Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (2): 357-370.doi: 10.3864/j.issn.0578-1752.2020.02.010

• SPECIAL FOCUS: TEA • Previous Articles     Next Articles

Metabolic Changes in the Processing of Yunkang 10 Sun-Dried Green Tea based on Metabolomics

DAI YuQiao1,2,Lü CaiYou1(),HE LuNan1,YI Chao1,LIU XueYan1,HUANG Wen1,CHEN JiaMin1   

  1. 1 College of Long Run Pu-erh Tea, Yunnan Agricultural University, Kunming 650201
    2 Guizhou Tea Institute, Guiyang 550006
  • Received:2019-04-18 Accepted:2019-10-09 Online:2020-01-16 Published:2020-02-17
  • Contact: CaiYou Lü E-mail:2495846526@qq.com

Abstract:

【Objective】The ultrahigh phase liquid chromatography/mass spectrometry (LC-MS) combined technique of metabolomics was used to explore the changes of metabolites in the processing of sun-dried green tea of Camellia sinenis var. assamica cv. Yunkang 10, and to find the iconic metabolites affecting the formation of sun-dried green tea quality. Further study on the change path of these substances would lay a foundation for understanding the formation mechanism of sun-dried green tea quality. 【Method】In the process of making Yunkang 10 sun-dried green tea, 3 samples of fresh leaves, rolled leaves and sun-dried leaves were taken respectively. After the samples were pretreated, the metabolites in the three groups of samples were detected by LC-MS and identified by mass spectrometry database. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were used to analyze the detection data of three groups of samples. Metabolites with significant differences were screened out by PLS-DA method. 【Result】LC-MS analysis method for the endogenous metabolites of Yunkang 10 fresh leaves, rolled leaves and sun-dried leaves was established, and commercial mass spectrometry database was used for rapid identification of the detected metabolites. The metabolome data were imported into SIMCA-P software for principal component analysis and partial least squares discriminant analysis, and the metabolome data could be used to distinguish the three groups of samples. By LC/MS technique on Yunkang 10 sun-dried green tea and its processing tea, in combination with multivariate statistical analysis, there were 701 kinds of metabolites were significant differences among the fresh leaves, rolling leaves and sun-dried leaves, and 116 kinds metabolites between fresh leaves and rolling leaves, 158 kinds of metabolites between sun-dried leaves and fresh leaves, and 48 kinds of metabolites between sun-dried leaves and rolling leaves were found. By searching KEGG database to analyze metabolites, these metabolites were mainly related to amino acid metabolism, polyphenol metabolism and other energy metabolism pathways. 【Conclusion】LC-MS technique could be used to distinguish fresh leaf group, rolled leaf group and sun-dried leaf group of Yunkang 10, which proved that metabolomics technology could reveal the chemical changes of metabolites in sun-dried green tea to some extent. The key metabolites were found in the study could provide a theoretical basis for evaluating the quality of sun-dried green tea, and lay a theoretical foundation for exploring the formation of "sunburn taste" of sun-dried green tea and the formation mechanism of sun-dried green tea quality.

Key words: liquid chromatography/mass spectrometry, sun-dried green tea, Yunkang 10, metabolomics, metabolites

Fig. 1

PCA score map of mass spectrometry data of each group of samples and quality control samples"

Fig. 2

Variation map based on group principal component analysis"

Fig. 3

Sample overall clustering map"

Fig. 4

OPLS-DAS-plot between two groups"

Table 1

Parameters of PLS analysis"

样品
Tea sample
R2X R2Y Q2
YK10-1_vs_YK10-2 0.514 0.996 0.923
YK10-1_vs_YK10-3 0.547 0.997 0.937
YK10-2_vs_YK10-3 0.377 0.986 0.778

Fig. 5

YK10-1_vs_YK10-2 differential metabolite volcano map A point in the figure represents a metabolite, the abscissa is the value of the multiple logarithm of the quantitative difference between the two samples, and the ordinate is the VIP value. The green dot is the down-regulated differential expression metabolite, the red dot is the up-regulated differential expression metabolite, and the gray part is the detected but the difference is not significant. The same as below"

Fig. 6

YK10-1_vs_YK10-3 differential metabolite volcano map"

Fig. 7

YK10-2_vs_YK10-3 differential metabolite volcano map"

Fig. 8

Comparison of FC value clustering heat map between the three groups"

Table 2

SpeciesTypes and changes of different metabolites"

序号
No.
代谢物种类
Species of metabolites
总数
Amount
上调数量
Increase the number
下调数量
Reduce the number
1 脂质类Lipids 44 37 7
2 氨基酸及其衍生物Amino acid and its derivatives 27 23 4
3 黄酮类Flavone 25 19 6
4 核苷酸及其衍生物Nucleotide and its derivates 18 18 0
5 苯甲酸及其衍生物Benzoic acid and its derivatives 6 5 1
6 羟基肉桂酰衍生物Hydroxycinnamoyl derivatives 11 8 3
7 有机酸及其衍生物Organic acids 15 10 5
8 维生素Vitamins 4 2 2
9 儿茶素及其衍生物Catechin and its derivatives 1 1 0
10 花青素Anthocyanins 2 0 2
11 生物碱Alkaloids 1 1 0
12 胆碱类Cholines 3 2 1
13 酚胺Phenolamides 3 3 0
14 糖类Carbohydrates 2 2 0
15 萜类Terpenoids 1 0 1
16 吡啶Pyridine derivatives 1 1 0
17 奎宁酸及其衍生物Quinate and its derivatives 2 1 1
18 香豆素及其衍生物Coumarins 3 3 0
19 色胺及其衍生物Tryptamine derivatives 1 0 1

Table 3

Differences in catechin metabolites between fresh leaves, rolling leaves and sun-dried leaves"

序号
No.
保留时间
Retention time (min)
代谢物
Metabolites
YK10-1 YK10-2 YK10-3 类型
Type
1 2.53 咖啡酰原儿茶酸
Protocatechuic acid O-glucoside
1050333.33±217647.27 6006666.67±575528.74 9486666.67±5827661.05 上调 Up
2 3.05 原儿茶醛Protocatechuic aldehyde 55100±7100 72833.33±3499.05 101300±7291.78 上调 Up
3 4.02 4-甲基儿茶酚4-Methylcatechol 15433.33±1767.30 24200±3143.25 24633.33±1703.92 上调 Up
4 2.38 二没食子儿茶素
Gallocatechin-gallocatechin
529666.67±85242.79 590000±43347.43 582000±71021.12 上调 Up
5 3.49 没食子儿茶素-儿茶素
Gallocatechin-catechin
6836.67±1506.40 4870±1384.59 2560±2470.49 下调 Down
6 2.3 原儿茶酸Protocatechuic acid 194000±15394.80 196666.67±26764.40 123900±41179.24 下调 Down
7 3.51 三儿茶素Catechin-catechin-catechin 3713333.33±385010.82 3863333.33±346458.27 3073333.33±213853.53 下调 Down
8 3.45 表儿茶素表阿夫儿茶精
Epicatechin-epiafzelechin
281000±22869.19 281666.67±54811.80 253000±26000 下调 Down
9 2.99 儿茶素Catechin 3960000±240208.24 3890000±208086.52 3650000±715821.21 下调 Down
10 2.44 没食子儿茶素(+)-Gallocatechin (GC) 1576666.67±63508.53 1376666.67±56862.41 1470000±78102.50 下调 Down
11 2.53 表没食子酸儿茶素
Epigallocatechin (EGC)
1500000±80000 1313333.33±50332.23 1400000±52915.03 下调 Down
12 3.18 表儿茶素L-Epicatechin 3306666.67±117189.31 3316666.67±138684.29 3146666.67±565803.26 下调 Down
13 3.28 表没食子酸儿茶素没食子酸酯Epigallate catechin gallate (EGCG) 3886666.67±210792.16 4140000±186815.42 3766666.67±213853.53 下调 Down
14 3.83 表儿茶素没食子酸
Epicatechin gallate (ECG)
15666666.67±808290.38 15900000±529150.26 15300000±608276.25 下调 Down

Table 4

Differences between flavonoids and flavonols in fresh leaves, rolling leaves and sun-leaf leaves"

序号
No.
保留时间
Retention time (min)
物质
Metabolites
YK10-1 YK10-2 YK10-3 类型
Type
1 6.73 白杨素Chrysin 0±0.00 8880±782.37 14883.33±5566.49 上调 Up
2 330.2 丁香亭Syringetin 4490±1406.84 17366.67±782.37 33666.67±12483.72 上调 Up
3 5.08 槲皮素Quercetin 3046666.67±336501.61 10096666.67±505008.25 13400000±1907878.40 上调 Up
4 5.08 桑色素水合物Morin 2883333.33±361155.55 9653333.33±609289.20 12400000±1708800.75 上调 Up
5 4.58 二氢山奈酚Aromadedrin (Dihydrokaempferol) 978666.67±132673.79 3026666.67±206478.41 3600000±170880.07 上调 Up
6 5.69 山奈酚Kaempferol 3753333.33±480555.23 10603333.33±1347973.79 12543333.33±3894051.02 上调 Up
7 5.73 金圣草(黄)素Chrysoeriol 369666.67±37581.02 939666.67±42770.71 1196666.67±90737.72 上调 Up
8 5.81 异鼠李素Isorhamnetin 12453.33±3177.19 14000000±1708800.75 37733.33±5131.60 上调 Up
9 5.86 3,7-二氧-甲基槲皮素
Di-O-methylquercetin
136666.67±30022.21 249666.67±19655.36 353000±17435.60 上调 Up
10 6.98 金合欢素Acacetin 12046.67±2802.59 240000±20297.78 29700±2600 上调 Up
11 5.62 芹菜素Apigenin 504666.67±72507.47 829333.33±64002.60 1234666.67±390800.89 上调 Up
12 7.23 毡毛美洲茶素Velutin 1983.33±221.89 5923.33±2653.72 4543.33±320.36 上调 Up
13 7.17 华良姜素Kumatakenin 13866.67±1193.04 46366.67±27164.38 30333.33±1858.31 上调 Up
14 3.54 异鼠李素-3-O-新橙皮糖苷
Isorhamnetin 3-O-neohesperidoside
519666.67±198807.28 303333.33±51964.73 216333.33±62043.00 下调 Down
15 4.02 芹菜素 7-O-新橘皮糖苷
(野漆树苷)
Apigenin 7-O-neohesperidoside (Rhoifolin)
15966666.67±3807011.08 10786666.67±920072.46 6953333.33±1276727.59 下调 Down

Table 5

Metabolites of amino acids and their derivatives between fresh leaves, rolling leaves and sun-dried leaves"

序号
No.
保留时间
Retention time (min)
物质
Metabolites
YK10-1 YK10-2 YK10-3 类型
Type
1 0.79 天门冬氨酸 二葡糖苷
Aspartic acid di-O-glucoside
567000±31000 2093333.33±218250.62 2993333.33±685298.00 上调 Up
2 1.24 L-亮氨酸
Aspartic acid di-O-glucoside
192000±27874.72 1002666.67±33842.77 990333.33±37287.17 上调 Up
3 1.14 L-(-)-酪氨酸L-(-)-Tyrosine 867000±70149.84 3750000±193132.078 4370000±167032.93 上调 Up
4 1.23 L-异亮氨酸L-Isoleucine 103766.67±17417.33 499333.33±21501.94 500000±15394.80 up
5 1.97 L-苯丙氨酸L-Phenylalanine 528000±39949.97 2470000±115325.63 2420000±115325.63 上调 Up
6 0.8 2-氨基己二酸 (L-高谷氨酸)
2-Aminoadipic acid (L-Homoglutamic acid)
330000±11357.82 1270000±155241.75 1420000±36055.51 上调 Up
7 0.84 缬氨酸Dl-Norvaline 8706666.67±428524.60 35466666.67±3720663.02 34933333.33±1871719.35 上调 Up
8 0.84 L-缬氨酸L-Valine 1953333.33±132035.35 7136666.67±828573.07 7423333.33±460470.77 上调 Up
9 0.71 L-酵母氨酸L-Saccharopine 181000±16522.71 773333.33±61174.61 667333.33±122964.76 上调 Up
10 0.68 L-(+)-赖氨酸L-(+)-Lysine 8870000±478852.80 31666666.67±642910.05 31300000±3122499.00 上调 Up
11 0.81 DL-高半胱氨酸DL-homocysteine 139333.33±11015.14 461333.33±47077.95 479333.33±25696.95 上调 Up
12 1.21 DL-多巴
3,4-Dihydroxy-DL-phenylalanine
4706.67±2740.55 14033.33±3362.04 15800±4253.23 上调 Up
13 0.65 蛋氨酸亚砜Methionine sulfoxide 152333.33±25658.01 639000±11135.53 507000±37643.06 上调 Up
14 0.72 L-谷氨酸 O-己糖苷
L-Glutamic acid O-glucoside
43066.67±3027.10 62033.33±13041.60 140333.33±5131.60 上调 Up
15 0.73 L-天冬酰胺L-Asparagine 126666.67±16258.33 420333.33±73493.76 407666.67±48675.80 上调 Up
16 1.24 S-甲基谷胱甘肽
S-(methyl) glutathione
6613.33±2116.63 8910±2098.36 19900±2128.38 上调 Up
17 0.74 同型丝氨酸L-Homoserine 12933.33±2967.04 26400±3751.00 38800±5350.70 上调 Up
18 0.68 L-组氨酸L-Histidine 1153333.33±76376.26 3736666.67±265015.72 3280000±360555.13 上调 Up
19 3.52 L-苯丙氨酸-L-苯丙氨酸Phe-Phe 42533.33±7850.05 144333.33± 109433.33±25162.74 上调 Up
20 0.77 L-(-)-胱氨酸L-(-)-Cystine 30866.67±11184.07 24200±7937.88 69866.67±14216.31 上调 Up
21 2.05 N′-甲酰基犬尿氨酸
N′-Formylkynurenine
705333.33±111540.73 612333.33±25890.80 1593333.33±56862.41 上调 Up
22 0.81 高胱氨酸L-Homocystine 1593333.33±3646.00 51466.67±17333.88 61366.67±9022.38 上调 Up
23 1.93 N-甘氨酰-L-亮氨酸
N-Glycyl-L-leucine
32666.67±2668.96 78633.33±5641.22 67333.33±6493.33 上调 Up
24 1.14 谷胱甘肽还原型
Glutathione reduced form
135733.33±92073.96 447000±303605.01 34066.67±12702.10 下调 Down
25 0.74 2-氨基异丁酸
2-Aminoisobutyric acid
64700000±4853864.44 23033333.33±1331665.62 25333333.33±2683902.63 下调 Down
26 2.43 N-乙酰基蛋氨酸
N-Acetylmethionine
147233.33±46476.48 111666.67±9712.53 66400±2066.40 下调 Down
27 0.99 L-茶氨酸L-Theanine 3820000±137356 4600000±558748.60 4490000±331763 上调 Up
28 0.77 γ-氨基丁酸γ-aminobutyric acid 1903333.33±295014.13 5510000±508625.60 5783333.33±508625.60 下调 Down

Table 6

Differences in alkaloid metabolites between fresh leaves, rolling leaves and sun-dried leaves"

序号
No.
保留时间
Retention time (min)
物质
Metabolite
YK10-1 YK10-2 YK10-3 类型
Type
1 1.16 哌啶Piperidine 5443333.33±494098.51 19800000±1873499.4 18500000±781024.97 上调 Up
2 0.79 葫芦巴碱Trigonelline 164666.67±54993.94 318000±125391.39 308666.67±112669.13 上调 Up
3 0.78 甜菜碱Betaine 13733333.33±929157.32 17566666.67±1833939.29 24300000±12931743.89 上调 Up
4 2.64 茶碱Theophylline 6455066.67±578935.03 7286366.67±194360.4 6545566.67±1001309.43 上调 Up
5 1.45 大麦芽碱Hordenine 417333.33±33246.55 472333.33±66905.41 391000±34655.45 下调 Down
6 3.14 咖啡碱Caffeine 6883000±232758.27 6826466.67±97485.61 6241100±380824.22 下调 Down
7 4.64 异喹啉Isoquinoline 112366.67±24056.25 119466.67±28075.85 88566.67±3442.87 下调 Down
8 2.38 可可碱Theobromine 7260000±401497.2 6323333.33±230289.67 5460000±326955.65 下调 Down
[1] GB/T 22111普洱茶[S], 2008.
GB/T 22111 Pu'er Tea[S], 2008. (in Chinese)
[2] 董登峰 . 代谢物组学方法及其在植物学研究中的应用. 广西植物, 2007, 27(5): 765-769.
DONG D F . Metabolomic methods and their applications in botanical research.Guangxi Plant, 2007, 27(5): 765-769. (in Chinese)
[3] 赵峰, 林河通, 杨江帆, 叶乃兴, 俞金朋. 基于近红外光谱的武夷岩茶品质成分在线检测. 农业工程学报, 2014, 30(2): 269-277.
ZHAO F, LIN H T, YANG J F, YE N X, YU J P.Online quantitative determination of Wuyi Rock Tea quality compounds by near infrared spectroscopy.Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(2): 269-277. (in Chinese)
[4] 王秀梅. 祁门红茶加工过程中代谢谱分析及其品质形成机理研究[D]. 合肥: 安徽农业大学, 2012.
WANG X M.Metabolic spectrum analysis and quality formation mechanism of Tuen Mun black tea during processing [D]. Hefei: Anhui Agricultural University, 2012. (in Chinese)
[5] 解东超, 戴伟东, 李朋亮, 谭俊峰, 林智. 基于LC-MS的紫娟烘青绿茶加工过程中花青素变化规律研究. 茶叶科学, 2016, 36(6): 603-612.
XIE D C, DAI W D, LI P L, TAN J F, LIN Z.Study on the compositions and dynamic changes of anthocyanins during the manufacturing process of ‘Zijuan’ baked green tea. Journal of Tea Science,
2016, 36(6): 603-612. (in Chinese)
[6] 米雨荷. 茶叶中生物胺UPLC检测方法的建立及加工工艺对其含量的影响[D]. 南京: 南京农业大学, 2016.
MI Y H.Establishment of UPLC detection method for tea and determination of its processing content[D].Nanjing: Nanjing Agricultural University,2016. (in Chinese)
[7] 伍岗, 夏锐, 张艳梅, 梁家彬, 李梅, 浦绍柳. SPME-GC-MS测定4种云南茶的香气成分. 西南农业学报, 2016, 29(8): 1993-1997.
WU G, XIA R, ZHANG Y M, LIANG J B, LI M, PU S L.Analysis of aromatic components in four kinds of Yunnan tea by SPME-GC-MS.Southwest China Journal of Agricultural Sciences, 2016, 29(8): 1993-1997. (in Chinese)
[8] LI Z Y, FENG C X, LUO X G, YAO H L, ZHANG D C, ZHANG T C.Revealing the influence of microbiota on the quality of Pu-erh tea during fermentation process by shotgun metagenomic and metabolomic analysis.Food Microbiology, 2018, 76: 405-415.
[9] KU K M, KIM J Y, PARK H J, LIU K H, LEE C H.Application of metabolomics in the analysis of manufacturing type of Pu-erh tea and composition changes with different postfermentation year.Journal of Agricultural and Food Chemistry, 2010, 58: 345-352.
[10] YUE W J, SUN W J, RAO R S P, YE N X, YANG Z B, CHEN M J . Non-targeted metabolomics reveals distinct chemical compositions among different grades of Bai Mudan white tea.Food Chemistry, 2018, 277: 289-297.
[11] ZHAO F, QIU X H, YE N X, QIAN J, WANG D H, ZHOU P, CHEN M J.Hydrophilic interaction liquid chromatography coupled with quadrupoleorbitrap ultra high resolution mass spectrometry to quantitate nucleobases, nucleosides, and nucleotides during white tea withering process.Food Chemistry, 2018, 266: 343-349.
[12] WANG T, LI X L, YANG H C, WANG F, KONG J P, QIU D, LI Z.Mass spectrometry-based metabolomics and chemometric analysis of Pu-erh teas of various origins.Food Chemistry, 2018, 268: 271-278.
[13] 郑起帆. 基于~1H-NMR的四个茶山普洱生茶代谢组学研究[D]. 广州: 广东药科大学, 2016.
ZHENG Q F.Metabolomics study of four tea mountain Pu'er tea based on ~1H-NMR [D]. Guangzhou: Guangdong Pharmaceutical University, 2016. (in Chinese)
[14] 刘洪林, 童华荣. 高效液相色谱法同时测定工夫红茶中10种内含物成分. 食品科学, 2016, 37(8): 97-101.
LIU H L, TONG H R.Determination of ten inclusions in Gongfu Black tea by HPLC.Food Science, 2016, 37(8): 97-101. (in Chinese)
[15] 孟怡璠, 杜欢欢, 江海, 耿敬章. UPLC-MS-MS测定红茶中的茶黄素含量农业技术与装备, 2017(7): 9-12, 14.
MENG Y P, DU H H, JIANG H, GENG J Z.Determination of theaflavin content in black tea by UPLC-MS-MS.Agricultural Technology and Equipment, 2017(7): 9-12, 14. (in Chinese)
[16] 陈秋虹, 黄艳, 周洁洁, 覃祖前, 刘布鸣, 柴玲, 莫建光. 长柱金花茶叶的化学成分研究(Ⅱ). 中草药, 2017, 48(23): 4845-4850.
CHEN Q H, HUANG Y, ZHOU J J, QIN Z Q, LIU B M, CHAI L, MO J G.Chemical constituents from leaves of Camellia nitidissima var. longistyla(II). Chinese Traditional and Herbal Drugs, 2017, 48(23): 4845-4850. (in Chinese)
[17] 刘盼盼, 龚自明, 高士伟, 郑鹏程, 郑琳. 茶叶香气质量评价方法研究进展. 湖北农业科学, 2016, 55(16): 4085-4089, 4092.
LIU P P, GONG Z M, GAO S W, ZHENG P C, ZHENG L.Research progress in aroma quality evaluation of tea.Hubei Agricultural Sciences, 2016, 55(16): 4085-4089, 4092. (in Chinese)
[18] 汤莎莎, 芦晨阳, 周君, 韩姣姣, 张红燕, 崔晨茜, 苏秀榕. 基于电子鼻和HS-SPME-GC-MS技术解析乌牛早茶的挥发性风味物质.食品工业科技, 2018, 39(14): 223-230.
TANG S S, LU C Y, ZHOU J, HAN W, ZHANG H Y, CUI C X, SU X R.Volatile flavor compounds of different Wu Niuzao leaves and different heating temperatures based on electronic nose and GC-MS.Science and Technology of Food Industry, 2018, 39(14): 223-230. (in Chinese)
[19] 陈宗懋, 杨亚军.中国茶经.上海:上海文化出版社, 2011: 673-674.
CHEN Z M, YANG Y J . Chinese Tea Classics.Shanghai:Shanghai Culture Press, 2011: 673-674. (in Chinese)
[20] 田易萍, 徐丕忠, 朱兴正. 国家级茶树良种云抗10号在云南省的应用及推广.现代农业科技, 2011(24): 118-119.
TIAN Y P, XU P Z, ZHU X Z. Application and popularization of national tea tree variety Yunkang No.10 in Yunnan province. Xiandai Nongye Keji, 2011(24): 118-119. (in Chinese)
[21] CHEN W, GONG L, GUO Z L, WANG W S, ZHANG H Y, LIU X Q, YU S B.A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: Application in the study of rice metabolomics.Molecular Plant, 2013, 6(6): 1769-1780.
[22] FRAGA C G, CLOWERS B H, MOORE R J, ZINK E M.Signature-discovery approach for sample matching of a nerve-agent precursor using liquid chromatography-mass spectrometry, XCMS, and chemometrics.Analytical Chemistry, 2010, 82(10): 4165-4173.
[23] CHEN Y H, ZHANG R P, SONG Y M, HE J M, SUN J H, BAI J F, AN Z L, DONG L J, ZHAN Q M, ABLIZ Z.RRLC-MS/MS-based metabonomics combined with in-depth analysis of metabolic correlation network: Finding potential biomarkers for breast cancer.The Analyst, 2009, 134(10): 2003-2011.
[24] 宛晓春. 茶叶生物化学. 北京:中国农业出版社, 2003: 11-35.
WAN X C . Tea Biochemistry[D]. Beijing: China Agriculture Press,2003: 11-35. (in Chinese)
[25] 杨新河. 普洱茶色素提取、分级及生物活性研究[D]. 长沙: 湖南农业大学, 2011.
YANG X H . Extraction, grading and bioactivity of Pu'er tea pigment [D]. Changsha: Hunan Agricultural University, 2011. (in Chinese)
[26] 陈勤操, 戴伟东, 蔺志远, 解东超, 吕美玲, 林智. 代谢组学解析遮阴对茶叶主要品质成分的影响. 中国农业科学, 2019, 52(6): 1066-1077.
CHEN Q C, DAI W D, LIN Z Y, JIE D C, LV M L, LIN z. Effects of shading on main quality components in tea (Camellia Sinensis (L) O. Kuntze) leaves based on metabolomics analysis. Scientia Agricultura Sinica, 2019, 52(6): 1066-1077. (in Chinese)
[27] 吕以仙. 有机合成基础第七版. 北京: 人民卫生出版社,2008: 161-165.
LÜ Y X.The Basis of Organic Synthesis, 7th edition. Beijing: People’s Medical Publishing House,2008: 161-165. (in Chinese)
[28] 许伟, 彭影琦, 张拓, 孔莹莹, 肖文军. 绿茶加工中主要滋味物质动态变化及其对绿茶品质的影响. 食品科学, 2019, 40(11): 36-41.
XU W, PENG Y Q, ZHANG T, KONG Y Y, XIAO W J.Dynamic changes of major taste substances during green tea processing and its impact on green tea quality. Food Science, 2019, 40(11): 36-41. (in Chinese)
[1] TANG YuLin, ZHANG Bo, REN Man, ZHANG RuiXue, QIN JunJie, ZHU Hao, GUO YanSheng. Evaluation of Regulatory Effect of Guiqi Yimu Oral Liquid on Rumen of Postpartum Dairy Cows Based on UPLC-MS/MS Metabolomics Technology [J]. Scientia Agricultura Sinica, 2023, 56(2): 368-378.
[2] LIN XinYing,WANG PengJie,YANG RuXing,ZHENG YuCheng,CHEN XiaoMin,ZHANG Lei,SHAO ShuXian,YE NaiXing. The Albino Mechanism of a New High Theanine Tea Cultivar Fuhuang 1 [J]. Scientia Agricultura Sinica, 2022, 55(9): 1831-1845.
[3] LI QingLin,ZHANG WenTao,XU Hui,SUN JingJing. Metabolites Changes of Cucumber Xylem and Phloem Sap Under Low Phosphorus Stress [J]. Scientia Agricultura Sinica, 2022, 55(8): 1617-1629.
[4] LÜ XinNing,WANG Yue,JIA RunPu,WANG ShengNan,YAO YuXin. Effects of Melatonin Treatment on Quality of Stored Shine Muscat Grapes Under Different Storage Temperatures [J]. Scientia Agricultura Sinica, 2022, 55(7): 1411-1422.
[5] YAN LeLe,BU LuLu,NIU Liang,ZENG WenFang,LU ZhenHua,CUI GuoChao,MIAO YuLe,PAN Lei,WANG ZhiQiang. Widely Targeted Metabolomics Analysis of the Effects of Myzus persicae Feeding on Prunus persica Secondary Metabolites [J]. Scientia Agricultura Sinica, 2022, 55(6): 1149-1158.
[6] PENG JiaKun, DAI WeiDong, YAN YongQuan, ZHANG Yue, CHEN Dan, DONG MingHua, LÜ MeiLing, LIN Zhi. Study on the Chemical Constituents of Yongchun Foshou Oolong Tea Based on Metabolomics [J]. Scientia Agricultura Sinica, 2022, 55(4): 769-784.
[7] LI Gang,BAI Yang,JIA ZiYing,MA ZhengYang,ZHANG XiangChi,LI ChunYan,LI Cheng. Phosphorus Altered the Response of Ionomics and Metabolomics to Drought Stress in Wheat Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(2): 280-294.
[8] AiHua WANG,HongYe MA,RongFei LI,ShiPin YANG,Rong QIAO,PeiLin ZHONG. Metabolic Analysis of Aroma Components in Two Interspecific Hybrids from the Cross of F.ananassa Duch. and Fragaria nilgerrensis Schlecht. [J]. Scientia Agricultura Sinica, 2021, 54(5): 1043-1054.
[9] WANG YaHui, LIU XiaoHong, YONG MingLi, XIONG AiSheng, SU XiaoJun. Analysis of Changes in Phenolic Acids of Luffa cylindrica Pulp During Browning Based on Metabolomics [J]. Scientia Agricultura Sinica, 2021, 54(22): 4869-4879.
[10] YUAN PingLi,HE Nan,ZHAO ShengJie,LU XuQiang,ZHU HongJu,DIAO WeiNan,GONG ChengSheng,MUHAMMAD Jawad Umer,LIU WenGe. Metabolomics Comparative Study on Fruits of Edible Seed Watermelon, Egusi and Common Watermelon [J]. Scientia Agricultura Sinica, 2021, 54(19): 4179-4195.
[11] YU LongTao,YANG HeYan,SU YuChen,YAN WeiYu,WU XiaoBo. The Effect of Flumethrin on Metabolism of Worker Larvae of Apis mellifera with LC-MS Technique [J]. Scientia Agricultura Sinica, 2021, 54(12): 2689-2698.
[12] SUN YongBo,WANG Ya,SA RENNA,ZHANG HongFu. Effects of Chronic Ammonia Stress on Serum Metabolites of Broilers Based on GC-MS [J]. Scientia Agricultura Sinica, 2020, 53(8): 1688-1698.
[13] ZHANG LiCui,MA Chuan,FENG Mao,LI JianKe. Evaluation and Optimization of Metabolite Extraction Protocols for Royal Jelly by High Resolution Mass Spectrometry and Metabolomics [J]. Scientia Agricultura Sinica, 2020, 53(18): 3833-3845.
[14] ZHOU Zhi,LIU Yang,ZHANG LiMing,XU RuiNeng,SUN LiLi,LIAO Hong. Soil Nutrient Status in Wuyi Tea Region and Its Effects on Tea Quality-Related Constituents [J]. Scientia Agricultura Sinica, 2019, 52(8): 1425-1434.
[15] CHEN QinCao,DAI WeiDong,LIN ZhiYuan,XIE DongChao,LÜ MeiLing,LIN Zhi. Effects of Shading on Main Quality Components in Tea (Camellia Sinensis (L) O. Kuntze) Leaves Based on Metabolomics Analysis [J]. Scientia Agricultura Sinica, 2019, 52(6): 1066-1077.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!