Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (1): 213-223.doi: 10.3864/j.issn.0578-1752.2021.01.016

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Effect of the Heterozygous Sex-Linked Dwarf Gene on Fat Deposition in Normal Type Chickens

ZHU XingHao(),CHEN Qing,SHAO BingHao,GUO YuJun,ZHANG XiangLi,DU PengFei,ZHU Yao,HUANG YanQun(),CHEN Wen   

  1. College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University, Zhengzhou 450002
  • Received:2020-01-02 Accepted:2020-11-16 Online:2021-01-01 Published:2021-01-13
  • Contact: YanQun HUANG E-mail:810606740@qq.com;hyanqun@aliyun.com

Abstract:

【Objective】 The aim of this study was to to investigate the effect of the heterozygous sex-linked dwarf gene on fat deposition of chickens, so as to provide a theory base for producing quality chicken and local chichen by using dwarf gene. 【Method】 In this study, the normal size Gushi chicken and Guangxi Yao chicken rooster (ZDWZDW) were chosen to cross with the normal type hens (ZDWW) and the dwarf hens (ZdwW), respectively, and their offspring were raised under the same condition. 100 chickens (half male and half female) were randomly selected from each hybrid at the ages of 60 days, 90 days and 120 days for body measurement index, respectively. 10 chickens (half male and half female) were randomly selected from the hybrid populations of Gushi chickens to determine the dynamic change of body fat at 60 days and 90 days, respectively. In addition, 10 chickens (half male and half female) were selected from the hybrid populations of Gushi chickens and Guangxi Yao chickens at 120 days to determine the body fat deposition of different populations. The serum biochemical indexes were measured by using automatic biochemical analyzer, the content of intramuscular fat in breast muscle and leg muscle was determined by the Soxhlet extraction method, and the diameter and density of muscle fibers were measured by the paraffin section. 【Result】 The results showed that the offspring were normal in body size, and the male and female offspring from the normal type of female parent presented different characteristics of fat deposition with age. The female body fat indexes including abdominal fat weight, percent of abdominal fat, subcutaneous fat thickness and intermuscular fat width, which were all kept at a low level at 60 days, and increased significantly at the age of 120 days, while the male body fat maintained at low levels. In the meantime, the male and female offspring the dwarf type of female parent presented a similar dynamic change of fat deposition with age, and the body fat levels of the male and the female offspring at 120 days were significantly higher than that at 60 days and 90 days. However, the body fat change of the male offspring from the dwarf type of female parent (the heterozygote of dw) was different from that of the normal type of female parent (the homozygous of DW), whose abdominal fat weight, percent of abdominal fat, subcutaneous fat thickness and intermuscular fat width were significantly higher than that of the normal type of female parent at 90 and 120 days. Combining the data of body fat between Gushi chickens and Guangxi Yao chickens for 120 days, the result showed that population factor was significant for abdominal fat weight, percent of abdominal fat, intermuscular fat width and subcutaneous fat thickness. The abdominal fat weight, percent of abdominal fat, intermuscular fat width and subcutaneous fat thickness of the males from the dwarf type of female parent were significantly higher than that of the normal type of female parent (P<0.01). There was no significant difference in total cholesterol, triglyceride, low-density lipoprotein, and high-density lipoprotein between the population (from the normal type of female parent and the dwarf type of female parent). There was no significant difference in the IMF content of the breast muscle in the female offspring from the normal type of female parent and the dwarf type of female parent. The breast muscle IMF content of male from the dwarf type of female parent was significantly higher than that from the normal type of female parent (P<0.01). There was no significant difference in muscle fiber characteristics, including muscle fiber density, muscle fiber area and muscle fiber diameter between the offspring of the normal type of female parent and the dwarf type of female parent. 【Conclusion】The results showed that the heterozygous dwarf gene changed the characteristics of fat deposition in the males, and it could significantly increase the deposition of abdominal fat, subcutaneous fat, intermuscular fat and breast IMF content in the male. The heterozygous dwarf gene had no significant effect on blood lipid index and the characteristics of muscle fibers.

Key words: chicken, sex-linked dwarf gene, fatty deposition, muscle fiber characteristics, lipid levels

Table 1

Composition and nutrient levels of basal diets (%)"

营养指标
Nutrition indicators
0-7周龄
0-7 weeks
8-17周龄
8-17 weeks
营养水平
Nutrient level
0-7周龄
0-7 weeks
8-17周龄
8-17 weeks
玉米 Corn grain (%) 33.65 55.17 代谢能 ME(MJ·Kg-1 11.28 12.17
43%豆粕 43% soybean meal (%) 6.50 粗蛋白 CP (%) 14.94 13.31
46%豆粕 46% soybean meal (%) 13.65 9.91 钙 Ca (%) 1.00 0.74
米糠油 Rice bran oil (%) 2.00 总磷 TP (%) 0.60 0.47
玉米蛋白饲料 Corn protein feed (%) 16.50 2.21 有效磷 A-P (%) 0.09 0.10
玉米蛋白粉 Corn gluten meal (%) 1.50 0.87 赖氨酸 Lysine (%) 0.87 0.62
次粉 Wheat middling and reddog (%) 24.00 20.00 蛋氨酸+胱氨酸 Methionine + Cystine (%) 0.68 0.59
石粉 Stone powder (%) 1.53 1.44
干酒槽及其可溶物 DDGs (%) 6.00
磷酸氢钙 NaHCo3 (%) 1.20 0.57
99%蛋氨酸 99% Methionine (%) 0.15 0.13
98%赖氨酸 98% Lysine (%) 0.30
预混料 Premix 1) (%) 1.02 1.70
合计 Total 100.00 100.00

Fig. 1

Schematic diagram of hybrid genetic pattern"

Table 2

Comparison of body measurement traits among different populations at different ages"

日龄
Age
项目
Project
性别
Gender
群体 Population 显著性Significant
母本矮小型
The dwarf type of female parent
母本正常型
The normal type of female parent
群体
Population
性别
Gender
群体×性别
Population×Gender
60 胫长
Shank length (mm)
公Male 69.19±4.81*## 67.91±4.83## 0.000 0.000 0.128
母Female 64.26±4.72** 61.73±4.66
胫围
Shank circumference (cm)
公Male 3.60±0.26**## 3.43±0.29## 0.000 0.000 0.766
母Female 3.27±0.22** 3.12±0.21
90 胫长
Shank length (mm)
公Male 87.59±7.42## 86.79±6.25## 0.008 0.000 0.325
母Female 75.88±4.82** 74.13±4.91
胫围
Shank circumference (cm)
公Male 4.11±0.25*## 3.95±0.25## 0.000 0.000 0.996
母Female 3.67±0.20** 3.51±0.23
120 胫长
Shank length (mm)
公Male 94.99±5.49## 94.00±5.79## 0.004 0.000 0.520
母Female 77.55±4.96** 76.00±5.15
胫围
Shank circumference (cm)
公Male 4.57±0.24*## 4.41±0.28## 0.000 0.000 0.684
母Female 3.98±0.22** 3.80±0.21

Fig. 2

Dynamic changes of body fat deposition in different periods of hybrid offspring of Gushi chickens A. Abdominal fat weight; B. Percentage of abdominal fat; C. Subcutaneous fat thickness; D. Intermuscular fat width; In different groups of the same age and sex, * means significant difference (P<0.05), ** means extremely significant difference (P<0.01); In different age of the same population and sex, different lowercase letters means significant difference (P<0.05); In different sex of the same age and population, ## means extremely significant difference (P<0.01). Percent of abdominal fat= abdominal fat weight/ body weight×100%"

Table 3

Effects of sex and population on fat deposition capacity of chicken cross combinations on 120 days"

项目
Project
性别
Gender
群体Population 显著性Significant
母本矮小型
The dwarf type of female parent
母本正常型
The normal type of female parent
群体Population 性别
Gender
群体×性别
Population×Gender
活重
Live weight (kg)
公Male 2.09±0.15**## 1.78±0.24 0.000 0.000 0.466
母Female 1.71±0.20**## 1.48±0.18
腹脂重
Abdominal fat weight (g)
公Male 27.15±23.02** 3.50±7.17 0.004 0.001 0.152
母Female 37.22±26.68 28.86±19.53##
腹脂率
Percentage of abdominal fat (%)
公Male 1.83±1.55** 0.27±0.54 0.033 0.000 0.095
母Female 3.02±1.97 2.83±1.79##
肌间脂肪宽
Intermuscular fat width (mm)
公Male 9.89±3.97** 4.88±3.18 0.000 0.000 0.138
母Female 12.11±3.89 9.94±3.38##
皮下脂肪厚
Subcutaneous fat thickness (mm)
公Male 5.43±1.45** 4.16±1.09 0.051 0.002 0.025
母Female 5.72±0.73 5.81±1.12##

Table 4

The interaction of sex and population on serum biochemical indexes of chicken cross combinations on 120 days"

项目
Project
性别
Gender
群体 Population 显著性Significant
母本矮小型
The dwarf type of female parent
母本正常型
The normal type of female parent
群体
Population
性别
Gender
群体×性别
Population×Gender
总胆固醇
TC (mmol·L-1)
公 Male 2.41±0.48 2.72±0.61 0.531 0.249 0.787
母Female 2.91±0.79 3.03±2.12
甘油三酯
TG (mmol·L-1)
公Male 0.29±0.06 0.30±0.09 0.539 0.023 0.541
母Female 2.59±2.56## 4.22±8.77
低密度脂蛋白
LDL (mmol·L-1)
公Male 0.75±0.25 0.96±0.29 0.943 0.082 0.139
母Female 1.19±0.79 0.99±0.38
高密度脂蛋白
HDL (mmol·L-1)
公Male 1.55±0.27 1.59±0.31## 0.581 0.001 0.373
母Female 1.27±0.38 1.13±0.42

Table 5

Effects of sex and population on intramuscular fat content of chicken cross combinations on 120 days"

项目
Project
性别
Gender
群体 Population 显著性 Significant
母本矮小型
The dwarf type of female parent
母本正常型
The normal type of female parent
群体Population 性别
Gender
群体×性别
Population×Gender
腿肌IMF
The IMF of leg muscle (%)
公Male 6.31±1.26 5.04±2.48 0.076 0.499 0.542
母Female 6.34±1.85 5.72±2.26
胸肌IMF
The IMF of breast muscle (%)
公Male 5.77±2.19* 3.45±2.39 0.017 0.411 0.215
母Female 5.51±2.27 4.75±2.80

Fig. 3

Intramuscular fat content of chicken breast muscle and leg muscle in hybrid combination at 120 days * mean significant difference (P<0.05)"

Table 6

Effects of sex and population on breast muscle fiber of chicken cross combinations on 120 days"

项目
Project
性别
Gender
群体Population 显著性Significant
母本矮小型
The dwarf type of female parent
母本正常型
The normal type of female parent
群体
Population
性别
Gender
群体×性别
Population×Gender
肌纤维密度
Density of muscle fiber (根/mm2)
公Male 474.33±91.01 508.76±154.20 0.089 0.018 0.542
母Female 380.53±85.11 452.66±97.41
肌纤维面积
Area of muscle fiber (μm2)
公Male 1229.82±340.91 1190.59±414.89 0.509 0.088 0.778
母Female 1438.52±363.63# 1340.72±364.60
肌纤维直径
Muscle fiber diameter (μm)
公Male 38.56±5.37 37.65±6.69 0.483 0.064 0.894
母Female 41.78±5.35 40.44±5.37
[1] YUAN Y, WANG H, WU H, MA H, LIAN L, LIAN Z. Dwarf chickens with low monocytes/macrophages phagocytic activity show low antibody titers but greater performance. Animal Reproduction Science, 2018,193:79-89. DOI: 10.1016/j.anireprosci.2018.04.002.
pmid: 29653827
[2] HUANG H Y, ZHAO Z H, LI S F, LIANG Z, LI C M, WANG Q B. Pattern of GHR mRNA expression and body growth in the S2 line of sex-linked dwarf chickens. Genetics and Molecular Research, 2016,15. DOI: 10.4238/gmr15047416.
doi: 10.4238/gmr15049326 pmid: 28002609
[3] CUI H X, SHEN Q C, ZHENG M Q, SU Y C, CAI R C, YU Y, YANG X R, CHEN Z W, WEN J, ZHAO G P. A selection method of chickens with blue-eggshell and dwarf traits by molecular marker-assisted selection. Poultry Science, 2019,98(8):3114-3118. DOI: 10.3382/ps/pez069.
pmid: 31115461
[4] OUYANG J H, XIE L, NIE Q H, ZENG H, PENG Z J, ZHANG D X, ZHANG X Q. The effects of different sex-linked dwarf variations on Chinese native chickens. Journal of Integrative Agriculture, 2012,11(9):1500-1508. DOI: 10.1016/S2095-3119(12)60150-6.
[5] 姬杰菲, 陈青, 臧卉, 张向丽, 朱星浩, 杜鹏飞, 王焕杰, 黄艳群, 陈文. 固始鸡与矮脚鸡/瑶鸡的杂交对后代鸡冠发育及性成熟的影响. 河南农业大学学报, 2020,54(1):64-68.
JI J F, CHEN Q, ZANG H, ZHANG X L, ZHU X H, DU P F, WANG H J, HUANG Y Q, CHEN W. Effect of crossbreeding between Gushi Chicken and Dwarf Chicken/Yao Chicken on comb development and sexual maturity of progenies. Journal of Henan Agricultural University, 2020,54(1):64-68.(in Chinese)
[6] RASHID M, HOWLIDER M, ALAM J, RASHID M A, KAWSAR M, AZMAL S. Effect of dwarfism on reproductive and meat yield parameters of crossbred chicken. International Journal of Poultry Science, 2005,4(6):372-377.
[7] TAHARA K, TSUKADA A, HANAI T, OKUMURA K, YAMADA K, MURAI A, YAMAMOTO R, MAENO M, SAITO N, SHIMADA K. Identification of two types of growth hormone receptor mutations in two strains of sex-linked dwarf chickens. The Journal of Poultry Science, 2009,46(3):249-256.
[8] LUO W, LIN S, LI G, NIE Q, ZHANG X. Integrative analyses of miRNA-mRNA interactions reveal let-7b, miR-128 and MAPK pathway involvement in muscle mass loss in sex-linked dwarf chickens. International Journal of Molecular Sciences, 2016,17(3):276.
doi: 10.3390/ijms17030276 pmid: 26927061
[9] HUANG N, COGBURN L A, AGARWAL S K, MARKS H L, BURNSIDE J. Overexpression of a truncated growth hormone receptor in the sex-linked dwarf chicken: evidence for a splice mutation. Molecular Endocrinology, 1993,7(11):1391-1398.
doi: 10.1210/mend.7.11.8114754 pmid: 8114754
[10] LIN S, ZHANG Z, XIE T, HU B, RUAN Z, ZHANG L, LI C, LI C, LUO W, NIE Q. Identification of a novel antisense RNA that regulates growth hormone receptor expression in chickens. RNA Biology, 2019,16(5):626-638.
doi: 10.1080/15476286.2019.1572440 pmid: 30764709
[11] ZERJAL T, MONNERET G, MOROLDO M, COVILLE J, TIXIERBOICHARD M, RAU A, NUEL G, JAFFREZIC F. P3005 Genome-wide transcriptomic analysis of liver in sex-linked dwarf and wild-type chickens. Journal of Animal Science, DOI: 10.2527/jas 2016.94 supplement 453x.
doi: 10.1093/jas/skaa397 pmid: 33313796
[12] HUTT F. Sex-linked dwarfism in the fowl. Journal of Heredity, 1959,50(5):209-221.
[13] MAW A J G. The inheritance of skeletal dimensions in the domestic fowl. Scientific Agriculture, 1935,16(2):85-112.
[14] CHEN C F, CHEN Y H, TIXIERBOICHARD M, CHENG P Y, CHANG C S, TANG P C, LEE Y P. Effects of the chicken sex-linked dwarf gene on growth and muscle development. Asian-australasian Journal of Animal Sciences, 2009,22(7):937-942.
[15] MARKS H L. The sex-linked dwarf gene as expressed in two meat-type control lines of chickens. Poultry Science, 1981,60(6):1127-1131. DOI: 10.3382/ps.0601127.
[16] 宁中华, 吴常信, 杨宁, 张庆才. 节粮小型蛋鸡——农大3号的培育. 农业生物技术学报, 2013,21(6):753-758.
NING Z H, WU C X, YANG N, ZHANG Q C. Breeding of grain saving small layer chicken— Nongda no.3. Journal of Agricultural Biotechnology, 2013,21(6):753-738. (in Chinese)
[17] BRODY T, SIEGEL P, CHERRY J. Age, body weight and body composition requirements for the onset of sexual maturity of dwarf and normal chickens. British Poultry Science, 1984,25(2):245-252.
doi: 10.1080/00071668408454863 pmid: 6733556
[18] TOUCHBURN S, GUILLAUME J, LECLERCQ B, BLUM J. Lipid and energy metabolism in chicks affected by dwarfism (dw) and Naked-neck (Na). Poultry Science, 1980,59(10):2189-2197.
pmid: 7465494
[19] YE Y, LIN S, MU H, TANG X, OU Y, CHEN J, MA Y, LI Y. Analysis of differentially expressed genes and signaling pathways related to intramuscular fat deposition in skeletal muscle of sex-linked dwarf chickens. Biomed Research International, 2014,2014(7):1-7.
[20] MOHAMMADIAN M, JAAP R G. Effect of the sex-linked dw dwarfing gene on body growth of chickens. Poultry Science, 1972,51(5):1701-1707. DOI: 10.3382/ps.0511701.
doi: 10.3382/ps.0511701
[21] LILBURN M S, NGIAM-RILLING K, LEUNG F, SMITH J. The relationship between age and genotype and the growth of commercial meat strain chickens. Proceedings of the Society for Experimental Biology and Medicine, 1986,182(3):328-335.
[22] STEWART P A, WASHBURN K W. Hormone and lipogenic enzyme response of the heterozygous dw chick to dietary protein level. The Journal of Nutrition, 1984,114(1):132-143. DOI: 10.1093/jn/114.1.132.
doi: 10.1093/jn/114.1.132 pmid: 6693975
[23] BLOHOWIAK C, SIEGEL P V, VAN KREY H. Sexual behavior of dwarf and normal genotypes in divergent growth lines of chickens. Applied Animal Ethology, 1980,6(2):189-201.
doi: 10.1016/0304-3762(80)90069-3
[24] MERAT P, MINVIELLE F, BORDAS A, COQUERELLE G. Heterosis in normal versus dwarf laying hens. Poultry science, 1994,73(1):1-6. DOI: 10.3382/ps.0730001.
doi: 10.3382/ps.0730001 pmid: 8165154
[25] 肖雅婷, 邹爱珍. 3种不同类型鸡屠宰性能的测定与比较. 畜牧与饲料科学, 2015,36(4):34-36.
XIAO Y T, ZOU A Z. Determination and comparison of slaughtering performance of three different types of chickens. Journal of Animal Husbandry and Feed Science, 2015,36(4):34-36. (in Chinese)
[26] TŮMOVá E, TEIMOURI A. Fat deposition in the broiler chicken: A review. Scientia Agriculturae Bohemica, 2010,41(2):121-128.
[27] LEENSTRA F. Effect of age, sex, genotype and environment on fat deposition in broiler chickens—A review. World's Poultry Science Journal, 1986,42(1):12-25.
[28] TOR I NAUDÍ M, ESTANY ILLA J, VILLALBA MATA D, MOLINA URESTE E, TRAVé C. Comparison of carcass composition by parts and tissues between cocks and capons. Animal Research, 2002,51(5):421-431.
doi: 10.1051/animres:2002035
[29] 刘定发, 林勇, 蒋隽, 周红丽, 杨冬辉. 性别对优质黄羽肉鸡屠体性状和肌肉品质的影响. 中国畜牧兽医, 2005,32(11):23-25.
LIU D F, LIN Y, JIANG J, ZHOU H L, YANG D H. Effects of sex on carcass traits and muscle quality of high-quality yellow-feathered broiler. Chinese Journal of Animal Husbandry and Veterinary Medicine, 2005,32(11):23-25. (in Chinese)
[30] 娜日娜, 索力墨, 王盛男, 乌仁图雅. 蛋鸡不同生长时期的营养需要及饲养管理. 浙江畜牧兽医, 2013,38(6):28-29.
NARINA, SUO L M, WANG S N, WURENTUYA. Nutritional requirements and feeding management of layers at different growth stages. Zhe Jiang XuMu ShouYi, 2013,38(6):28-29. (in Chinese)
[31] LIN S, LUO W, YE Y, BEKELE E J, NIE Q, LI Y, ZHANG X. Let-7b regulates myoblast proliferation by inhibiting igf2bp3 expression in dwarf and normal chicken. Frontiers in Physiology, 2017,8(477). DOI: 10.3389/fphys.2017.00477.
[32] KNIŽETOVA H. Effects of the sex-linked dwarf gene (dw) on skeletal muscle cellularity in broiler chickens. British Poultry Science, 1993,34(3):479-485.
doi: 10.1080/00071669308417603 pmid: 8358635
[33] BURGHELLE-MAYEUR C, DEMARNE Y, MéRAT P. Influence of the sex-linked dwarfing gene (dw) on the lipid composition of plasma, egg yolk and abdominal fat pad in White Leghorn laying hens: Effect of dietary fat. The Journal of Nutrition, 1989,119(10):1361-1368.
doi: 10.1093/jn/119.10.1361 pmid: 2685198
[34] WALTON C, LEES B, CROOK D, GODSLAND I F, STEVENSON J C. Relationships between insulin metabolism, serum lipid profile, body fat distribution and blood pressure in healthy men. Atherosclerosis, 1995,118(1):35.
doi: 10.1016/0021-9150(95)05590-s pmid: 8579629
[35] MUSA H H, CHEN G H, CHENG J H, YOUSIF G M. Relation between abdominal fat and serum cholesterol, triglycerides, and lipoprotein concentrations in chicken breeds. Turkish Journal of Veterinary & Animal Sciences, 2014,31(6):375-379.
[1] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
[2] ZHANG YaNan,JIN YongYan,ZHUANG ZhiWei,WANG Shuang,XIA WeiGuang,RUAN Dong,CHEN Wei,ZHENG ChunTian. Comparison of Shell Mechanical Property, Ultrastructure and Component Between Chicken and Duck Eggs [J]. Scientia Agricultura Sinica, 2022, 55(24): 4957-4968.
[3] TU YunJie,JI GaiGe,ZHANG Ming,LIU YiFan,JU XiaoJun,SHAN YanJu,ZOU JianMin,LI Hua,CHEN ZhiWu,SHU JingTing. Screening of Wnt3a SNPs and Its Association Analysis with Skin Feather Follicle Density Traits in Chicken [J]. Scientia Agricultura Sinica, 2022, 55(23): 4769-4780.
[4] HUANG XunHe,WENG ZhuoXian,LI WeiNa,WANG Qing,HE DanLin,LUO Wei,ZHANG XiQuan,DU BingWang. Genetic Diversity of Indigenous Yellow-Feathered Chickens in Southern China Inferred from Mitochondrial DNA D-Loop Region [J]. Scientia Agricultura Sinica, 2022, 55(22): 4526-4538.
[5] WANG ZhePeng,ZHOU WenXin,HE JunXi,HU QiaoYan,ZHAO JiaYue. Association of Levels of Cholecystokinin A Receptor Expression and Sequence Variants with Feed Conversion Efficiency of Lueyang Black-Boned Chicken [J]. Scientia Agricultura Sinica, 2022, 55(22): 4539-4549.
[6] GUO Jun,WANG KeHua,HAN Wei,DOU TaoCun,WANG XingGuo,HU YuPing,MA Meng,QU Liang. Analysis of Indirect Genetic Effects on Body Weight of 42 Day-Old Rugao Yellow Chickens [J]. Scientia Agricultura Sinica, 2022, 55(19): 3854-3861.
[7] YaTing JIA,HuiHui HU,YaJun ZHAI,Bing ZHAO,Kun HE,YuShan PAN,GongZheng HU,Li YUAN. Molecular Mechanism of Regulation by H-NS on IncFⅡ Plasmid Transmission of Multi-drug Resistant Chicken Escherichia coli [J]. Scientia Agricultura Sinica, 2022, 55(18): 3675-3684.
[8] ZHANG NingBo,HAN ZhaoQing,JIN TaiHua,ZHUANG GuiYu,LI JiongKui,ZHENG QuanSheng,LI YongZhu. Comparison Analysis on Eggshell Quality, Biochemical Index of Calcium Metabolism and Calcium Binding Protein CaBP-D28k mRNA Expression Between Langya Chicken and Its Synthetic Lines [J]. Scientia Agricultura Sinica, 2021, 54(9): 2017-2026.
[9] WANG GuangYu,LI Qing,TANG WenQian,WANG HuHu,XU XingLian,QIU WeiFen. Effects of nuoB on Physiological Properties of Pseudomonas fragi and Its Spoilage Potential in Chilled Chicken [J]. Scientia Agricultura Sinica, 2021, 54(8): 1761-1771.
[10] YuYan YANG,YaoWen LI,Shuang XING,MinHong ZHANG,JingHai FENG. The Temperature-Humidity Index Estimated by the Changes of Surface Temperature of Broilers at Different Ages [J]. Scientia Agricultura Sinica, 2021, 54(6): 1270-1279.
[11] TANG XiuJun,FAN YanFeng,JIA XiaoXu,GE QingLian,LU JunXian,TANG MengJun,HAN Wei,GAO YuShi. Genetic Diversity and Origin Characteristics of Chicken Species Based on Mitochondrial DNA D-loop Region [J]. Scientia Agricultura Sinica, 2021, 54(24): 5302-5315.
[12] ZHU Mo,ZHENG MaiQing,CUI HuanXian,ZHAO GuiPing,LIU Yang. Comparison of Genomic Prediction Accuracy for Meat Type Chicken Carcass Traits Based on GBLUP and BayesB Method [J]. Scientia Agricultura Sinica, 2021, 54(23): 5125-5131.
[13] YU BaoJun,DENG ZhanZhao,XIN GuoSheng,CAI ZhengYun,GU YaLing,ZHANG Juan. Correlation Analysis of Inosine Monophosphate Specific Deposition Related LNC_003828-gga-miR-107-3P-MINPP1 in Jingyuan Chicken Muscle Tissue [J]. Scientia Agricultura Sinica, 2021, 54(19): 4229-4242.
[14] ZHAO WenHua,WANG GuiYing,XUN Wen,YU YuanRui,GE ChangRong,LIAO GuoZhou. Selection of Water-Soluble Compounds by Characteristic Flavor in Chahua Chicken Muscles Based on Metabolomics [J]. Scientia Agricultura Sinica, 2020, 53(8): 1627-1642.
[15] DongHua LI,YaWei FU,ChenXi ZHANG,YanFang CAO,WenTing LI,ZhuanJian LI,XiangTao KANG,GuiRong SUN. Genome-Wide Identification and Characterization of Transposable Elements in Xichuan Black-Bone Chicken [J]. Scientia Agricultura Sinica, 2020, 53(7): 1491-1500.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!