclobutrazol (PCB) treatments. 【Result】 An open reading frame (ORF) of 945 bp encoding MsNST with 314 amino acids was cloned. The similarity analysis of amino acid showed both MsNST and AtNST1-3 shared high sequence homology (from 49% to 55.9%) containing five typical NAC conservation subdomains. Bioinformatic analysis indicated that MsNST was mainly constituted by the random coil (60.83%), and a comparative protein modeling implied that homodimer might promote protein-protein interaction. Phylogenetic analysis revealed that MsNST widely expressed in higher plant species from monocot to dicot. The increased MsNST expression levels were detected with GA3, SA, and PCB (2.19- 3.67 times at 12h) treatment. Overexpression of MsNST in Arabidopsis resulted in shortening of hypocotyl axis, semi-dwarf and interfascicular fiber cell wall thickening and the accumulation of lignin (11.7%), cellulose (13%) and total sugar (7%) compared with wide type. Otherwise, the expression level of other genes in lignin and cellulose biosynthesis pathway, including PAL1, 4CL1, and CesAs were detected by qRT-PCR and the results determined these genes were up-regulated in transgenic plants compared with the control. 【Conclusion】MsNST was inducible by GA3, SA, and PCB, and the overexpression of MsNST in transgenic plants triggered the expression of key genes related to secondary cell wall synthesis, and led to shortened hypocotyl, semi-dwarf and thickened interfascicular fiber cell wall. Additionally, overexpression MsNST accumulated the content of lignin, cellulose and total sugar. These findings suggested that MsNST might play a crucial role in cell wall lignin and cellulose synthesis pathway.

Key words: alfalfa, transcription factor, secondary wall, cellulose, lignin

Fig. 1

Cellulose and lignin biosynthesis pathway A.Schematic diagram of cellulose synthesis; B. Schematic diagram of lignin monomer synthesis. CesA, Cellulose Synthase. PAL: phenylalanine ammonia-lyase, C4H: Cinnamate-4-hydrolylase. 4CL: 4-coumarate coenzyme A ligase, COMT: caffeic acid 3-O-methyltransferase. CCR: cinnamyl coenzyme A reductase"

Table 1

Primer sequences used in this study"

引物 Primer 核酸序列(5′-3′) Nucleotide sequence (5′-3′) 功能 Function 文献Reference
MsNST-f TCAACTTTTTGGGTCCCTTGTG MsNST克隆
Cloning of MsNST
MsNST-r TCACCACATGCTATCACCATTG
actin-2s CAAAAGATGGCAGATGCTGAGGAT 内参基因
Reference gene Actin
actin-2a CATGACACCAGTATGACGAGGTCG
qNST-f TCATCTCAAAACCCTAGACAGCCC 实时定量PCR
qRT-PCR
qNST-r GTAATTTGCTTCATAATTCTCTTCCTTG
Ntest-f GCACAATCCCACTATCCTTCG 转基因拟南芥阳性鉴定Identification of transgenic lines
Ntest-r AGTTTTTTGATTTCACGGGTTGGGG
W-NST-F CATTTGGAGAGAACACGGGGGACTCTAGAATGCCTGATAACATGAGTATAT Pbi121-MsNST超表达载体构建
Construction of Pbi121-MsNST overexpression vector
W-NST-R AACATAAGGGACTGACCACCCGGGGATCCTCACCACATGCTTATCAC CATT
Atact-f GCAACATACGACGAAATCAAGAA qRT-PCR内参基因
Actin gene for qRT-PCR
[18]
[19]
[20]
[21]
Atact-r CGACACGAGAACTGTAACCCC
AtPAL1-f ATGGAGATTAACGGGGCACAC 木质素与纤维素合成相关基因的表达分析
Expression analysis of lignin and cellulose biosynthesis related to genes
AtPAL1-r GTACCGCCGAGAACACCGCC
At4CL1-f GATTTGAGCTCGATAAGAGTGGTG
At4CL1-r ATTTGCTAGTTTTGCCCTCA
AtCESA4-f ATTCTGGGTGATTGGCGG
AtCESA4-r AATAATGAGAGTTGTCGGAGGG
AtCESA7-f TTCTTGCCTACTGTATCCTTCC
AtCESA7-r GCTAACTCCGCTCCATCTCA
AtCESA8-f CATCCCAACGCTATCAAACCTA
AtCESA8-r CTGAGACACCTCCAATAACCCA
MsCESA3-f TCGATGGGCTTTAGGTTCAG
MsCESA3-r TGAGAAGAGGAATGGAAGTG
MsCESA6-f CCCTCTTCATATCCATCGCAG
MsCESA6-r CACCTCCAATCACCCAAAAC
MsCESA7-f GATGAAGCAAGACAACCACTG
MsCESA7-r CTGGGTTCATAAGTCTGTATCGG
MsPAL-f ATGAGGTGAAGCGTATGGTG
MsPAL-r CATCCCTAGCAGATTCAGACAG
Ms4CL-f TTCACGTCCTTGCCTCATCA
Ms4CL-r CCAAGTTTGTTGAGACCGGAGG
MsCOMT-f AAAGTGATTGTGGCAGAATGCA
MsCOMT-r TTTTGTGGCCAGGCTTGAA

Fig. 2

Cloning of MsNST from alfalfa A: PCR amplification of MsNST; B: Nucleic acid and deduced amino acid sequences of MsNST"

Fig. 3

Bioinformatics analysis of MsNST A: Hydrophilicity of MsNST protein predicted by Protscale; B: Non-transmamrane domain for MsNST protein predicted by TMHMM; C: Secondary structure of MsNST predicted by SOPMA; D: Prediction and construction of MsNST tertiary structure by SWISS-MODEL; E: Prediction of MsNST subcellular localization by Cell-Ploc"

Fig. 4

Amino acid alignment of MsNST and AtNST1, 2, and 3 Homology level was highlighted by shading in color: black for 100%, grey for ≥50% identity. Conservative domain of NAC was underlined in black, and the amino acid in the box is a conservative sequence for formation of dimer"

Fig. 5

Phylogenetic analysis of NSTs from different plant species The number 0.05 represents the evolution distance,the number above branches represent the bootstrap value. The Numbers in parentheses are gene locus names"

Fig. 6

Effects of various treatments on MsNST expression in alfalfa stems using qRT-PCR MsNST under GA3 (gibberellin3), SA (salicylic acid), PCB (paclobutrazol) treatment. Error bars represent standard error of the mean"

Fig. 7

Identification and phenotypic analysis of transgenic Arabidopsis thaliana A: Phenotype of five-week old transgenic Arabidopsis in green house,bars=2cm; B: Ampification of MsNST gene from transgenic Arabidopsis; C: The expression level of MsNST in transgenic Arabidopsis; D: Over expression MsNST result in growth inhibition of Arabidopsis hypocotyls. n=30,error bars replace ± standard deviation. “*” or “**” on behalf of P value < 0.05 or <0.01 by stutent t test analysis; E: Statistics analysis of plant height and fresh weight of transgenic Arabidopsis thaliana and WT"

Fig. 8

Effects of overexpression MsNST on cell wall thickness, lignin, cellulose and total sugar content in transgenic Arabidopsis thaliana A: Stem cell walls of Arabidopsis stain by phloroglucinol-hydrochloric acid; B: Statistical analysis of interfascicular fiber cell wall thickness; C: Determination of lignin content of transgenic Arabidopsis stem; D: Determination of cellulose content in transgenic Arabidopsis stem; E: Determination of total sugar content in transgenic Arabidopsis stem"

Fig. 9

Expression analysis of genes related to cellulose and lignin synthesis in overexpression MsNST transgenic Arabidopsis thaliana"

Fig. 10

Identification of transgenic alfalfa and analysis of genes related to cellulose and lignin synthesis of transgenic lines A: The phenotype of overexpression alfalfa; B: Analysis of MsNST expression level of transgenic alfalfa and control; C: The plant height of overexpressing alfalfa compare with control; D: The length of six stem internodes from top; E: Relative expression levels of genes related to cellulose and lignin synthesis in transgenic alfalfa (OE1) "

[1] PEI Y, LI Y, ZHANG Y, YU C, FU T, ZOU J, TU Y, PENG L, CHEN P. G-lignin and hemicellulosic monosaccharides distinctively affect biomass digestibility in rapeseed. Bioresour Technology, 2016,203:325-333.
[2] XIONG W, WU Z, LIU Y, LI Y, SU K, BAI Z, GUO S, HU Z, ZHANG Z, BAO Y, SUN J, YANG G, FU C. Mutation of 4-coumarate: coenzyme A ligase 1 gene affects lignin biosynthesis and increases the cell wall digestibility in maize brown midrib5 mutants. Biotechnology for Biofuel, 2019,12.
[3] MITSUDA N, OHME-TAKAGI M. NAC transcription factors NST1 and NST3 regulate pod shattering in a partially redundant manner by promoting secondary wall formation after the establishment of tissue identity. The Plant Journal, 2008,56:768-778.
doi: 10.1111/j.1365-313X.2008.03633.x pmid: 18657234
[4] ZHONG R, RICHARDSON E A, YE Z H. Two NAC domain transcription factors, SND1 and NST1, function redundantly in regulation of secondary wall synthesis in fibers of Arabidopsis. Planta, 2007,225:1603-1611.
doi: 10.1007/s00425-007-0498-y
[5] MITSUDA N, IWASE A, YAMAMOTO H, YOSHIDA M, SEKI M, SHINOZAKI K, OHME-TAKAGI M. NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. The Plant Cell Online, 2007,19:270-280.
doi: 10.1105/tpc.106.047043
[6] MITSUDA N, SEKI M, SHINOZAKI K, OHME-TAKAGI M. The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. The Plant Cell Online , 2005,17:2993-3006.
[7] ZHONG R, YE Z H. The Arabidopsis NAC transcription factor NST2 functions together with SND1 and NST1 to regulate secondary wall biosynthesis in fibers of inflorescence stems. Plant Signaling and Behavior, 2015,10:e989746.
doi: 10.4161/15592324.2014.989746 pmid: 25751728
[8] ZHONG R, LEE C, YE Z H. Global analysis of direct targets of secondary wall NAC master switches in Arabidopsis. Molecular Plant, 2010,3:1087-1103.
doi: 10.1093/mp/ssq062 pmid: 20935069
[9] XIAO W, YANG Y, YU J. ZmNST3 and ZmNST4 are master switches for secondary wall deposition in maize ( Zea mays L.). Plant Science, 2018,266:83-94.
doi: 10.1016/j.plantsci.2017.03.012 pmid: 29241570
[10] 陈光辉, 高艳, 陈秀娟, 谢丽琼. 植物激素在植物细胞壁扩展中的作用. 生命的化学, 2012,32:464-470.
CHEN G H, GAO Y, CHEN X J, XIE L Q. The role of phytohormones in plant cell wall expansion. Chemistry of Life, 2012,32:464-470. (in Chinese)
[11] FALCIONI R, MORIWAKI T DE OLIVEIRA D M, ANDREOTTI G C, DE SOUZA L A, DOS SANTOS W D, BONATO C M, ANTUNES W C. Increased gibberellins and light levels promotes cell wall thickness and enhance lignin deposition in xylem fibers. Frontiers in Plant Science, 2018,9:1391.
doi: 10.3389/fpls.2018.01391 pmid: 30294339
[12] ITO T, OKADA K, FUKAZAWA J, TAKAHASHI Y. DELLA- dependent and -independent gibberellin signaling. Plant Signaling & Behavior, 2018,13:e1445933.
doi: 10.1080/15592324.2018.1445933 pmid: 29485381
[13] HUANG D, WANG S, ZHANG B, SHANG-GUAN K, SHI Y, ZHANG D, LIU X, WU K, XU Z, FU X, ZHOU Y. A gibberellin- mediated DELLA-NAC signaling cascade regulates cellulose synthesis in rice. The Plant Cell, 2015,27:1681-1696.
doi: 10.1105/tpc.15.00015 pmid: 26002868
[14] YE Y, LIU B, ZHAO M, WU K, CHENG W, CHEN X, LIU Q, LIU Z, FU X, WU Y. CEF1/OsMYB103L is involved in GA-mediated regulation of secondary wall biosynthesis in rice. Plant Molecular Biology, 2015,89:385-401.
doi: 10.1007/s11103-015-0376-0 pmid: 26350403
[15] 王媛, 杨红玉, 程在全. SA诱导拟南芥对灰霉病的抗性与木质素含量的关系. 植物保护, 2007 : 50-54.
WANG Y, YANG H Y, CHENG Z Q. Relationship between SA-induced resistance to grey mold in Arabidopsis and the lignin contents. Plant Protection, 2007: 50-54. (in Chinese)
[16] 袁剑平, 刘华山, 彭文博, 王德勤, 曹章林. 多效唑对小麦形态和某些生理特性影响的研究. 河南农业大学学报, 1993: 16-20.
YUAN J P, LIU H S, PENG W B, WANG D Q, CAO Z L. Effect of PP333 on morPhological and some physiological characteristics of wheat. Journal of Henan Agricultural University, 1993: 16-20. (in Chinese)
[17] 陈晓光, 石玉华, 王成雨, 尹燕枰, 宁堂原, 史春余, 李勇, 王振林. 氮肥和多效唑对小麦茎秆木质素合成的影响及其与抗倒伏性的关系. 中国农业科学, 44:3529-3536.
CHEN X G, SHI Y H, WANG C Y, YIN Y P, NING T Y, SHI C Y, LI Y, WANG Z L. Effects of nitrogen and PP333 application on the lignin synthesis of stem in relation to lodging resistance of wheat. Scientia Agricultura Sinica, 2011,44:3529-3536. (in Chinese)
[18] HU H Z, ZHANG R, FENG S Q, WANG Y M, WANG Y T, FAN C F, LI Y, LIU Z Y, SCHNEIDER R, XIA T, DING S Y, PERSSON S, PENG L C. Three AtCesA6-like members enhance biomass production by distinctively promoting cell growth in Arabidopsis. Plant Biotechnology Journal, 2018,16(5):976-988.
doi: 10.1111/pbi.12842 pmid: 28944540
[19] RAES J, ROHDE A, CHRISTENSEN J H, VAN DE PEER Y, BOERJAN W. Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiology, 2003,133:1051-1071.
doi: 10.1104/pp.103.026484 pmid: 14612585
[20] GUERRIERO G, LEGAY S, HAUSMAN J F. Alfalfa Cellulose synthase gene expression under abiotic stress: a Hitchhiker's guide to RT-qPCR normalization. PLoS One, 2014,9:e103808.
doi: 10.1371/journal.pone.0103808 pmid: 25084115
[21] GALLEGO-GIRALDO L, JIKUMARU Y, KAMIYA Y, TANG Y, DIXON R A. Selective lignin down regulation leads to constitutive defense response expression in alfalfa (Medicago sativa L.). New Phytologist, 2011,190:627-639.
doi: 10.1111/j.1469-8137.2010.03621.x pmid: 21251001
[22] WANG K. Preface Agrobacterium protocols. Methods in Molecular Biology, 2015, 1224: vii-viii.
doi: 10.1007/978-1-4939-1658-0 pmid: 25568905
[23] FOSTER C E, MARTIN T M, PAULY M. Comprehensive compositional analysis of plant cell walls (Lignocellulosic biomass) part I: lignin. Journal of Visualized Experiments, 2010(37):e1745.
[24] OOKA H, SATOH K, NAGATA T, OTOMO Y, MURAKAMI K, MATSUBARA K, OSATO N, KAWAI J, CARNINCI P. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Research, 2003, 10: 239.
doi: 10.1093/dnares/10.6.239 pmid: 15029955
[25] TAKATA N, AWANO T, NAKATA M T, SANO Y, SAKAMOTO S, MITSUDA N, TANIGUCHI T. Populus NST/SND orthologs are key regulators of secondary cell wall formation in wood fibers, phloem fibers and xylem ray parenchyma cells. Tree Physiology, 2019,39:514-525.
doi: 10.1093/treephys/tpz004 pmid: 30806711
[26] OLSEN A N, ERNST H A, LEGGIO L L, SKRIVER K. DNA-binding specificity and molecular functions of NAC transcription factors. Plant Science, 2005,169:785-797.
doi: 10.1016/j.plantsci.2005.05.035
[27] BIEMELT S, TSCHIERSCH H, SONNEWALD U. Impact of altered gibberellin metabolism on biomass accumulation, lignin biosynthesis, and photosynthesis in transgenic tobacco plants. Plant Physiology, 2004,135:254-265.
doi: 10.1104/pp.103.036988 pmid: 15122040
[28] RAGNI L, NIEMINEN K, PACHECO-VILLALOBOS D, SIBOUT R, SCHWECHHEIMER C, HARDTKE C S. Mobile gibberellin directly stimulates Arabidopsis hypocotyl xylem expansion. Plant Cell, 2011,23:1322-1336.
doi: 10.1105/tpc.111.084020
[29] GUO H, WANG Y, LIU H, HU P, JIA Y, ZHANG C, WANG Y, GU S, YANG C, WANG C.. Exogenous GA(3) application enhances xylem development and induces the expression of secondary wall biosynthesis related genes in Betula platyphylla. International Journal of Molecular Sciences, 2015,16:22960-22975.
doi: 10.3390/ijms160922960 pmid: 26404260
[30] KAMRAN M, CUI W W, AHMAD I, MENG X P, ZHANG X D, SU W N, CHEN J Z, AHMAD S, FAHAD S, HAN Q F, LIU T N. Effect of paclobutrazol, a potential growth regulator on stalk mechanical strength, lignin accumulation and its relation with lodging resistance of maize, Plant Growth Regulation, 2018,84:317-332.
doi: 10.1007/s10725-017-0342-8
[31] KAMRAN M, CUI W W, AHMAD I, WU X R, LIU T N, DING R X, HAN Q F. Application of paclobutrazol: a strategy for inducing lodging resistance of wheat through mediation of plant height, stem physical strength, and lignin biosynthesis. Environmental Science and Pollution Research, 2018,25:29366-29378.
doi: 10.1007/s11356-018-2965-3 pmid: 30121770
[32] JACOBSEN S E, OLSZEWSKI N E. Mutations at the SPINDLY locus of Arabidopsis alter gibberellin signal transduction. Plant Cell, 1993,5:887-896.
doi: 10.1105/tpc.5.8.887 pmid: 8400871
[33] LEON J, SHULAEV V, YALPANI N, LAWTON M A, RASKIN I. Benzoic acid 2-hydroxylase, a soluble oxygenase from tobacco, catalyzes salicylic acid biosynthesis. Proceedings of the National Academy of Sciences, 1995,92:10413-10417.
[34] NAPOLEAO T A, SOARES G, VITAL C E, BASTOS C, CASTRO R, LOUREIRO M E, GIORDANO A. Methyl jasmonate and salicylic acid are able to modify cell wall but only salicylic acid alters biomass digestibility in the model grass Brachypodium distachyon. Plant Science, 2017,263:46-54.
doi: 10.1016/j.plantsci.2017.06.014 pmid: 28818383
[35] 陈年来, 胡敏, 乔昌萍, 乃小英, 王锐. BTH、SA和SiO2处理对甜瓜幼苗白粉病抗性及叶片HRGP和木质素含量的影响. 中国农业科学, 2010,43:535-541.
CHEN N L, HU M, QIAO C P, NAI X Y, WANG R. Effects of BTH, SA, and SiO2 treatment on disease resistance and leaf HRGP and lignin contents of melon seedlings. Scientia Agricultura Sinica, 2010,43:535-541.(in Chinese)
[36] ZHANG Q, XIE Z, ZHANG R, XU P, LIU H, YANG H, DOBLIN M S, BACIC A, LI L. Blue light regulates secondary cell Wall thickening via MYC2/MYC4 activation of the NST1-Directed transcriptional network in Arabidopsis. Plant Cell, 2018,30:2512-2528.
doi: 10.1105/tpc.18.00315 pmid: 30242037
[37] ZHAO Q, GALLEGO-GIRALDO L, WANG H, ZENG Y, DING S Y, CHEN F, DIXON R A. An NAC transcription factor orchestrates multiple features of cell wall development in Medicago truncatula. The Plant Journal, 2010,63:100-114.
doi: 10.1111/j.1365-313X.2010.04223.x pmid: 20408998
[38] WILLIAMSON R E, BURN J E, HOCART C H. Towards the mechanism of cellulose synthesis. Trends in Plant Science, 2002,7:461-467.
doi: 10.1016/s1360-1385(02)02335-x pmid: 12399182
[39] DOBLIN M S, KUREK I, JACOB-WILK D, DELMER D P. Cellulose biosynthesis in plants: from genes to rosettes. Plant Cell Physiology, 2002,43:1407-1420.
doi: 10.1093/pcp/pcf164 pmid: 12514238
[40] TAYLOR N G, SCHEIBLE W R, CUTLER S, SOMERVILLE C R, TURNER S R. The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis. Plant Cell, 1999,11:769-780.
doi: 10.1105/tpc.11.5.769 pmid: 10330464
[41] TURNER S R, SOMERVILLE C R. Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. Plant Cell, 1997,9:689-701.
doi: 10.1105/tpc.9.5.689 pmid: 9165747
[42] ZHONG R Q, YE Z H. MYB46 and MYB83 bind to the SMRE sites and directly activate a suite of transcription factors and secondary wall biosynthetic genes. Plant Cell Physiology, 2012,53:368-380.
doi: 10.1093/pcp/pcr185 pmid: 22197883
[1] YOU YuWan,ZHANG Yu,SUN JiaYi,ZHANG Wei. Genome-Wide Identification of NAC Family and Screening of Its Members Related to Prickle Development in Rosa chinensis Old Blush [J]. Scientia Agricultura Sinica, 2022, 55(24): 4895-4911.
[2] ZHANG Jie,JIANG ChangYue,WANG YueJin. Functional Analysis of the Interaction Between Transcription Factors VqWRKY6 and VqbZIP1 in Regulating the Resistance to Powdery Mildew in Chinese Wild Vitis quinquangularis [J]. Scientia Agricultura Sinica, 2022, 55(23): 4626-4639.
[3] GENG WenJie,LI Bin,REN BaiZhao,ZHAO Bin,LIU Peng,ZHANG JiWang. Regulation Mechanism of Planting Density and Spraying Ethephon on Lignin Metabolism and Lodging Resistance of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(2): 307-319.
[4] PANG HaoWan,FU QianKun,YANG QingQing,ZHANG YuanYuan,FU FengLing,YU HaoQiang. Maize Transcription Factor ZmEREB93 Negatively Regulates Kernel Development [J]. Scientia Agricultura Sinica, 2022, 55(19): 3685-3696.
[5] SU Qian,DU WenXuan,MA Lin,XIA YaYing,LI Xue,QI Zhi,PANG YongZhen. Cloning and Functional Analyses of MsCIPK2 in Medicago sativa [J]. Scientia Agricultura Sinica, 2022, 55(19): 3697-3709.
[6] ZHANG YunXiu,JIANG Xu,WEI ChunXue,JIANG XueQian,LU DongYu,LONG RuiCai,YANG QingChuan,WANG Zhen,KANG JunMei. The Functional Analysis of High Mobility Group MsHMG-Y Involved in Flowering Regulation in Medicago sativa L. [J]. Scientia Agricultura Sinica, 2022, 55(16): 3082-3092.
[7] YANG ShengDi,MENG XiangXuan,GUO DaLong,PEI MaoSong,LIU HaiNan,WEI TongLu,YU YiHe. Co-Expression Network and Transcriptional Regulation Analysis of Sulfur Dioxide-Induced Postharvest Abscission of Kyoho Grape [J]. Scientia Agricultura Sinica, 2022, 55(11): 2214-2226.
[8] WANG LiJian,LUO Cheng,PAN XueFeng,CHEN Xia,CHEN YinJi. Effects of Cellulose Replacing Starch on the Gel Properties of Myofibrillar Protein [J]. Scientia Agricultura Sinica, 2022, 55(11): 2227-2238.
[9] LIU RuiDa, GE ChangWei, WANG MinXuan, SHEN YanHui, LI PengZhen, CUI ZiQian, LIU RuiHua, SHEN Qian, ZHANG SiPing, LIU ShaoDong, MA HuiJuan, CHEN Jing, ZHANG GuiYin, PANG ChaoYou. Cloning and Drought Resistance Analysis of Transcription Factor GhMYB108 in Gossypium hirsutum [J]. Scientia Agricultura Sinica, 2022, 55(10): 1877-1890.
[10] MA ShuanHong, WAN Jiong, LIANG RuiQing, ZHANG XueHai, QIU XiaoQian, MENG ShuJun, XU NingKun, LIN Yuan, DANG KunTai, WANG QiYue, ZHAO JiaWen, DING Dong, TANG JiHua. Candidate Gene Association Analysis of Maize Transcription Factors in Flowering Time [J]. Scientia Agricultura Sinica, 2022, 55(1): 12-25.
[11] LÜ ShiKai, MA XiaoLong, ZHANG Min, DENG PingChuan, CHEN ChunHuan, ZHANG Hong, LIU XinLun, JI WanQuan. Post-transcriptional Regulation of TaNAC Genes by Alternative Splicing and MicroRNA in Common Wheat (Triticum aestivum L.) [J]. Scientia Agricultura Sinica, 2021, 54(22): 4709-4727.
[12] ZHU FangFang,DONG YaHui,REN ZhenZhen,WANG ZhiYong,SU HuiHui,KU LiXia,CHEN YanHui. Over-expression of ZmIBH1-1 to Improve Drought Resistance in Maize Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(21): 4500-4513.
[13] LIU Lian,TANG ZhiPeng,LI FeiFei,XIONG Jiang,LÜ BiWen,MA XiaoChuan,TANG ChaoLan,LI ZeHang,ZHOU Tie,SHENG Ling,LU XiaoPeng. Fruit Quality in Storage, Storability and Peel Transcriptome Analysis of Rong’an Kumquat, Huapi Kumquat and Cuimi Kumquat [J]. Scientia Agricultura Sinica, 2021, 54(20): 4421-4433.
[14] MA Lin,WEN HongYu,WANG XueMin,GAO HongWen,PANG YongZhen. Cloning and Function Analysis of MsMAX2 Gene in Alfalfa (Medicago sativa L.) [J]. Scientia Agricultura Sinica, 2021, 54(19): 4061-4069.
[15] ZHANG JingYun,LIU YuNuo,WANG ZhaoHao,PENG AiHong,CHEN ShanChun,HE YongRui. Analysis of Resistance Mechanism of CiNPR4 Transgenic Plants to Citrus Canker [J]. Scientia Agricultura Sinica, 2021, 54(18): 3871-3880.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!