Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (13): 2625-2636.doi: 10.3864/j.issn.0578-1752.2020.13.011

• TECHNOLOGY AND MECHANISM OF TEMPERATE MEADOW STEPPE RESTORATION • Previous Articles     Next Articles

Effects of Nitrogen Application and Clipping Height on Vegetation Productivity and Plant Community Composition of Haying Meadow Steppe

WANG KaiLi,YANG HeLong,XIAO Hong,SUN Wei,RONG YuPing()   

  1. College of Grassland Science and Technology, China Agricultural University, Beijing 100193
  • Received:2019-09-11 Accepted:2020-02-10 Online:2020-07-01 Published:2020-07-16
  • Contact: YuPing RONG E-mail:rongyuping@cau.edu.cn

Abstract:

【Objective】 The aim of this study was to improve soil nutrients in haying steppe, to increase grassland productivity, and to maintain sustainable utilize of grassland. 【Method】 Five nitrogen application levels (0, 10, 20, 30, and 40 g N·m-2·a-1) and two mowing heights (4 and 8 cm) were set in the haying field of Hulunbuir Grassland Agro-ecosystem Experiment Station with spit-plot design, which was carried out in mid-June and mid-August from 2016 to 2019, respectively, and the responses of nitrogen application and clipping height to community and plant functional group’s species richness and aboveground biomass, crucial species’ important value, dominant species’ functional traits, and soil properties were investigated. 【Result】 The results showed that nitrogen application and mowing height had no significant effect on community and plant functional group’s species richness (P<0.05). Nitrogen application significantly increased the aboveground biomass of grasses and community by 69.2%-115.3% and 36.5%-84.8%, respectively (P<0.05), but there was no significant difference within 10-40 g·m-2·a-1. Lower cutting height significantly reduced the aboveground biomass of grasses by 18.3% (P<0.05). Nitrogen application significantly increased and reduced the important value of Leymus chinensis and Bromus inermis, respectively (P<0.05). Lower mowing height significantly reduced the important value of Leymus chinensis, which increased the value of Bromus inermis; nitrogen application increased the important value of Leymus chinensis, which reduced the important value of Bromus inermis(P<0.05). Lower cutting height significantly increased the important value of Potentilla bifurca and Potentilla acaulis and reduced the important value of Cleistogenes squarrosa (P<0.05). Nitrogen addition significantly increased the plant height, leaf area and shoot nitrogen content of Bromus inermis and Leymus chinensis (P<0.05), but there was no significant difference within 20-40 g·m-2·a-1. The soil pH and soil water content decreased significantly along with the increase of nitrogen application rate, while NH4+-N, NO3--N and inorganic nitrogen (ION) in soil increased (P<0.05). The species richness of community, grasses and nongraminous forbs was positively correlated with soil water content, while the aboveground biomass of community and grasses was negatively correlated with soil water content (P<0.05). 【Conclusion】 Short-term nitrogen application and suitable clipping height were beneficial to improve vegetation productivity and maintain community composition, and the effects of nitrogen addition were strongly dependent on water availability. It was suggested that the suitable mowing height of grassland in Hulunber haying meadow steppe was 8 cm, and the comfortable nitrogen application rate was 10-20 g·m-2·a-1.

Key words: nitrogen application, mowing, haying meadow steppe, functional group, functional traits, species richness, biomass, Hulunber

Table 1

Results (P-value) of three-way repeated-measures ANOVAs on the species richness (S), aboveground biomass (AB) and relative aboveground biomass (RB) of community and functional groups"

变异来源
Source of variation
群落Community 禾草Grasses 杂类草Nongraminous forbs
丰富度
S
地上生物量
AB
丰富度
S
地上生物量
AB
相对生物量
RB
丰富度
S
地上生物量
AB
相对生物量
RB
刈割Mowing NS NS NS 0.008 0.005 NS 0.005 0.005
施氮Nitrogen application NS <0.001 0.047 <0.001 NS NS NS NS
年份Year NS <0.001 NS 0.005 NS NS NS NS
刈割×施氮M×N NS NS NS NS NS NS NS NS
刈割×年份M×Y NS NS NS NS NS NS NS NS
施氮×年份N×Y NS 0.008 NS 0.006 NS NS NS NS
刈割×施氮×年份M×N×Y NS NS NS NS NS NS NS NS

Fig. 1

Effects of nitrogen addition rate and mowing height on species richness (a) and aboveground biomass (b) of community and functional group M4 and M8 represent mowing height on 4 cm and 8 cm respectively. N0, N1, N2, N3 and N4 represent nitrogen addition rate about 0, 10, 20, 30 and 40 g·m-2a-1, respectively. The same as in Fig. 2, Fig. 3 and Table 5. Values (Mean ± SE) followed by different letters represent significantly different within each N gradient at P<0.05"

Table 2

Results (P-value) of three-way repeated-measures ANOVAs on the important value (IV) of crucial species"

变异来源
Source of variation
无芒雀麦
B. inermis
羊草
L. chinensis
二裂委陵菜
P. bifurca
苔草
C. duriuscula
糙隐子草
C. squarrosa
星毛委陵菜
P. acaulis
刈割Mowing NS NS <0.001 NS 0.003 0.020
施氮Nitrogen application 0.012 <0.001 0.043 NS 0.016 NS
年份Year NS NS 0.035 NS 0.040 NS
刈割×施氮M×N NS 0.008 NS NS NS NS
刈割×年份M×Y NS NS NS NS NS NS
施氮×年份N×Y NS NS NS NS NS NS
刈割×施氮×年份M×N×Y NS NS NS NS NS NS

Fig. 2

Effects of nitrogen addition rate and mowing height on the important value (IV) of crucial species Values (Mean ± SE) followed by different letters represent significantly different within each N gradient at P<0.05. *, ** and *** represent significantly different within mowing height at P<0.05, P<0.01 and P<0.001, respectively"

Table 3

Results (P-value) of three-way repeated-measures ANOVAs on the plant functional traits of B. inermis and L. chinensis."

变异来源
Source of variation
无芒雀麦 B. inermis 羊草 L. chinensis
株高
Plant height
叶面积
Leaf area
地上部氮素含量
Aboveground nitrogen content
株高
Plant height
叶面积
Leaf area
地上部氮素含量
Aboveground nitrogen content
刈割Mowing 0.012 NS NS NS NS 0.012
施氮Nitrogen application <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
年份Year <0.001 NS <0.001 NS
刈割×施氮M×N NS NS NS NS NS NS
刈割×年份M×Y NS NS NS NS
施氮×年份N×Y <0.001 NS <0.001 NS
刈割×施氮×年份M×N×Y NS NS NS NS

Fig. 3

Effects of nitrogen addition rate on plant functional traits of B. inermis (a1, b1, c1) and L. chinensis (a2, b2, c2) Values (Mean ± SE) followed by different letters represent significantly different within each N gradient at P<0.05"

Table 4

Results (P-value) of three-way repeated-measures ANOVAs on soil properties"

变异来源
Source of variation
pH 含水量
Water content
全氮
TN
铵态氮
NH4+-N
硝态氮
NO3--N
总无机氮
ION
有机碳
SOC
碳氮比
C/N
刈割Mowing NS NS <0.001 NS NS NS 0.029 NS
施氮Nitrogen application <0.001 <0.001 NS <0.001 <0.001 <0.001 NS NS
年份Year 0.036 <0.001 NS <0.001 0.007
刈割×施氮M×N NS NS 0.044 NS NS NS NS NS
刈割×年份M×Y NS NS NS NS NS
施氮×年份N×Y 0.025 0.042 NS NS NS
刈割×施氮×年份M×N×Y NS NS NS NS NS

Table 5

Effects of N application on soil properties (Mean±SE)"

年份
Year
施氮梯度
N gradient
pH值
pH value
含水量
Water content (%)
全氮
TN
(g·kg-1)
铵态氮
NH4+-N (mg·kg-1)
硝态氮
NO3--N (mg·kg-1)
总无机氮
ION
(mg·kg-1)
有机碳
SOC
(g·kg-1)
碳氮比
C/N
2017 N0 6.89±0.06a 20.31±1.26a 3.18±0.11a 1.01±0.18c 8.29±1.83c 9.30±1.99c 34.82±1.16a 11.02±0.39a
N1 6.76±0.05ab 18.80±0.81a 3.18±0.13a 0.82±0.08c 12.58±1.31b 13.41±1.32b 33.65±1.65a 10.61±0.36ab
N2 6.56±0.07b 19.13±0.63a 3.31±0.11a 1.24±0.12c 21.43±2.22b 22.68±2.21b 33.94±2.24a 10.23±0.56ab
N3 6.48±0.06c 19.17±0.45a 3.2±0.14a 2.42±0.36b 33.82±3.36a 36.25±3.50a 31.02±1.28a 9.82±0.45ab
N4 6.42±0.06c 19.11±0.68a 3.42±0.14a 3.74±0.45a 44.22±4.97a 47.95±5.36a 31.02±2.57a 9.06±0.64b
2018 N0 6.67±0.07a 18.26±0.66a 3.05±0.12a 25.34±2.09a 7.71±0.98a
N1 6.61±0.02a 16.29±0.75ab 2.99±0.09a 26.45±1.39a 8.84±0.72a
N2 6.67±0.07a 15.07±0.33b 3.24±0.16a 30.46±1.76a 9.38±0.53a
N3 6.58±0.03a 14.49±0.22b 3.14±0.17a 28.68±1.49a 8.96±0.56a
N4 6.5±0.07a 13.67±0.41c 3.16±0.14a 25.91±0.99a 6.86±1.42a

Table 6

Stepwise multiple regression analysis of species richness and biomass of community and functional groups versus soil factors"

响应变量
Response variable
群落组成
Community composition
回归方程
Regression equations
物种丰富度
Species richness
群落Community Y= 34.82 +0.43X1 -6.04X3+2.57X4 -0.24X5 +0.49X6 (R2=0.31, F=8.62, P<0.001)
禾草Grasses Y= -9.00 +0.11X1 +1.97X2 -0.7X3+0.19X4 +0.07X6 (R2=0.36, F=10.43, P<0.001)
杂类草Nongraminous forbs Y= 49.76 +0.54X1 -5.36X2 +2.06X4 -0.2X5 +0.25X6 (R2=0.31, F=8.47, P<0.001)
生物量
Biomass
群落Community Y= 901.99 -15.53X1 +1.87X5 (R2=0.42, F=20.9, P<0.001)
禾草Grasses Y= 548.51 -15.45 X1 -30.56X3 -19.05 X4+2.91X5 (R2=0.43, F=21.83, P<0.001)
杂类草Nongraminous forbs Y= -54.01 +35.81X3 (R2=0.15, F=20.28, P<0.001)
[1] 闫瑞瑞, 唐欢, 丁蕾, 姚静, 陈宝瑞, 辛晓平, 王旭, 闫晓红, 牛文远. 呼伦贝尔天然打草场分布及生物量遥感估算. 农业工程学报, 2017 (15):210-218.
YAN R R, TANG H, DING L, YAO J, CHEN B R, XIN X P, WANG X, YAN X H, NIU W Y. Natural mowing grassland resource distribution and biomass estimation based on remote sensing in Hulunber. Transactions of the Chinese Society of Agricultural Engineering, 2017(15):210-218. (in Chinese)
[2] BAI Y F, WU J G, CLARK C M, NAEEM S, PAN Q M, HUANG J H, ZHANG L X, HAN X G. Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: Evidence from Inner Mongolia grasslands. Global Change Biology, 2010,16(1):358-372.
[3] ZHANG Y, LOREAU M, LU X, HE N, ZHANG G, HAN X. Nitrogen enrichment weakens ecosystem stability through decreased species asynchrony and population stability in a temperate grassland. Global Change Biology, 2016,22(4):1445-1455.
[4] HAUTIER Y, TILMAN D, ISBELL F, SEABLOOM E W, BORER E T, REICH P B. Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science, 2015,348(6232):336-340.
[5] BORER E T, SEABLOOM E W, GRUNER D S, HARPOLE W S, HILLEBRAND H, LIND E M, ADLER P B, ALBERTI J, ANDERSON T M, BAKKER J D, BIEDERMAN L, BLUMENTHAL D, BROWN C S, BRUDVIG L A, BUCKLEY Y M, CADOTTE M, CHU C, CLELAND E E, CRAWLEY M J, DALEO P, DAMSCHEN E I, DAVIES K F, DECRAPPEO N M, DU G, FIRN J, HAUTIER Y, HECKMAN R W, HECTOR A, HILLERISLAMBERS J, IRIBARNE O, KLEIN J A, KNOPS J M H, La PIERRE K J, LEAKEY A D B, LI W, MACDOUGALL A L, MELBOURNE B A, MITCHELL C E, MOORE J L, MORTENSEN B, O'HALLORAN L R, ORROCK J L, PASCUAL J, PROBER S M, PYKE D A, RISCH A C, SCHUETZ M, SMITH M D, STEVENS C J, SULLIVAN L L, WILLIAMS R J, WRAGG P P, WRIGHT J D, YANG L H. Herbivores and nutrients control grassland plant diversity via light limitation. Nature, 2014,508(7497):517-520.
[6] CHEN Q, HOOPER D U, LIN S. Shifts in species composition constrain restoration of overgrazed grassland using nitrogen fertilization in Inner Mongolian steppe, China. PLoS ONE, 2011,6(3):e16909.
[7] JENSEN E S, PEOPLES M B, BODDEY R M, GRESSHOFF P M, HAUGGAARD-NIELSEN H, ALVES B J R, MORRISON M J. Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries. A review. Agronomy for Sustainable Development, 2012,32(2):329-364.
[8] ZHANG Y, LOREAU M, HE N, ZHANG G, HAN X. Mowing exacerbates the loss of ecosystem stability under nitrogen enrichment in a temperate grassland. Functional Ecology, 2017,31(8):1637-1646.
[9] 黄振艳, 王立柱, 乌仁其其格, 李杰, 杨晓刚. 放牧和刈割对呼伦贝尔草甸草原物种多样性的影响. 草业科学, 2013,30(4):602-605.
HUANG Z Y, WANG L Z, URAN TSETSEG, LI J, YANG X G. Correlation analysis of species diversity of Stipa baicalensis community. Pratacultural Science, 2013,30(4):602-605. (in Chinese)
[10] YANG H J, JIANG L, LI L H, LI A, WU M Y, WAN S Q. Diversity-dependent stability under mowing and nutrient addition: evidence from a 7-year grassland experiment. Ecology Letters, 2012,15(6):619-626.
[11] 鲍雅静, 李政海, 包青海, 仲延凯, 王静. 多年割草对羊草草原群落生物量及羊草和洽草种群重要值的影响. 内蒙古大学学报(自然科学版), 2001,32(3):309-313.
BAO Y J, LI Z H, BAO Q H, ZHONG Y K, WANG J. Influence of mowing for many years on community biomass and the important value of Leymus chinensis and Koeloria cristata population on L. chinensis steppe. Journal of Inner Mongolia University (Natural Science Edition), 2001,32(3):309-313. (in Chinese)
[12] 包青海, 宝音陶格涛, 阎巧玲, 敖亚萍. 羊草草原割草处理群落特征比较研究. 内蒙古大学学报(自然科学版), 2003,34(1):74-78.
BAO Q H, BAO YIN TAOGETAO, YAN Q L, AO Y P. The comparison study on community characteristics under mowing treatments in the steppe ofLeymus chinensis. Journal of Inner Mongolia University(Natural Science Edition), 2003,34(1):74-78. (in Chinese)
[13] SOCHER S A, PRATI D, BOCH S, MUELLER J, BAUMBACH H, GOCKEL S, HEMP A, SCHOENING I, WELLS K, BUSCOT F, KALKO E K V, LINSENMAIR K E, SCHULZE E, WEISSER W W, FISCHER M. Interacting effects of fertilization, mowing and grazing on plant species diversity of 1500 grasslands in germany differ between regions. Basic and Applied Ecology, 2013,14(2):126-136.
[14] SOCHER S A, PRATI D, BOCH S, MUELLER J, KLAUS V H, HOELZEL N, FISCHER M. Direct and productivity-mediated indirect effects of fertilization, mowing and grazing on grassland species richness. Journal of Ecology, 2012,100(6):1391-1399.
[15] YANG H J, LI Y, WU M Y, ZHANG Z, LI L H, WAN S Q. Plant community responses to nitrogen addition and increased precipitation: the importance of water availability and species traits. Global Change Biology, 2011,17(9):2936-2944.
[16] XU Z W, WAN S Q, REN H Y, HAN X G, JIANG Y. Influences of land use history and short-term nitrogen addition on community structure in temperate grasslands. Journal of Arid Environments, 2012,87:103-109.
[17] 朱珏, 张彬, 谭支良, 王敏. 刈割对牧草生物量和品质影响的研究进展. 草业科学, 2009(2):80-85.
ZHU J, ZHANG B, TAN Z L, WANG M. Research progress of clipping effect on quality and biomass of grazing. Pratacultural SciencePratacultural Science, 2009(2):80-85. (in Chinese)
[18] VIOLLE C, NAVAS M, VILE D, KAZAKOU E, FORTUNEL C, HUMMEL I, GARNIER E. Let the concept of trait be functional. Oikos, 2007,116(5):882-892.
[19] DIAZ S, CABIDO M, CASANOVES F. Plant functional traits and environmental filters at a regional scale. Journal of Vegetation Science, 1998,9(1):113-122.
[20] OLFF H. Effects of light and nutrient availability on dry-matter and n-allocation in 6 successional grassland species - testing for resource ratio effects. Oecologia, 1992,89(3):412-421.
[21] 张宇平. 养分添加对内蒙古温带草地植物功能性状的影响[D]. 呼和浩特: 内蒙古大学, 2016.
ZHANG Y P. Effects of nutrient additions on plant functional traits in temperate grassland of Inner Mongolia[D]. Huhhot: Inner Mongolia University, 2016. (in Chinese)
[22] 杨国姣. 氮磷添加对呼伦贝尔草原4种优势植物性状的影响[D]. 上海: 上海应用技术大学, 2016.
YANG G J. Trait variations in four dominant plants in response to nitrogen and phosphorus addition in Hulun Buir grassland[D]. Shanghai: Shanghai University of Applied Sciences, 2016. (in Chinese)
[23] 张云海, 何念鹏, 张光明, 黄建辉, 韩兴国. 氮沉降强度和频率对羊草叶绿素含量的影响. 生态学报, 2013,33(21):6786-6794.
ZHANG Y H, HE N P, ZHANG G M, HUANG J H, HAN X G. Nitrogen deposition and Leymus chinensis leaf chlorophyll content in Inner Mongolian grassland. Acta Ecologica Sinica, 2013,33(21):6786-6794. (in Chinese)
[24] 徐慧敏, 白天晓, 安娜, 时光, 赵一安, 宝音陶格涛. 不同刈割制度对典型草原羊草功能性状的影响. 中国草地学报, 2016,38(6):60-65.
XU H M, BAI T X, AN N, SHI G, ZHAO Y A, BAO Y T G T. Effect of different cutting system on Leymus chinensis functional traits. Chinese Journal of Grassland, 2016,38(6):60-65. (in Chinese)
[25] 井光花. 黄土高原半干旱区草地群落结构和功能对管理措施的响应特征[D]. 杨凌: 中国科学院教育部水土保持与生态环境研究中心, 2017.
JING G H. Responses of grassland community structure and functions to management practices on the semi-arid area of Loess Plateau[D]. Yangling: Research Centre of Soil and Water Conservation and Eco-environment, Chinese Academy of Sciences, 2017. (in Chinese)
[26] 郭倩. 草地群落植物种等级划分及重要值方法改进[D]. 兰州: 兰州大学, 2017.
GUO Q. The species hierarchy classification and important value method improvement in grassland community[D]. Lanzhou: Lanzhou University, 2017. (in Chinese)
[27] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000.
LU R K. Soil Argrochemistry Analysis Protocoes. Beijing: China Agriculture Science Press, 2000. (in Chinese)
[28] SAH R N, BROWN P H. Techniques for boron determination and their application to the analysis of plant and soil samples. Plant and Soil, 1997,193(1/2):15-33.
[29] ZHANG Y H, LÜ X T, ISBELL F, STEVENS C, HAN X, HE N P, ZHANG G M, YU Q, HUANG J H, HAN X G. Rapid plant species loss at high rates and at low frequency of N addition in temperate steppe. Global Change Biology, 2014,20(11):3520-3529.
[30] STORKEY J, MACDONALD A J, POULTON P R, SCOTT T, KOEHLER I H, SCHNYDER H, GOULDING K W T, CRAWLEY M J. Grassland biodiversity bounces back from long-term nitrogen addition. Nature, 2015,528(7582):401-404.
[31] BAZZAZ F A. Plants in Changing Environments: Linking Physiological, Population, and Community Ecology. Cambridge: Cambridge University Press, 1996: 191-205.
[32] 彭菲. 水氮和放牧对内蒙古典型草原初级生产力、物种组成和群落演替的影响[D]. 北京: 中国农业大学, 2016.
PENG F. The response of primary production, species composition and community succession to water, nitrogen and grazing in typical steppe, Inner Mongolia[D]. Beijing: China Agricultural University, 2016. (in Chinese)
[1] DU WenTing,LEI XiaoXiao,LU HuiYu,WANG YunFeng,XU JiaXing,LUO CaiXia,ZHANG ShuLan. Effects of Reducing Nitrogen Application Rate on the Yields of Three Major Cereals in China [J]. Scientia Agricultura Sinica, 2022, 55(24): 4863-4878.
[2] ZHU ChangWei,MENG WeiWei,SHI Ke,NIU RunZhi,JIANG GuiYing,SHEN FengMin,LIU Fang,LIU ShiLiang. The Characteristics of Soil Nutrients and Soil Enzyme Activities During Wheat Growth Stage Under Different Tillage Patterns [J]. Scientia Agricultura Sinica, 2022, 55(21): 4237-4251.
[3] MengQi WANG,Na MI,Jing WANG,YuShu ZHANG,RuiPeng JI,NiNa CHEN,XiaXia LIU,Ying HAN,WangYiPu LI,JiaYing ZHANG. Simulation of Canopy Silking Dynamic and Kernel Number of Spring Maize Under Drought Stress [J]. Scientia Agricultura Sinica, 2022, 55(18): 3530-3542.
[4] ZHANG YingQiang,ZHANG ShuiQin,LI YanTing,ZHAO BingQiang,YUAN Liang. Conversion Characteristics of Different Carboxyl-Containing Organic Acids Modified Urea in Calcareous Fluvo-Aquic Soil [J]. Scientia Agricultura Sinica, 2022, 55(17): 3355-3364.
[5] GAO RenCai,CHEN SongHe,MA HongLiang,MO Piao,LIU WeiWei,XIAO Yun,ZHANG Xue,FAN GaoQiong. Straw Mulching from Autumn Fallow and Reducing Nitrogen Application Improved Grain Yield, Water and Nitrogen Use Efficiencies of Winter Wheat by Optimizing Root Distribution [J]. Scientia Agricultura Sinica, 2022, 55(14): 2709-2725.
[6] LI ShuaiShuai, GUO JunJie, LIU WenBo, HAN ChunLong, JIA HaiFei, LING Ning, GUO ShiWei. Influence of Typical Rotation Systems on Soil Phosphorus Availability Under Different Fertilization Strategies [J]. Scientia Agricultura Sinica, 2022, 55(1): 96-110.
[7] YanLing LIU,Yu LI,Yan ZHANG,YaRong ZHANG,XingCheng HUANG,Meng ZHANG,WenAn ZHANG,TaiMing JIANG. Characteristics of Microbial Biomass Phosphorus in Yellow Soil Under Long-Term Application of Phosphorus and Organic Fertilizer [J]. Scientia Agricultura Sinica, 2021, 54(6): 1188-1198.
[8] HaiYu TAO,AiWu ZHANG,HaiYang PANG,XiaoYan KANG. Smart-Phone Application in Situ Grassland Biomass Estimation [J]. Scientia Agricultura Sinica, 2021, 54(5): 933-944.
[9] WANG XinYuan,ZHAO SiDa,ZHENG XianFeng,WANG ZhaoHui,HE Gang. Effects of Straw Returning and Nitrogen Application Rate on Grain Yield and Nitrogen Utilization of Winter Wheat [J]. Scientia Agricultura Sinica, 2021, 54(23): 5043-5053.
[10] ZHANG PengXia,ZHOU XiuWen,LIANG Xue,GUO Ying,ZHAO Yan,LI SiShen,KONG FanMei. Genome-Wide Association Analysis for Yield and Nitrogen Efficiency Related Traits of Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2021, 54(21): 4487-4499.
[11] ZHOU Meng,HAN XiaoXu,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Remote Sensing Estimation of Cotton Biomass Based on Parametric and Nonparametric Methods by Using Hyperspectral Reflectance [J]. Scientia Agricultura Sinica, 2021, 54(20): 4299-4311.
[12] WANG JinFeng,WANG ZhuangZhuang,GU FengXu,MOU HaiMeng,WANG Yu,DUAN JianZhao,FENG Wei,WANG YongHua,GUO TianCai. Effects of Nitrogen Fertilizer and Plant Density on Carbon Metabolism, Nitrogen Metabolism and Grain Yield of Two Winter Wheat Varieties [J]. Scientia Agricultura Sinica, 2021, 54(19): 4070-4083.
[13] WANG XuMin,LUO WenHe,LIU PengZhao,ZHANG Qi,WANG Rui,LI Jun. Regulation Effects of Water Saving and Nitrogen Reduction on Dry Matter and Nitrogen Accumulation, Transportation and Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2021, 54(15): 3183-3197.
[14] WANG KunJiao,REN Tao,LU ZhiFeng,LU JianWei. Effects of Different Magnesium Supplies on the Growth and Physiological Characteristics of Oilseed Rape in Seeding Stage [J]. Scientia Agricultura Sinica, 2021, 54(15): 3198-3206.
[15] JIAN TianCai,WU HongLiang,KANG JianHong,LI Xin,LIU GenHong,CHEN Zhuo,GAO Di. Fluorescence Characteristics Study of Nitrogen in Alleviating Premature Senescence of Spring Wheat at High Temperature After Anthesis [J]. Scientia Agricultura Sinica, 2021, 54(15): 3355-3368.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!