Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (10): 2179-2191.doi: 10.3864/j.issn.0578-1752.2021.10.013

• HORTICULTURE • Previous Articles     Next Articles

Expression Characteristics and Function of FveD27 in Woodland Strawberry

SUN HongYing1(),WANG Yan1,LI WeiJia1,2,ZHU TianShu1,JIANG Ying1,XU Yan1,WU QingYue1,ZHANG ZhiHong1()   

  1. 1College of Horticulture, Shenyang Agricultural University/Liaoning Key Laboratory of Strawberry Breeding and Cultivation, Shenyang 110866
    2Institute of Carbon Materials Science, Shanxi Datong University, Datong 037009, Shanxi
  • Received:2020-08-05 Accepted:2020-11-14 Online:2021-05-16 Published:2021-05-24
  • Contact: ZhiHong ZHANG E-mail:2019200077@stu.syau.edu.cn;zhangz@syau.edu.cn

Abstract:

【Objective】It is known that the new plant hormone strigolactone is a key factor regulating plant branching development, but the role of strigolactone in the growth and development of strawberry plants is unclear. In this study, the expression characteristics and function of the key gene DWARF27 (D27) for strigolactone biosynthesis in woodland strawberry (Fragaria vesca) was revealed, and the role of FveD27 in strawberry branching growth and development was explored, which would lay a theoretical foundation for studying strawberry plant architecture. 【Method】The coding sequence region of strigolactone synthesis key gene FveD27 was cloned by RT-PCR from woodland strawberry. The phylogenetic relationship between FveD27 and D27 in apple, Arabidopsis and other species was analyzed by using MEGA 6.0. A fusion vector of FveD27 and GFP was constructed to inject tobacco leaves for analyzing the subcellular location of FveD27. The expression level of FveD27 in different organs of woodland strawberry was analyzed by qRT-PCR technology. The FveD27 promoter and GUS fusion expression vector was constructed and transformed into woodland strawberry by Agrobacterium-mediated method, and the expression characteristic of FveD27 was further analyzed by GUS staining. The overexpression vector of FveD27 was constructed and the FveD27 overexpression strawberry lines were obtained by Agrobacterium-mediated transformation with leaf disks of woodland strawberry as explants. 【Result】The coding sequence region of FveD27 with the length of 789 bp was cloned from woodland strawberry. The subcellular localization in tobacco showed that FveD27 was located in the chloroplast. The expression levels of FveD27 in woodland strawberry organs from high to low were followed by young leaves, shoot tips, petiole, mature leaves and roots. The FveD27 promoter sequence with a length of 1670 bp was cloned, and transgenic plants with pFveD27::GUS gene showed that the young leaves and buds had strong GUS activity, the mature leaves and petioles had weak GUS activity, while the roots had little GUS activity. The result of FveD27 expression revealed by GUS analysis was consistent with the result by qRT-PCR. The FveD27 overexpression vector was constructed and the transgenic woodland strawberry lines overexpressing FveD27 were obtained with Agrobacterium-mediated transformation. Overexpressing FveD27 in woodland strawberry inhibited significantly the formation of branch crowns and increased the number of inflorescences. 【Conclusion】FveD27 had the functions of regulating the development of branch crowns and the number of inflorescences in woodland strawberry, and this study provided new ideas for regulating the number of branch crowns and yield of strawberry.

Key words: Fragaria vesca, strigolactone, D27, subcellular localization, branching

Table 1

Primers used in this study"

引物 Primer 序列(5′→3′) Sequence(5′→3′) 目的 Purpose
FveD27-F
FveD27-R
ACGCGTCGACATGGAAGCATCACATTTCT
CGCGGATCCCTAACTGGAGCAGTTAT
基因全长克隆
Full-length gene cloning
FveD27-DL-F
FveD27-DL-R
AGCAGAATAAGACCGGCAGA
TGCAGCTTGGACATTTTGAG
实时荧光定量
Real-time PCR
Fve-26S-F
Fve-26S-R
TAACCGCATCAGGTCTCCAA
CTCGAGCAGTTCTCCGACAG
内参基因
Reference gene
FveD27(eGFP)-F
FveD27(eGFP)-R
TCCCCCGGGATGGAAGCATCACATTT
CGGGGTACCACTGGAGCAGTTATTGT
亚细胞定位
Subcellular localization
proFveD27-F
proFveD27-R
GCTGCAGGCTGATTCCTAAGGGTATC TGCTCTAGAATGCATGGTGGGGAATTTAAAG 启动子克隆
Promoter cloning

Fig. 1

PCR amplified product M1: DL2000 marker; M2: DL5000 marker; A: PCR amplified product of FveD27; B: PCR amplified product of FveD27 promoter"

Fig. 2

The sequencing alignment results of FveD27 sequence A: FveD27 gene sequence comparison; B: FveD27 amino acid sequence comparison"

Fig. 3

D27 conserved domain analysis A: The DUF4033 domain is contained in the FveD27 protein; B: Sequence alignment of D27 protein conserved domains in higher plants"

Fig. 4

Phylogenetic tree of D27 in higher plants"

Fig. 5

Subcellular localization of FveD27"

Fig. 6

Organ expression specificity of FveD27 Different lowercase letters indicate significant differences (P<0.05). The same as below"

Table 2

Prediction of cis-acting elements related to FveD27 promoter"

顺式作用元件
cis-regulatory element
位置(方向)
Position(stand)
序列
Sequence
功能
Function
ACA-motif 247(-) AATCACAACCATA (gapA-CMA1)中gapA的一部分涉及光响应性
Part of gapA in (gapA-CMA1) involved with light responsiveness
AE-box 405(-) AGAAACAA 光响应的元件的一部分 Part of a module for light response
GT1-motif 382(+) GGTTAA 光响应元件 Light responsive element
I-box 345(-), 986(+) TGATAATGT 光响应元件的一部分 Part of a light responsive element
LAMP-element 181(+) CTTTATCA 光响应元件的一部分 Part of a light responsive element
TCT-motif 1159(-) AACGAC 光响应元件的一部分 Part of a light responsive element
MRE 379(-) AACCTAA 参与光诱导的MYB绑定位点 MYB binding site involved in light responsiveness
CCAAT-box 881(+) CAACGG MYBHv1结合位点 MYBHv1 binding site
MBS 1487(-) CAACTG 参与干旱诱导的MYB绑定位点 MYB binding site involved in drought-inducibility
GC-motif 920(-) CCCCCG 参与缺氧特异性诱导性的增强子元件
Enhancer-like element involved in anoxic specific inducibility
ARE 1781(+) AAACCA 厌氧诱导的必要顺式作用调节元件
cis-acting regulatory element essential for the anaerobic induction
TCA-element -384(-), -1107(-) CAGAAAAGGA 水杨酸响应的顺式作用元件
cis-acting element involved in salicylic acid responsiveness
P-box 117(+) CCTTTTG 赤霉素响应元件 Gibberellin-responsive element
TATC-box 1127(-) TATCCCA 赤霉素响应的顺式作用元件 cis-acting element involved in gibberellin-responsiveness
TGACG-motif 1406(-), 1413(+) TGACG MeJA响应的顺式作用元件
cis-acting regulatory element involved in the MeJA-responsiveness
CGTCA-motif 1406(+), 1413(-) CGTCA MeJA响应的顺式作用元件
cis-acting regulatory element involved in the MeJA-responsiveness
TATA-box 188(-) TATAATAAT 转录起始位点上游-30左右位置的核心启动元件
The core activation element at about -30 upstream of the transcription start site

Fig. 7

GUS activity analysis in transgenic strawberry plants A-D: Mature leaf, young plantlet, petiole and root of non-transgenic plants; E-H: Mature leaf, young plantlet, petiole and root of transgenic plants. Scale bar: 1mm"

Fig. 8

qRT-PCR identification and phenotype of transgenic lines (vegetative phase) ** indicate significant differences (P<0.01)"

Fig. 9

Investigation on botanic characters of transgenic plants (Vegetative phase) Values are the mean ±SD (n=10). The same as below"

Fig. 10

Investigation on botanic characters of transgenic plants (Reproductive phase)"

Fig. 11

Phenotype of branches in T1 generation of FveD27 overexpression line"

[1] 冯丹, 陈贵林. 独脚金内酯调控侧枝发育的研究进展. 生态学杂志, 2011,30(2):349-356.
FENG D, CHEN G L. Shoot-branching control with strigolactones: Research progress. Chinese Journal of Ecology, 2011,30(2):349-356. (in Chinese)
[2] 胡盼盼, 张香粉, 赵霞, 李刚, 赵凤莉, 李亮杰, 周厚成. 草莓新茎分枝与独脚金内酯的关系. 果树学报, 2019,36(5):578-589.
HU P P, ZHANG X F, ZHAO X, LI G, ZHAO F L, LI L J, ZHOU H C. Relation betweenship strigolactones and branching in strawberry. Journal of Fruit Science, 2019,36(5):578-589. (in Chinese)
[3] GOMEZ-ROLDAN V, FERMAS S, BREWER P B, PUECH-PAGÈS V, DUN E A, PILLOT J P, LETISSE F, MATUSOVA R, DANOUN S, PORTAIS J C, BOUWMEESTER H, BÉCARD G, BEVERIDGE C A, RAMEAU C, ROCHANGE S F. Strigolactone inhibition of shoot branching. Nature, 2008,455:189-194.
doi: 10.1038/nature07271
[4] RAMEAU C. Strigolactones, a novel class of plant hormone controlling shoot branching. Comptes Rendus Biologies, 2010,333(4):344-349.
doi: 10.1016/j.crvi.2010.01.012
[5] DOMAGALSKA M A, LEYSER O. Signal integration in the control of shoot branching. Nature Reviews: Molecular Cell Biology, 2011,12(4):211-221.
doi: 10.1038/nrm3088
[6] ALDER A, HOLDERMANN I, BEYER P, AL-BABILI S. Carotenoid oxygenases involved in plant branching catalyse a highly specific conserved apocarotenoid cleavage reaction. The Biochemical Journal, 2008,416(2):289-296.
doi: 10.1042/BJ20080568
[7] BRUNO M, AL-BABILI S. On the substrate specificity of the rice strigolactone biosynthesis enzyme DWARF27. Planta, 2016,243:1429-1440.
doi: 10.1007/s00425-016-2487-5
[8] YAO R F, LI J Y, XIE D X. Recent advances in molecular basis for strigolactone action. Science China: Life Science, 2018,61:277-284.
doi: 10.1007/s11427-017-9195-x
[9] XIONG G S, WANG Y H, LI J Y. Action of strigolactones in plants. Enzyme, 2014,35:57-84.
doi: 10.1159/000469319
[10] LIN H, WANG R X, QIAN Q, YAN M X, MENG X B, FU Z M, YAN C Y, JIANG B, SU Z, LI J Y, WANG Y H. DWARF27, an iron- containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell, 2009,21(5):1512-1525.
doi: 10.1105/tpc.109.065987
[11] WATERS M T, BREWER P B, BUSSELL J D, SMITH S M, BEVERIDGE C A. The Arabidopsis ortholog of rice DWARF27 acts upstream of MAX1 in the control of plant development by strigolactones. Plant Physiology, 2012,159(3):1073-1085.
doi: 10.1104/pp.112.196253
[12] WEN C, ZHAO Q C, NIE J, LIU G Q, SHEN L, CHENG C X, XI L, MA N, ZHAO L J. Physiological controls of chrysanthemum DgD27 gene expression in regulation of shoot branching. Plant Cell Reports, 2016,35:1053-1070.
doi: 10.1007/s00299-016-1938-6
[13] 武亭亭. 小麦独脚金内酯合成相关基因TaDWARF27的分离与功能分析[D]. 泰安: 山东农业大学, 2016.
WU T T. Isolation and functional analysis of TaDWARF27 in Triticum aestivum L[D]. Tai’an: Shandong Agricultural University, 2016. (in Chinese)
[14] LIU W, KOHLEN W, LILLO A, CAMP R O D, IVANOV S, HARTOG M, LIMPENS E, JAMIL M, SMACZNIAK C, KAUFMANN K, YANG W C, HOOIVELD G, CHARNIKHOVA T, BOUWMEESTER H J, BISSELING T, GEURTS R. Strigolactone biosynthesis in Medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2. Plant Cell, 2011,23(10):3853-3865.
doi: 10.1105/tpc.111.089771
[15] 赵晨晨, 范雅丽, 秦岭, 邢宇, 房克凤, 张卿, 曹庆芹. 森林草莓独脚金内酯合成关键基因D27的克隆与表达分析. 园艺学报, 2016,43(5):975-982.
ZHAO C C, FAN Y L, QIN L, XING Y, FANG K F, ZHANG Q, CAO Q Q. The cloning and expression analysis of D27 gene of Strigolactone biosynthesis pathway in Fragaria vesca. Acta Horticulture Sinica, 2016,43(5):975-982. (in Chinese)
[16] 吴转娣, 刘新龙, 刘家勇, 昝逢刚, 李旭娟, 刘洪博, 林秀琴, 陈学宽, 苏火生, 赵培方, 吴才文. 甘蔗独脚金内酯生物合成关键基因ScD27的克隆与表达分析. 作物学报, 2017,43(1):31-41.
WU C D, LIU X L, LIU J Y, ZAN F G, LI X J, LIU H B, LIN X Q, CHEN X K, SU H S, ZHAO P F, WU C W. Cloning and expression analysis of the key gene ScD27 in Strigolactones biosynthesis pathway. Acta Agronomica Sinica, 2017,43(1):31-41. (in Chinese)
[17] 李炎坤. 青天葵独脚金内酯合成关键基因D27的克隆与功能分析[D]. 广州: 广州中医药大学, 2019.
LI Y K. Cloning and function analysis of D27, the key gene for Strigolactones Synthesis from Nervilia fordii [D]. Guangzhou: Guangzhou University of Chinese Medicine, 2019. (in Chinese)
[18] WU H, LI H H, CHEN H, QI Q, DING Q Q, XUE J, DING J, JIANG X N, HOU X L, LI Y. Identification and expression analysis of strigolactone biosynthetic and signaling genes reveal strigolactones are involved in fruit development of the woodland strawberry (Fragaria vesca). BMC Plant Biology, 2019,19(1):73.
doi: 10.1186/s12870-019-1673-6
[19] 李伟佳. 草莓匍匐茎发生基因的定位克隆与鉴定[D]. 沈阳: 沈阳农业大学, 2018.
LI W J. Positional cloning and identification of runner producing gene in strawberry[D]. Shenyang: Shenyang Agricultural University, 2018. (in Chinese)
[20] CHANG L L, ZHANG Z H, YANG H, LI H, DAI H Y. Detection of strawberry RNA and DNA viruses by RT-PCR using total nucleic acid as a template. Journal of Phytopathology, 2007,155(7):431-436.
doi: 10.1111/jph.2007.155.issue-7-8
[21] WANG X Q, SHEN X, HE Y M, REN T T, WU W T, XI T. An optimized freeze-thaw method for transformation of Agrobacterium tumefaciens EHA105 and LBA4404. Pharmaceutical Biotechnology, 2011,18(5):382-386.
[22] 于一帆, 朱小彬, 葛会敏, 陈云. 基于绿色荧光蛋白瞬时表达的植物亚细胞定位方法. 江苏农业科学, 2014,42(12):58-61.
YU Y F, ZHU X B, GE H M, CHEN Y. Subcellular localization in plants based on transient expression of green fluorescent protein. Jiangsu Agricultural Sciences, 2014,42(12):58-61. (in Chinese)
[23] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001,25(4):402-408.
doi: 10.1006/meth.2001.1262
[24] LI Y P, WEI W, FENG J, LUO H F, PI M T, LIU Z C, KANG C Y. Genome reannotation of the wild strawberry Fragaria vesca using extensive Illumina-and SMRT-based RNA-seq datasets. DNA Research, 2017,25(1):61-70.
doi: 10.1093/dnares/dsx038
[25] LI W J, ZHANG J X, SUN H Y, MA Y, LIU Y X, LI H, ZHANG Z H. FveRGA1, encoding a DELLA protein, negatively regulates runner production in Fragaria vesca. Planta, 2018,247(4):941-951.
doi: 10.1007/s00425-017-2839-9
[26] 孙洪影. 森林草莓FveD27基因分离鉴定及表达特性分析[D]. 沈阳: 沈阳农业大学, 2019.
SUN H Y. Identification and expression analysis of FveD27 gene in woodland strawberry[D]. Shenyang: Shenyang Agricultural University, 2019. (in Chinese)
[27] MOUHU K, KUROKURA T, KOSKELA E A, ALBERT V A, ELOMAA P, HYTÖNEN T. The Fragaria vesca homolog of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 represses flowering and promotes vegetative growth. The Plant Cell, 2013,25(9):3296-3310.
doi: 10.1105/tpc.113.115055
[28] BREWER P B, DUN E A, FERGUSON B J, RAMEAU C, BEVERIDGE C A. Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and Arabidopsis. Plant Physiology, 2009,150:482-493.
doi: 10.1104/pp.108.134783
[29] 贾昆鹏. 植物激素独脚金内酯和茉莉酸信号与光信号互作的分子机制研究[D]. 上海: 上海交通大学, 2014.
JIA K P. The molecular mechanism of cross-talking between light and phytohormones Strigolactone- and Jasmonate-signaling[D]. Shanghai: Shanghai Jiao Tong University, 2014. (in Chinese)
[30] ZHANG J, MAZUR E, BALLA J, GALLEI M, KALOUSEK P, MEDVEĎOVÁ Z, LI Y, WANG Y P, PRÁT T, VASILEVA M, REINÖH V, PROCHÁZKA S, HALOUZKA R, TARKOWSKI P, LUSCHNIG C, BREWER P B, FRIML J. Strigolactones inhibit auxin feedback on PIN-dependent auxin transport canalization. Nature Communications, 2020,11(1):3508.
doi: 10.1038/s41467-020-17252-y
[31] 王硕, 葛秀秀. 植物分枝性状研究进展. 生物技术进展, 2017,7(2):98-101.
WANG S, GE X X. Progress on plant branch characters. Current Biotechnology, 2017,7(2):98-101. (in Chinese)
[32] DOMAGALSKA M A, LEYSER O. Signal integration in the control of shoot branching. Nature Reviews: Molecular Cell Biology, 2011,12(4):211-221.
doi: 10.1038/nrm3088
[33] 黎家, 李传友. 新中国成立70年来植物激素研究进展. 中国科学: 生命科学, 2019,49(10):1227-1281.
LI J, LI C Y. Seventy-year major research progress in plant hormones by Chinese scholars. Chinese Science: Life Science, 2019,49(10):1227-1281. (in Chinese)
[34] FERNIE A R. Resolving the role of strigolactone in the early steps of rice axillary bud dormancy. Plant Journal, 2019,97:1003-1005.
doi: 10.1111/tpj.2019.97.issue-6
[35] LUO L, TAKAHASHI M, KAMEOKA H, QIN, R Y, SHIGA T, KANNO Y, SEO M, ITO M, XU G H, KYOZUKA J. Developmental analysis of the early steps in strigolactone-mediated axillary bud dormancy in rice. Plant Journal, 2019,97(6):1006-1021.
doi: 10.1111/tpj.2019.97.issue-6
[36] DUAN J B, YU H, YUAN K, LIAO Z G, MENG X B, JING Y H, LIU G F, CHU J F, LI J Y. Strigolactone promotes cytokinin degradation through transcriptional activation of CYTOKININ OXIDASE/DEHYDROGENASE 9 in rice. Proceedings of the National Academy of Sciences, 2019,116(28):14319-14324.
[37] WANG L, XU Q, YU H, MA H Y, LI X Q, YANG J, CHU J F, XIE Q, WANG Y H, SMITH S M, LI J Y, XIONG G X, WANG B. Strigolactone and karrikin signaling pathways elicit ubiquitination and proteolysis of SMXL2 to regulate hypocotyl elongation in Arabidopsis thaliana. The Plant Cell, 2020,32(7):2251-2270.
doi: 10.1105/tpc.20.00140
[38] HA C V, LEYVA-GONZÁLEZ M A, OSAKABE Y, TRAN U T, NISHIYAMA R, WATANABE Y, TANAKA M, SEKI M, YAMAGUCHI S, DONG N V, YAMAGUCHI-SHINOZAKI K, SHINOZAKI K, HERRERA-ESTRELLA L, TRAN L S P. Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proceedings of the National Academy of Sciences, 2014,111(2):851-856.
[39] AL-BABILI S, BOUWMEESTER H J. Strigolactones, a novel carotenoid-derived plant hormone. Annual Review of Plant Biology, 2015,66:161-186.
doi: 10.1146/annurev-arplant-043014-114759
[40] WATERS M T, GUTJAHR C, BENNETT T, NELSON D C. Strigolactone signaling and evolution. Annual Review of Plant Biology, 2017,68:291-322.
doi: 10.1146/annurev-arplant-042916-040925
[41] LI X Y, QIAN Q, FU Z M, WANG Y H, XIONG G S, ZENG D, WANG X Q, LIU X F, TENG S, HIROSHI F, YUAN M, LUO D, HAN B, LI J Y. Control of tillering in rice. Nature, 2003,422(6932):618-621.
doi: 10.1038/nature01518
[42] CHALFUN-JUNIOR A, FRANKEN J, MES J J, MARSCH- MARTINEZ N, PEREIRA A, ANGENENT G C. ASYMMETRIC LEAVES2-LIKE1 gene, a member of the AS2/LOB family, controls proximal-distal patterning in Arabidopsis petals. Plant Molecular Biology, 2005,57(4):559-575.
doi: 10.1007/s11103-005-0698-4
[1] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[2] ZHANG Rui,ZHANG XueYao,ZHAO XiaoMing,MA EnBo,ZHANG JianZhen. Antibody Preparation and Subcellular Localization of LmKnk3-5′ in Locusta migratoria [J]. Scientia Agricultura Sinica, 2022, 55(2): 329-338.
[3] XU HuanHuan,LI Yi,GAO Wei,WANG YongQin,LIU LeCheng. Cloning and Identification of γ-Glutamyl Transpeptidase AcGGT Gene from Onion (Allium cepa) [J]. Scientia Agricultura Sinica, 2021, 54(19): 4169-4178.
[4] MA Lin,WEN HongYu,WANG XueMin,GAO HongWen,PANG YongZhen. Cloning and Function Analysis of MsMAX2 Gene in Alfalfa (Medicago sativa L.) [J]. Scientia Agricultura Sinica, 2021, 54(19): 4061-4069.
[5] WANG Hao,YIN Lian,LIU JieXia,JIA LiLi,DING Xu,SHEN Di,FENG Kai,XU ZhiSheng,XIONG AiSheng. The Carotenoid Cleavage Dioxygenases Gene AgCCD4 Regulates the Pigmentation of Celery Tissues with Different Colors [J]. Scientia Agricultura Sinica, 2021, 54(15): 3279-3294.
[6] YUAN XinBo,CHENG TingTing,XI XiaoHan,CHEN ZhangYu,WANG RuiHong,KE WeiDong,GUO HongBo. Screening of Polyphenol Oxidase Interaction Proteins from Nelumbo nucifera and Their Verification [J]. Scientia Agricultura Sinica, 2020, 53(18): 3777-3791.
[7] LIU JiaoJiao,WANG XueMin,MA Lin,CUI MiaoMiao,CAO XiaoYu,ZHAO Wei. Isolation, Identification, and Response to Abiotic Stress of MsWRKY42 Gene from Medicago sativa L. [J]. Scientia Agricultura Sinica, 2020, 53(17): 3455-3466.
[8] GE Ting,HUANG Xue,XIE RangJin. Cloning, Subcellular Localization and Expression Analysis of CitPG34 in Citrus [J]. Scientia Agricultura Sinica, 2019, 52(19): 3404-3416.
[9] JIANG MengTing,ZHU Ning,GONG HongYong,HOU YingJun,YU XinYi,QU ShenChun. Cloning and Function Analysis of Gibberellin Insensitive DkGAI2 Gene in Nantongxiaofangshi (Diospyros kaki Linn. cv. nantongxiaofangshi) [J]. Scientia Agricultura Sinica, 2019, 52(19): 3417-3429.
[10] WEI ZhouLing, PENG HaoRan, PAN Qi, ZHANG YongZhi, PU YunDan, WU GenTu, QING Ling, SUN XianChao. Subcellular Localization of the Ribosome-Inactivating Protein α-MC and Its Antiviral Effect on TMV [J]. Scientia Agricultura Sinica, 2017, 50(5): 840-848.
[11] LIU Wei, LIU Hao, DONG ShuangYu, GU FengWei, CHEN ZhiQiang, WANG JiaFeng, WANG Hui. Construction of Rice Leaf Sheath Protoplast Transformation System and Transient Expression of Pik-H4 and AvrPik-H4 Proteins [J]. Scientia Agricultura Sinica, 2017, 50(23): 4575-4584.
[12] PENG HaoRan, PU YunDan, ZHANG YongZhi, XUE Yang, WU GaiXia, QING Ling, SUN XianChao. Subcellular Localization and Expression Analyses of IP-L Protein Interacting with ToMV Coat Protein [J]. Scientia Agricultura Sinica, 2017, 50(17): 3344-3351.
[13] JIA RuiRui, ZHOU PengFei, BAI XiaoJing, CHEN ShanChun, XU LanZhen, PENG AiHong, LEI TianGang, YAO LiXiao, CHEN Min, HE YongRui, LI Qiang. Gene Cloning and Expression Analysis of Canker-Related Transcription Factor CsBZIP40 in Citrus [J]. Scientia Agricultura Sinica, 2017, 50(13): 2488-2497.
[14] YANG Li-qun, JIA Le-mei, TANG Mei, CHEN Yi-biao, CUI Hong-juan. Identification and Expression Analysis of BmYki-1 in the Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2016, 49(8): 1607-1616.
[15] HAN Li-qiang, WANG Yue-ying, WANG Lin-feng, ZHU He-shui, ZHONG Kai, CHU Bei-bei, YANG Guo-yu . Expression and Localization of Bovine SREBP1 Protein and Regulation of the Transcription of SCD1 Promoter in Bovine Mammary Epithelial Cell [J]. Scientia Agricultura Sinica, 2016, 49(24): 4797-4805.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!