Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (1): 224-238.doi: 10.3864/j.issn.0578-1752.2021.01.017

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles    

Regulatory Function of Long Non-Coding RNAs in Ascosphaera apis

ZHOU DingDing(),FAN YuanChan(),WANG Jie,JIANG HaiBin,ZHU ZhiWei,FAN XiaoXue,CHEN HuaZhi,DU Yu,ZHOU ZiYu,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui()   

  1. College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002
  • Received:2020-01-03 Accepted:2020-01-20 Online:2021-01-01 Published:2021-01-13
  • Contact: Rui GUO E-mail:ZDD0356998@163.com;fanyc19980201@126.com;ruiguo@fafu.edu.cn

Abstract:

【Objective】Long non-coding RNAs (lncRNAs), a kind of RNAs with highly conserved secondary and tertiary structures and a length of more than 200 nt, have no protein-coding potential. LncRNAs are widely involved in transcriptional and post-transcriptional regulations, such as dosage compensation, cell differentiation and growing development. The study aimed to perform analyses of cis regulation, antisense lncRNA regulation and competing endogenous RNA (ceRNA) regulation as well as related discussion based on previously obtained high-quality lncRNA omics dataset from mixed samples of Ascosphaera apis mycelia and spores, and further reveal the putative regulatory role of lncRNAs in A. apis.【Method】Protein-coding genes located at 100 kb upstream and downstream of A. apis lncRNAs were predicted on basis of the position of lncRNA genes; these upstream and downstream genes were annotated to GO and KEGG databases using Blast to gain function and pathway annotations. Target mRNAs of lncRNAs were identified using LncTar software and then annotated to KEGG and eggNOG databases. Target miRNAs of lncRNAs and target mRNAs of miRNAs were predicted using TargetFinder, followed by visualization of regulatory networks using Cytoscape v3.7.1. The expressions of partial lncRNAs, target miRNAs and target mRNAs within regulatory networks were validated using RT-PCR.【Result】A total of 5 852 upstream and downstream genes of A. apis lncRNAs were predicted. These upstream and downstream genes could be annotated to 48 functional terms such as cellular process, metabolic process and stress response, as well as 121 pathways including metabolic pathways, biosynthesis of secondary metabolites and biosynthesis of antibiotics, which indicated that part of A. apis lncRNAs could regulate the expression levels of upstream and downstream genes via cis-acting function, thus participating in regulation of basic cell activities including material and energy metabolisms. Seven lncRNAs were found to have sequence complementary pairing relationship with seven target mRNAs. Among them, five targets were annotated to hypothetical proteins in eggNOG database, while gene3444 could be annotated to nuclear pore complex protein An-Nup120 and hypothetical protein in KEGG database, suggesting that the aforementioned one antisense lncRNA might be involved in regulating biological processes including biosynthesis of nuclear pore complex protein. Additionally, 227 lncRNAs were predicted to have target binding relationship with 73 miRNAs; majority of these lncRNAs (79.02%) could only link to 1-2 miRNAs and partial miRNAs could be targeted by several lncRNAs. Furthermore, lncRNA-miRNA-mRNA regulatory networks associated with oxidative phosphorylation pathway and MAPK signaling pathway were constructed and analyzed, the results showed that 222 lncRNAs related to oxidative phosphorylation pathway could target 78 miRNAs and 50 mRNAs; as for MAPK signaling pathway, 222 associated lncRNAs could target 76 miRNAs and 46 mRNAs; the results suggested that part of A. apis lncRNAs were likely to regulate these two pathways via ceRNA mechanism, hence affecting energy synthesis, environmental adaptation as well as growth and development.【Conclusion】Partial lncRNAs may regulate a series of biological processes such as growth and development, material and energy mechanisms as well as environmental adaptation of A. apis; MSTRG.5393.1 as an antisense lncRNA may regulate biosynthesis of nuclear pore complex protein in A. apis.

Key words: Ascosphaera apis, long non-coding RNA (lncRNA), cis regulation, antisense lncRNA, competing endogenous RNA (ceRNA)

Table 1

Primers used in this study"

核酸ID
Nucleic acid ID
引物名称
Primer name
引物序列
Primer sequence (5′-3′)
产物大小
Product size (bp)
MSTRG.6443.1 F AAAATGAAAAGGCAAATC 210
R AAGGTCAAGAAGCACAAG
MSTRG.2135.1 F AGAAGCAGCAAGGAAGTCG 128
R GGCAGGGCAATAACAAAAC
MSTRG.2134.1 F ACTCACTCTCTGCCCCTC 238
R CCCATTTATTTGCTACCG
MSTRG.3422.1 F AACCGAAAAACTCAAGGA 160
R TCGCAATCAGACATCAAA
MSTRG.2302.1 F TGTCTGTCCGTTCGTCCTT 139
R CAGCGTAGCGTTGTGTAGT
MSTRG.5023.1 F CAAACCCAGATTTATTCC 110
R TACCTTTCCTCCTTACGA
MSTRG.5584.1 F GAAGACATTCAATCCAACAC 184
R AGCCACACACTTATCCACTA
MSTRG.1870.1 F GCCTCTTTTCGGTTTGCT 158
R CGTTCTTGCTCGTGTCGT
MSTRG.1614.1 F AAATCGGAACGGTGAGGGA 115
R GGCAGTGACCAAAGGCAAA
gene1602 F AGCCCCGCTACCAAACTC 110
R CTGTCCCTCATCGCCATA
gene1970 F AGTTCTCTTACTGGCGTCTTTG 100
R CTTTCACTTGCTGGGCTTTCTC
gene2674 F TGGCTTCCTACACAAACCT 233
R TTCCTTATTCACCCGCTCC
gene4126 F ATGAACAATGTCAAGGAAGC 320
R TCTGGAAAGAGTGTGGGGAG
gene4125 F CCAAACAGACAAATGGCTAA 120
R TCGGGAAAGATGATTGAGAA
gene5384 F TATGGTTATGCCTATGGTTT 122
R GATGTGGGGTATCTCGTGTT
gene1986 F CATTGATACCGATACAGAGAC 237
R GAGATAACATTGACAACGCCT
gene989 F CCTCTTCCCACACTCTCACT 236
R AGACTCCAAAACCTGCTCCT
miR-281-y L CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGCAAAGAGA 72
F ACACTCCAGCTGGGTGTCATGGAGTTGC
miR-13-y L CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGAGCTCATC 73
F ACACTCCAGCTGGGTATCACAGCCATTTT
miR-11980-y L CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGTCTGCCAA 68
F ACACTCCAGCTGGGGGGAACGGGC
miR-6057-y L CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGCATTTGTT 72
F ACACTCCAGCTGGGTTTGTGACTGTAAC
miR-1-z L CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGATACATAC 72
F ACACTCCAGCTGGGTGGAATGTAAAGAA
miR-9-z L CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGTCATACAG 73
F ACACTCCAGCTGGGTCTTTGGTTATCTAG
miR-13-x L CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGCATTCCAC 72
F ACACTCCAGCTGGGACATCAAATTGGTT
actin (gene6001) F GCTACTTCCCATCATTCGTC 92
R CCCAATCTGTGACAATCCC
- Universal R CTCAACTGGTGTCGTGGA

Fig. 1

GO database annotation of upstream and downstream genes of A. apis lncRNAs"

Fig. 2

Binding relationship between antisense lncRNAs and their targets in A. apis "

Table 2

Functional annotation of complementary targets with lncRNA sequence in A. apis"

LncRNA ID LncRNA大小
LncRNA size (bp)
靶mRNA ID
Target mRNA ID
靶mRNA大小
Target mRNA size (bp)
eggNOG数据库注释
Annotation in eggNOG database
MSTRG.3576.1 285 gene1316 1851 保守性假定蛋白(土曲霉NIH2624)
Conserved hypothetical protein (Aspergillus terreus NIH2624)
MSTRG.2795.1 253 gene548 1407
MSTRG.1238.1 294 gene1194 1569 保守性假定蛋白(土曲霉NIH2624)
Conserved hypothetical protein (Aspergillus terreus NIH2624)
MSTRG.5393.1 238 gene3444 3831 核孔复合体蛋白An-Nup120(皮炎芽生菌ATCC 18188)
Nuclear pore complex protein An-Nup120 (Blastomyces dermatitidis ATCC 18188)
MSTRG.1387.1 206 gene4650 3186 假定蛋白AN4929.2(构巢曲霉FGSC A4)
Hypothetical protein AN4929.2 (Aspergillus nidulans FGSC A4)
MSTRG.1672.1 221 gene5233 7065 假定蛋白PABG_05261(巴西副球孢子菌Pb03)
Hypothetical protein PABG_05261 (Paracoccidioides brasiliensis Pb03)
MSTRG.3829.1 296 gene1554 3036 假定蛋白CIMG_07970(粗球孢子菌RS)
Hypothetical protein CIMG_07970 (Coccidioides immitis RS)

Fig. 3

LncRNAs-miRNAs regulatory networks in A. apis"

Table 3

Top 12 KEGG pathways annotated by target mRNAs involved in A. apis ceRNA networks"

通路
Pathway
通路ID
Pathway ID
mRNA数
Number of mRNAs
P
P value
新陈代谢途径Metabolic pathway ko01100 9 0.2834603
次生代谢物的生物合成Biosynthesis of secondary metabolite ko01110 4 0.3784708
自噬-其他真核生物Autophagy-other eukaryote ko04136 3 0.0012982
线粒体自噬-酵母Mitophagy-yeast ko04139 3 0.0059399
自噬-酵母Autophagy-yeast ko04138 3 0.0165266
抗生素生物合成Biosynthesis of antibiotics ko01130 3 0.4179210
谷胱甘肽代谢Glutathione metabolism ko00480 2 0.0271424
寿命调节途径-多物种Longevity regulating pathway-multiple species ko04213 2 0.0302527
内质网蛋白加工Protein processing in endoplasmic reticulum ko04141 2 0.1919356
减数分裂-酵母Meiosis-yeast ko04113 2 0.2092014
嘌呤代谢Purine metabolism ko00230 2 0.2678463
细胞周期-酵母Cell cycle-yeast ko04111 2 0.3210316

Fig. 4

LncRNAs-miRNAs-mRNAs regulatory networks involved in oxidative phosphorylation (A) and MAPK signaling pathway (B) in A. apis"

Fig. 5

RT-PCR verification of lncRNAs, target miRNAs and target mRNAs in A. apis M: DNA marker; 1: MSTRG.6443.1; 2: MSTRG.2135.1; 3: MSTRG.2134.1; 4: MSTRG.3422.1; 5: MSTRG.2302.1; 6: MSTRG.5023.1; 7: MSTRG.5584.1; 8: MSTRG.1870.1; 9: MSTRG.1614.1; 11: miR-281-y; 12: miR-13-y; 13: miR-11980-x; 14: miR-6057-x; 15: miR-1-z; 16: miR-9-z; 17: miR-13-x; 19: gene2674; 20: gene4126; 21: gene4125; 22: gene1602; 23: gene5384; 24: gene1986; 25: gene989; 26: gene1970; 10, 18, 27: actin (positive control); N1, N2, N3: Sterile water (negative control)"

[1] MAXFIELD-TAYLOR S A, MUJIC A B, RAO S. First detection of the larval chalkbrood disease pathogen Ascosphaera apis (Ascomycota: Eurotiomycetes: Ascosphaerales) in adult bumble bees. PLoS ONE, 2015,10(4):e0124868.
doi: 10.1371/journal.pone.0124868 pmid: 25885679
[2] FLORES J M, RUIZ J A, RUZ J M, PUERTA F, BUSTOS M, PADIILA F, CAMPANO F. Effect of temperature and humidity of sealed brood on chalkbrood development under controlled conditions. Apidologie, 1996,27(4):185-192.
doi: 10.1051/apido:19960401
[3] PUERTA F, FLORES J M, BUSTOS M, PADILLA F, CAMPANO F. Chalkbrood development in honeybee brood under controlled conditions. Apidologie, 1994,25(6):540-546.
doi: 10.1051/apido:19940604
[4] KOENIG J P, BOUSH G M, ERICKSON E H. Effects of spore introduction and ratio of adult bees to brood on chalkbrood disease in honeybee colonies. Journal of Apicultural Research, 1987,26(3):191-195.
doi: 10.1080/00218839.1987.11100758
[5] GILLIAM M, TABER III S, LORENZ B J, PREST D B. Factors affecting development of chalkbrood disease in colonies of honey bees, Apis mellifera, fed pollen contaminated with Ascosphaera apis. Journal of Invertebrate Pathology, 1988,52(2):314-325.
doi: 10.1016/0022-2011(88)90141-3
[6] 李颖华, 何志义. LncRNA与感染性疾病研究进展. 基础医学与临床, 2016,36(9):1306-1309.
LI Y H, HE Z Y. Advance of lncRNA in the research on infectious diseases. Basic and Clinical Medicine, 2016,36(9):1306-1309. (in Chinese)
[7] BATISTA P J, CHANG H Y. Long noncoding RNAs: Cellular address codes in development and disease. Cell, 2013,152(6):1298-1307.
pmid: 23498938
[8] HUNG T, CHANG H Y. Long noncoding RNA in genome regulation. RNA Biology, 2010,7(5):582-585.
doi: 10.4161/rna.7.5.13216 pmid: 20930520
[9] YAN P, LUO S, LU J Y, SHEN X. Cis- and trans-acting lncRNAs in pluripotency and reprogramming. Current Opinion in Genetics and Development, 2017,46:170-178.
doi: 10.1016/j.gde.2017.07.009 pmid: 28843809
[10] FAUQUENOY S, MIGEOT V, FINET O, YAGUE-SANZ C, KHOROSJUTINA O, EKWALL K, HERMAND D. Repression of cell differentiation by a cis-acting lincRNA in fission yeast. Current Biology, 2018,28(3):383-391.
doi: 10.1016/j.cub.2017.12.048 pmid: 29395921
[11] 董宪喆, 胡园, 刘屏, 路玉盼. lncRNA作为竞争性内源RNA调控胃癌进程的研究进展. 中国药理学通报, 2016,32(9):1185-1189.
DONG X Z, HU Y, LIU P, LU Y P. The research progress of lncRNA as ceRNA in gastric cancer. Chinese Pharmacological Bulletin, 2016,32(9):1185-1189. (in Chinese)
[12] ZHU J, FU H, WU Y, ZHENG X. Function of lncRNAs and approaches to lncRNA-protein interactions. Science China. Life Sciences, 2013,56(10):876-885.
pmid: 24091684
[13] JATHAR S, KUMAR V, SRIVASTAVA J, TRIPATHI V. Technological developments in lncRNA biology//Advances in Experimental Medicine and Biology, 2017,1008:283-323.
[14] VAN WERVEN F J, NEUERT G, HENDRICK N, LARDENOIS A, BURATOWSKI S, VAN OUDENAARDEN A, PRIMIG M, AMON A. Transcription of two long noncoding RNAs mediates mating-type control of gametogenesis in budding yeast. Cell, 2012,150(6):1170-1181.
doi: 10.1016/j.cell.2012.06.049 pmid: 22959267
[15] 杜庆国. 通过转录组测序分析玉米耐受低磷胁迫的分子机制[D]. 北京: 中国农业科学院, 2017.
DU Q G. Explanation of molecular mechanisms to low phosphorus stress through RNA-seq transcriptome analysis in maize[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. (in Chinese)
[16] SHAO J, WANG J, HUANG J, LIU C, PAN Y, GUO Q, ZOU W. Identification of lncRNA expression profiles and ceRNA analysis in the spinal cord of morphine-tolerant rats. Molecular Brain, 2018,11:21.
doi: 10.1186/s13041-018-0365-8 pmid: 29636075
[17] NIEDERER R O, PAPADOPOULOS N, ZAPPULLA D C. Identification of novel noncoding transcripts in telomerase-negative yeast using RNA-seq. Scientific Reports, 2016,6:19376.
doi: 10.1038/srep19376 pmid: 26786024
[18] BUMGARNER S L, DOWELL R D, GRISAFI P, GIFFORD D K, FINK G R. Toggle involving cis-interfering noncoding RNAs controls variegated gene expression in yeast. Proceedings of the National Academy of Sciences of the United States of America, 2010,106(43):18321-18326.
[19] ARD R, TONG P, ALLSHIRE R C. Long non-coding RNA-mediated transcriptional interference of a permease gene confers drug tolerance in fission yeast. Nature Communications, 2014,5:5576.
doi: 10.1038/ncomms6576
[20] QIN X, EVANS J D, ARONSTEIN K A, MURRAY K D, WEINSTOCK G M. Genome sequences of the honey bee pathogens Paenibacillus larvae and Ascosphaera apis. Insect Molecular Biology, 2006,15(5):715-718.
doi: 10.1111/j.1365-2583.2006.00694.x pmid: 17069642
[21] SHANG Y, XIAO G, ZHENG P, CEN K, ZHAN S, WANG C. Divergent and convergent evolution of fungal pathogenicity. Genome Biology and Evolution, 2016,8(5):1374-1387.
doi: 10.1093/gbe/evw082 pmid: 27071652
[22] 张曌楠, 熊翠玲, 徐细建, 黄枳腱, 郑燕珍, 骆群, 刘敏, 李汶东, 童新宇, 张琦, 梁勤, 郭睿, 陈大福. 蜜蜂球囊菌的参考转录组de novo组装及SSR分子标记开发. 昆虫学报, 2017,60(1):34-44.
ZHANG Z N, XIONG C L, XU X J, HUANG Z J, ZHENG Y Z, LUO Q, LIU M, LI W D, TONG X Y, ZAHNG Q, LIANG Q, GUO R, CHEN D F. De novo assembly of a reference transcriptome and development of SSR markers for Ascosphaera apis. Acta Entomologica Sinica, 2017,60(1):34-44. (in Chinese)
[23] 陈大福, 郭睿, 熊翠玲, 梁勤, 郑燕珍, 徐细建, 黄枳腱, 张曌楠, 张璐, 李汶东, 童新宇, 席伟军. 胁迫意大利蜜蜂幼虫肠道的球囊菌的转录组分析. 昆虫学报, 2017,60(4):401-411.
CHEN D F, GUO R, XIONG C L, LIANG Q, ZHENG Y Z, XU X J, HUANG Z J, ZHANG Z N, ZHANG L, LI W D, TONG X Y, XI W J. Transcriptomic analysis of Ascosphaera apis stressing larval gut of Apis mellifera ligustica (Hyemenoptera: Apidae). Acta Entomologica Sinica, 2017,60(4):401-411. (in Chinese)
[24] 郭睿, 陈大福, 黄枳腱, 梁勤, 熊翠玲, 徐细建, 郑燕珍, 张曌楠, 解彦玲, 童新宇, 侯志贤, 江亮亮, 刀晨. 球囊菌胁迫中华蜜蜂幼虫肠道过程中病原的转录组学研究. 微生物学报, 2017,57(12):1865-1878.
doi: 10.13343/j.cnki.wsxb.20160551
GUO R, CHEN D F, HUANG Z J, LIANG Q, XIONG C L, XU X J, ZHENG Y Z, ZHANG Z N, XIE Y L, TONG X Y, HOU Z X, JIANG L L, DAO C. Transcriptome analysis of Ascosphaera apis stressing larval gut of Apis cerana cerana. Acta Microbiologica Sinica, 2017,57(12):1865-1878. (in Chinese)
doi: 10.13343/j.cnki.wsxb.20160551
[25] CHEN D F, DU Y, FAN X X, ZHU Z W, JIANG H B, WANG J, FAN Y C, CHEN H Z, ZHOU D D, XIONG C L, ZHENG Y Z, XU X J, LUO Q, GUO R. Reconstruction and functional annotation of Ascosphaera apis full-length transcriptome utilizing PacBio long reads combined with Illumina short reads. Journal of Invertebrate Pathology, 2020,176:107475.
doi: 10.1016/j.jip.2020.107475 pmid: 32976816
[26] GUO R, CHEN D, XIONG C, HOU C, ZHENG Y, FU Z, DIAO Q, ZHANG L, WANG H, HOU Z, LI W, KUMAR D, LIANG Q. Identification of long non-coding RNAs in the chalkbrood disease pathogen Ascospheara apis. Journal of Invertebrate Pathology, 2018,156:1-5.
pmid: 29894727
[27] 郭睿, 王海朋, 陈华枝, 熊翠玲, 郑燕珍, 付中民, 赵红霞, 陈大福. 蜜蜂球囊菌的microRNA鉴定及其调控网络分析. 微生物学报, 2018,58(6):1077-1089.
doi: 10.13343/j.cnki.wsxb.20170535
GUO R, WANG H P, CHEN H Z, XIONG C L, ZHENG Y Z, FU Z M, ZHAO H X, CHEN D F. Identification of Ascosphaera apis microRNAs and investigation of their regulation networks. Acta Microbiologica Sinica, 2018,58(6):1077-1089. (in Chinese)
doi: 10.13343/j.cnki.wsxb.20170535
[28] 周丁丁, 史小玉, 王杰, 范元婵, 祝智威, 蒋海宾, 范小雪, 熊翠玲, 郑燕珍, 付中民, 徐国钧, 陈大福, 郭睿. 东方蜜蜂微孢子虫孢子中长链非编码RNA的竞争性内源RNA调控网络及潜在功能. 中国农业科学, 2020,53(10):2122-2136.
doi: 10.3864/j.issn.0578-1752.2020.10.018
ZHOU D D, SHI X Y, WANG J, FAN Y C, ZHU Z W, JIANG H B, FAN X X, XIONG C L, ZHENG Y Z, FU Z M, XU G J, CHEN D F, GUO R. Investigation of competing endogenous RNA regulatory network and putative function of long non-coding RNAs in Nosema ceranae spore. Scientia Agricultura Sinica, 2020,53(10):2122-2136. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2020.10.018
[29] LI J, MA W, ZENG P, WANG J, GENG B, YANG J, CUI Q. LncTar: A tool for predicting the RNA targets of long noncoding RNAs. Briefings in Bioinformatics, 2015,16(5):806-812.
doi: 10.1093/bib/bbu048 pmid: 25524864
[30] 郭睿, 耿四海, 熊翠玲, 郑燕珍, 付中民, 王海朋, 杜宇, 童新宇, 赵红霞, 陈大福. 意大利蜜蜂工蜂中肠发育过程中长链非编码RNA的差异表达分析. 中国农业科学, 2018,51(18):3600-3613.
doi: 10.3864/j.issn.0578-1752.2018.18.016
GUO R, GENG S H, XIONG C L, ZHENG Y Z, FU Z M, WANG H P, DU Y, TONG X Y, ZHAO H X, CHEN D F. Differential expression analysis of long non-coding RNAs during the developmental process of Apis mellifera ligustica worker’s midgut. Scientia Agricultura Sinica, 2018,51(18):3600-3613. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.18.016
[31] BO X, WANG S. TargetFinder: A software for antisense oligonucleotide target site selection based on MAST and secondary structures of target mRNA. Bioinformatics, 2005,21(8):1401-1402.
doi: 10.1093/bioinformatics/bti211 pmid: 15598838
[32] 杜宇, 童新宇, 周丁丁, 陈大福, 熊翠玲, 郑燕珍, 徐国钧, 王海朋, 陈华枝, 郭意龙, 隆琦, 郭睿. 中华蜜蜂幼虫肠道响应球囊菌胁迫的microRNA应答分析. 微生物学报, 2019,59(9):1747-1764.
DU Y, TONG X Y, ZHOU D D, CHEN D F, XIONG C L, ZHENG Y Z, XU G J, WANG H P, CHEN H Z, GUO Y L, LONG Q, GUO R. MicroRNA responses in the larval gut of Apis cerana cerana to Ascosphaera apis stress. Acta Microbiologica Sinica, 2019,59(9):1747-1764. (in Chinese)
[33] SONG Y X, SUN J X, ZHAO J H, YANG Y C, SHI J X, WU Z H, CHEN X W, GAO P, MIAO Z F, WANG Z N. Non-coding RNAs participate in the regulatory network of CLDN4 via ceRNA mediated miRNA evasion. Nature Communications, 2017,8(1):289.
doi: 10.1038/s41467-017-00304-1 pmid: 28819095
[34] YANG D, LIAN T, TU J, GAUR U, MAO X, FAN X, LI D, LI Y, YANG M. LncRNA mediated regulation of aging pathways in Drosophila melanogaster during dietary restriction. Aging, 2016,8(9):2182-2197.
doi: 10.18632/aging.101062 pmid: 27687893
[35] AU P C K, DENNIS E S, WANG M B. Analysis of Argonaute 4-associated long non-coding RNA in Arabidopsis thaliana sheds novel insights into gene regulation through RNA-directed DNA methylation. Genes, 2017,8(8):198.
doi: 10.3390/genes8080198
[36] 熊翠玲, 杜宇, 冯睿蓉, 蒋海宾, 史小玉, 王海朋, 范小雪, 王杰, 祝智威, 范元婵, 陈华枝, 周丁丁, 郑燕珍, 陈大福, 郭睿. 侵染中华蜜蜂6日龄幼虫的蜜蜂球囊菌的微小RNA差异表达谱及调控网络. 微生物学报, 2020,60(5):992-1009.
XIONG C L, DU Y, FENG R R, JIANG H B, SHI X Y, WANG H P, FAN X X, WANG J, ZHU Z W, FAN Y C, CHEN H Z, ZHOU D D, ZHENG Y Z, CHEN D F, GUO R. Differential expression pattern and regulation network of microRNAs in Ascosphaera apis invading Apis cerana cerana 6-day-old larvae. Acta Microbiologica Sinica, 2020,60(5):992-1009. (in Chinese)
[37] CAI B, LI Z, MA M, WANG Z, HAN P, ABDALLA B A, NIE Q, ZHANG X. LncRNA-six1 encodes a micropeptide to activate six1 in cis and is involved in cell proliferation and muscle growth. Frontiers in Physiology, 2017,8:230.
doi: 10.3389/fphys.2017.00230 pmid: 28473774
[38] FENG D, LI Q, YU H, KONG L, DU S. Transcriptional profiling of long non-coding RNAs in mantle of Crassostrea gigas and their association with shell pigmentation. Scientific Reports, 2018,8(1):1436.
doi: 10.1038/s41598-018-19950-6 pmid: 29362405
[39] 张惠艳, 李艳菊, 顾金刚, 董晓霞, 尚攀. 基于Biolog-FF技术的金霉素降解真菌的碳代谢特征研究. 微生物学通报, 2015,42(7):1241-1247.
doi: 10.13344/j.microbiol.china.140745
ZHANG H Y, LI Y J, GU J G, DONG X X, SHANG P. On carbon metabolism of fungi in chlortetracycline degradation based on Biolog-FF system. Microbiology China, 2015,42(7):1241-1247. (in Chinese)
doi: 10.13344/j.microbiol.china.140745
[40] WANG Z H, LIU J M, CHEN L, ZENG A P, SOLEM C, JENSEN P R. Alterations in the transcription factors GntR1 and RamA enhance the growth and central metabolism of Corynebacterium glutamicum. Metabolic Engineering, 2018,48:1-12.
doi: 10.1016/j.ymben.2018.05.004 pmid: 29753071
[41] DONIA M S, FRICKE W F, PARTENSKY F, COX J, ELSHAHAWI S I, WHITE J R, PHILLIPPY A M, SCHATZ M C, PIEL J, HAYGOOD M G, RAVEL J, SCHMIDT E W. Complex microbiome underlying secondary and primary metabolism in the tunicate-Prochloron symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2011,108(51):E1423-E1432.
[42] SOLA-LANDA A, MOURA R S, MARTIN J F. The two-component PhoR-PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyces lividans. Proceedings of the National Academy of Sciences of the United States of America, 2003,100(10):6133-6138.
[43] HUARTE-BONNET C, PAIXÃO F R S, PONCE J C, SANTANA M, PRIETO E D, PEDRINI N. Alkane-grown Beauveria bassiana produce mycelial pellets displaying peroxisome proliferation, oxidative stress, and cell surface alterations. Fungal Biology, 2018,122(6):457-464.
doi: 10.1016/j.funbio.2017.09.003 pmid: 29801789
[44] MCNAMARA-BORDEWICK N K, MCKINSTRY M, SNOW J W. Robust transcriptional response to heat shock impacting diverse cellular processes despite lack of heat shock factor in microsporidia. mSphere, 2019,4(3):e00219-19.
doi: 10.1128/mSphere.00219-19 pmid: 31118302
[45] 许彩虹, 赵亚琴, 杨斌盛. 金属离子对金属蛋白结构与功能的调控. 化学进展, 2013,25(4):520-529.
doi: 10.7536/PC121007
XU C H, ZHAO Y Q, YANG B S. Mediating roles of metal ions in the structures and functions of metalloproteins. Progress in Chemistry, 2013,25(4):520-529. (in Chinese)
doi: 10.7536/PC121007
[46] CHACKO N, ZHAO Y, YANG E, WANG L, CAI J J, LIN X. The lncRNA RZE1 controls cryptococcal morphological transition. PLoS Genetics, 2015,11(11):e1005692.
doi: 10.1371/journal.pgen.1005692 pmid: 26588844
[47] 谢兆辉. 长非编码RNA在基因表达调节中的作用. 生命的化学, 2010,30(3):345-349.
XIE Z H. The roles of large noncoding RNAs in gene regulation. Chemistry of Life, 2010,30(3):345-349. (in Chinese)
[48] SALMENA L, POLISENO L, TAY Y, KATS L, PANDOLFI P. A ceRNA hypothesis: The Rosetta stone of a hidden RNA language?. Cell, 2011,146(3):353-358.
doi: 10.1016/j.cell.2011.07.014 pmid: 21802130
[49] CHEN D F, CHEN H Z, DU Y, ZHOU D D, GENG S H, WANG H P, WAN J Q, XIONG C L, ZHENG Y Z, GUO R. Genome-wide identification of long non-coding RNAs and their regulatory networks involved in Apis mellifera ligustica response to Nosema ceranae infection. Insects, 2019,10(8):245.
doi: 10.3390/insects10080245
[50] FONTANESI F, DIAZ F, BARRIENTOS A. Evaluation of the mitochondrial respiratory chain and oxidative phosphorylation system using yeast models of OXPHOS deficiencies. Current Protocols in Human Genetics, 2009,19(5): doi: 10.1002/0471142905.hg1905s63.
[51] 范永山, 刘颖超, 谷守芹, 桂秀梅, 董金皋. 植物病原真菌的MAPK基因及其功能. 微生物学报, 2004,44(4):547-551.
FAN Y S, LIU Y C, GU S Q, GUI X M, DONG J G. Mitogen activated protein kinase genes and its functions in phytopathogenic fungus. Acta Microbiologica Sinica, 2004,44(4):547-551. (in Chinese)
[1] DU Yu,ZHU ZhiWei,WANG Jie,WANG XiuNa,JIANG HaiBin,FAN YuanChan,FAN XiaoXue,CHEN HuaZhi,LONG Qi,CAI ZongBing,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui. Construction and Annotation of Ascosphaera apis Full-Length Transcriptome Utilizing Nanopore Third-Generation Long-Read Sequencing Technology [J]. Scientia Agricultura Sinica, 2021, 54(4): 864-876.
[2] CHEN HuaZhi,WANG Jie,ZHU ZhiWei,JIANG HaiBin,FAN YuanChan,FAN XiaoXue,WAN JieQi,LU JiaXuan,ZHENG YanZhen,FU ZhongMin,XU GuoJun,CHEN DaFu,GUO Rui. Comparison and Potential Functional Analysis of Long Non-Coding RNAs Between Ascosphaera apis Mycelium and Spore [J]. Scientia Agricultura Sinica, 2021, 54(2): 435-448.
[3] WANG JiQing,HAO ZhiYun,SHEN JiYuan,KE Na,HUANG ZhaoChun,LIANG WeiWei,LUO YuZhu,HU Jiang,LIU Xiu,LI ShaoBin. Screening, Identification and Functional Analysis of Important LncRNAs for Lactation Traits in Small-Tailed Han Sheep [J]. Scientia Agricultura Sinica, 2021, 54(14): 3113-3123.
[4] HaiYan JIA,LiYun SONG,Xiang XU,Yi XIE,ChaoQun ZHANG,TianBo LIU,CunXiao ZHAO,LiLi SHEN,Jie WANG,Ying LI,FengLong WANG,JinGuang YANG. Differential Expression of LncRNAs in Nicotiana tabacum var. Samsun NN Infected by TMV at Different Temperatures [J]. Scientia Agricultura Sinica, 2020, 53(7): 1381-1396.
[5] CHEN HuaZhi,ZHU ZhiWei,JIANG HaiBin,WANG Jie,FAN YuanChan,FAN XiaoXue,WAN JieQi,LU JiaXuan,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui. Comparative Analysis of MicroRNAs and Corresponding Target mRNAs in Ascosphaera apis Mycelium and Spore [J]. Scientia Agricultura Sinica, 2020, 53(17): 3606-3619.
[6] DU Yu,FAN XiaoXue,JIANG HaiBin,WANG Jie,FAN YuanChan,ZHU ZhiWei,ZHOU DingDing,WAN JieQi,LU JiaXuan,XIONG CuiLing,ZHENG YanZhen,CHEN DaFu,GUO Rui. The Potential Role of MicroRNAs and MicroRNA-Mediated Competing Endogenous Networks During the Developmental Process of Apis mellifera ligustica Worker’s Midgut [J]. Scientia Agricultura Sinica, 2020, 53(12): 2512-2526.
[7] ZHOU DingDing,SHI XiaoYu,WANG Jie,FAN YuanChan,ZHU ZhiWei,JIANG HaiBin,FAN XiaoXue,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,XU GuoJun,CHEN DaFu,GUO Rui. Investigation of Competing Endogenous RNA Regulatory Network and Putative Function of Long Non-Coding RNAs in Nosema ceranae Spore [J]. Scientia Agricultura Sinica, 2020, 53(10): 2122-2136.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!