Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (11): 2161-2170.doi: 10.3864/j.issn.0578-1752.2020.11.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Evaluation of Texture Quality of Sweetpotato Storage Roots Based on PCA-Entropy TOPSIS

LI Ling,XU Shu,CAO RuXia,CHEN LingLing,CUI Peng,LÜ ZunFu,LU GuoQuan()   

  1. College of Agriculture and Food Science, Zhejiang A&F University/The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Hangzhou 311300
  • Received:2019-09-23 Accepted:2019-12-16 Online:2020-06-01 Published:2020-06-09
  • Contact: GuoQuan LU E-mail:lugq10@zju.edu.cn

Abstract:

【Objective】Texture quality are important indicators for the evaluation of sweetpotato root quality, which directly affects its fresh food and post-harvest processing. Texture quality evaluation is not only an important procedure of sweetpotato variety breeding and comprehensive utilization, but also to provide an important reference for sweetpotato breeding and its utilization. 【Method】Texture qualities (hardness、adhesiveness, cohesiveness, springiness, gumminess, and chewiness) of 45 sweetpotato varieties were analyzed with texture profile analysis method by using texture analyzer, and the correlation among the texture parameters was analyzed. The weight index of each parameter was determined by principal component analysis, and the texture quality of 45 sweetpotato tubers was evaluated by TOPSIS. 【Result】The results showed that textural parameters of 45 sweetpotato varieties were different from each other. The variation coefficient of chewiness and adhesiveness were 35.23% and 49.15%, respectively. Chewiness ranged from 60.30 to 284.66 N, with an average values of 149.29 N. Zheshu 13 has the maximum value of 284.66 N, while 166-7 and Longshu 14 have the minimum values of 60.30 N, 77.28 N, respectively. Adhesiveness ranged from -10.40 to -0.80 J, with an average value of -4.71 J. Longshu 31 has maximum value of -1.34 J, while Jizishu 2 and Pushu 32 have minimum values of -9.34 J, -10.40 J, respectively. The variation coefficient of cohesiveness and springiness were 14.27% and 15.75%, respectively. Cohesiveness ranged from 0.15 to 0.28, with an average value of 0.21. Shangshu 19 has maximum value of 0.28, while Hongpibaixin has minimum value of 0.15. Springiness ranged from 5.01 to 8.93 mm, with an average value of 6.59 mm. Xinong 431 has the maximum value of 8.93 mm, while 166-7 has the minimum value of 5.01 mm. The variation coefficient of hardness and gumminess were 19.47% and 23.84%, respectively. Gumminess ranged from 11.97 to 32.78 N, with an average value of 22.20 N. Pushu 32 has maximum value of 32.78 N, while 166-7 has minimum value of 11.97 N. Hardness ranged from 59.79 to 143.41 N, with an average value of 105 N. The value of Mianfen 1, Shangxuzi 1 and Sushu29 was more than 140.00 N, and 166-7 has minimum value of 59.79 N. Correlation analysis showed that hardness was significantly positively correlated with gumminess and chewiness. Gumminess had significant positively correlation with chewiness. Cohesiveness was significantly positively correlated with springiness, gumminess, and chewiness. Springiness had significant positive correlation with gumminess and chewiness. Six texture parameters were analyzed by principal component analysis method. The cumulative variance contribution rate of the three principal components was 94.674%. The weight index of hardness, adhesiveness, cohesion, elasticity, adhesiveness and mastication were 0.121, 0.161, 0.102, 0.232, 0.162 and 0.223, respectively. 【Conclusion】According to the comprehensive evaluation, starch-type sweetpotato varieties with better texture quality were Longshu 31, Shangshu 19 and Qishu 982. Fresh-type sweetpotato varieties with better texture quality were Sushu 16, Ziluolan and Xushu32.

Key words: sweetpotato, texture profile analysis, correlation, PCA-Entropy, TOPSIS

Table 1

Textural parameters of different sweetpotato cultivars in TPA test "

品种
Cultivars
硬度
Hardness (N)
黏附性
Adhesiveness (J)
内聚性
Cohesiveness
弹性
Springiness (mm)
胶黏性
Gumminess (N)
咀嚼性
Chewiness (N)
166-7 59.79±9.98 -2.74±1.05 0.20±0.02 5.01±0.62 11.97±2.39 60.30±17.50
北京553 Beijing553 92.82±6.52 -2.81±1.51 0.20±0.04 5.78±0.45 18.59±3.44 107.39±21.70
潮薯1号 Chaoshu 1 90.76±7.10 -5.93±1.53 0.19±0.02 5.86±0.62 17.37±2.13 102.07±18.50
广薯87 Guangshu 87 99.50±5.58 -5.21±1.46 0.19±0.03 5.98±0.41 18.44±3.41 110.96±25.50
红皮白心 Hongpibaixin 92.92±8.18 -2.35±1.51 0.15±0.04 6.33±1.06 14.26±4.14 91.76±35.20
红香蕉 Hongxiangjiao 78.72±3.18 -7.25±1.24 0.21±0.01 6.20±0.45 16.23±1.42 100.92±15.00
冀薯98 Jishu98 123.98±6.72 -8.68±2.22 0.23±0.02 7.39±0.60 28.04±4.28 206.70±32.40
冀薯982 Jishu982 131.09±8.17 -7.43±2.34 0.20±0.01 6.27±0.46 25.69±2.45 161.74±24.90
冀紫薯2号 Jizishu 2 115.06±5.97 -9.34±2.95 0.23±0.02 6.83±0.39 26.54±2.51 181.53±23.50
龙薯14 Longshu 14 89.86±11.40 -2.29±0.963 0.16±0.02 5.41±0.67 14.16±2.42 77.28±19.50
龙薯9号 Longshu 9 86.26±12.30 -4.20±2.55 0.23±0.03 5.79±1.00 19.26±2.59 111.81±27.30
龙薯515 Longshu 515 80.66±6.57 -5.08±1.40 0.20±0.01 6.00±0.76 16.01±2.02 96.68±20.60
龙薯31 Longshu 31 108.49±10.90 -1.34±0.49 0.22±0.03 6.69±1.59 23.19±2.67 153.24±33.90
龙紫薯6号 Longzishu 6 99.40±4.06 -2.53±0.86 0.20±0.02 5.15±0.67 20.24±2.26 103.52±13.00
绵粉1号 Mianfen 1 143.41±8.88 -4.42±2.13 0.18±0.02 5.77±0.57 26.32±3.35 151.83±25.10
南薯007 Nanshu 007 93.81±4.27 -3.73±1.81 0.25±0.02 8.78±0.25 23.64±1.67 207.51±17.00
宁薯10号 Ningshu 10 71.35±2.57 -6.28±0.99 0.21±0.01 5.58±0.66 15.28±1.07 85.61±14.40
宁菜薯13 Ningcaishu 13 81.34±4.97 -6.24±1.36 0.25±0.01 6.68±0.67 20.14±1.28 134.25±14.60
宁紫薯2号 Ningzushu 2 114.75±8.18 -5.37±1.41 0.23±0.01 6.02±0.66 26.24±2.57 158.12±25.40
普薯32 Pushu 32 119.92±8.64 -10.4±3.88 0.27±0.02 6.37±0.54 32.78±3.54 209.01±29.9
秦薯5号 Qinshu 5 101.17±14.50 -6.57±1.64 0.19±0.02 6.2±0.26 18.88±2.52 117.31±17.70
秦紫薯2号 Qinzishu 2 137.64±12.2 -7.40±2.91 0.22±0.02 6.51±0.69 30.33±3.94 196.04±21.10
商薯19 Shangshu 19 101.14±6.98 -4.50±2.41 0.28±0.12 6.88±1.41 27.79±11.00 185.56±51.80
商薯8号 Shangshu 8 117.05±9.53 -1.46±0.81 0.25±0.04 8.81±0.16 29.02±5.38 255.61±47.40
商徐紫1号 Shangxuzishu 1 140.14±9.08 -4.14±1.73 0.19±0.02 6.14±0.43 26.32±3.05 162.29±26.50
苏薯16 Sushu 16 99.76±7.65 -6.86±2.38 0.23±0.06 7.14±0.64 22.75±7.96 165.79±72.70
苏薯25 Sushu 25 89.19±4.11 -8.19±1.93 0.24±0.01 5.89±0.80 21.10±1.41 124.06±17.50
苏薯29 Sushu 29 142.45±20.9 -3.41±1.92 0.19±0.02 6.98±0.72 26.86±3.20 188.8±37.10
苏渝303 Suyu 303 108.41±14.6 -3.15±3.03 0.18±0.04 6.26±1.13 19.60±6.76 125.92±54.60
台湾英沟 Taiwanyingou 85.27±3.94 -5.72±1.45 0.21±0.02 5.54±0.61 18.27±1.82 101.15±14.80
西农431 Xinong 431 91.14±4.19 -3.99±0.617 0.24±0.01 8.93±0.15 21.88±2.17 195.51±21.00
湘薯98 Xiangshu 98 119.29±10.10 -1.27±0.568 0.25±0.03 8.92±0.07 29.33±3.87 261.86±35.70
湘菜薯2号 Xiangcaishu 2 111.76±7.76 -3.69±1.75 0.19±0.03 6.39±0.62 21.44±4.46 138.73±40.70
心香 Xinxiang 131.07±13.50 -2.31±1.29 0.16±0.02 6.09±0.379 21.28±2.66 129.47±17.80
徐薯22 Xushu 22 113.87±14.90 -3.08±1.37 0.18±0.04 5.96±1.13 20.52±4.23 123.08±43.80
徐薯32 Xushu 32 119.70±23.40 -4.59±1.94 0.2±0.03 6.57±0.94 22.90±3.06 149.99±26.10
徐紫薯8号 Xuzishu 8 132.04±6.57 -6.70±1.38 0.22±0.03 6.00±0.73 29.03±4.61 174.17±35.20
徐紫薯5号 Xuzishu 5 85.27±14.30 -2.98±3.03 0.18±0.03 7.10±1.58 15.31±4.40 111.3±47.90
遗字138 Yizi 138 104.72±11.50 -2.99±1.02 0.18±0.01 6.22±0.22 18.85±1.84 117.26±11.60
豫薯10号 Yushu 10 77.86±10.50 -7.62±1.49 0.24±0.02 6.32±0.34 18.25±1.79 115.22±12.50
浙薯33 Zheshu 33 113.39±6.62 -2.69±1.11 0.20±0.02 5.91±0.55 22.31±3.17 130.86±16.20
浙薯13 Zheshu 13 120.36±7.09 -0.80±0.354 0.27±0.02 8.89±0.12 32.03±2.99 284.66±27.40
浙紫薯1号 Zhezishu 1 138.07±9.14 -2.80±1.66 0.22±0.02 8.52±1.09 30.63±2.33 260.41±36.20
郑薯20 Zhengshu 20 92.82±5.62 -6.02±2.61 0.18±0.03 6.51±0.53 16.37±3.31 107.83±27.40
紫罗兰 Ziluolan 104.64±5.80 -5.47±2.37 0.23±0.05 7.82±1.16 23.41±5.10 182.91±46.60
平均Mean 105.60 -4.71 0.21 6.59 22.20 149.29
变异系数CV(%) 19.47 49.15 14.27 15.75 23.84 35.23

Table 2

Correlation among textural parameters of the TPA test on different sweetpotato cultivars"

质构参数
Textural parameters
硬度
Hardness
黏附性
Adhesiveness
内聚性
Cohesiveness
弹性
Springiness
胶黏性
Gumminess
咀嚼性
Chewiness
硬度Hardness 1
黏附性Adhesiveness 0.049 1
内聚性Cohesiveness -0.014 -0.268 1
弹性Springiness 0.264 0.216 0.537** 1
胶黏性Gumminess 0.794** -0.116 0.585** 0.541** 1
咀嚼性Chewiness 0.628** 0.068 0.638** 0.840** 0.903** 1

Table 3

Eigenvalue, variance contribution rate and cumulative variance contribution rate of principal components"

主成分
Principal components
特征值
Eigenvalue
方差贡献率
Variance contribution rate (%)
累计方差贡献率
Cumulative variance contribution rate (%)
1 3.378 56.303 56.303
2 1.246 20.766 77.069
3 1.056 17.605 94.674
4 0.304 5.075 99.748
5 0.013 0.213 99.961
6 0.002 0.039 100.000

Table 4

Eigenvectors and evaluate weight of textural parameters in sweetpotato"

性状
Trait
主成份 Principal components 权重
Evaluate weight
1 2 3
硬度 Hardness 0.660 0.432 -0.612 0.121
黏附性 Adhesiveness -0.008 0.832 0.494 0.161
内聚性 Cohesiveness 0.672 -0.597 0.326 0.102
弹性 Springiness 0.789 0.086 0.490 0.232
胶黏性 Gumminess 0.942 -0.005 -0.293 0.162
咀嚼性 Chewiness 0.991 0.060 0.078 0.223

Table 5

The decision-making matrix R and analysis results of TOPSIS"

品种
Cultivars
决策矩阵R Ci 排序
Sorting
硬度
Hardness (N)
黏附性
Adhesiveness (J)
内聚性
Cohesiveness
弹性
Springiness (mm)
胶黏性
Gumminess (N)
咀嚼性
Chewiness (N)
冀薯98 Jishu98 0.0558 0.0573 0.0769 0.1807 0.0729 0.1529 0.6140 6
冀薯982 Jishu982 0.0354 0.0990 0.0769 0.1479 0.1090 0.1989 0.6866 3
龙薯31 Longshu 31 0.1002 0.0180 0.0923 0.1971 0.1475 0.1823 0.7590 1
绵粉1号 Mianfen 1 0.0000 0.1206 0.0531 0.0891 0.0993 0.1795 0.5575 10
南薯007 Nanshu 007 0.0976 0.0977 0.0462 0.0176 0.1405 0.1513 0.5670 9
秦薯5号 Qinshu 5 0.1188 0.1276 0.0577 0.1401 0.1063 0.1118 0.6816 4
商薯19 Shangshu 19 0.1187 0.1233 0.0000 0.2194 0.0767 0.1943 0.7539 2
商薯8号 Shangshu 8 0.0757 0.0220 0.0462 0.0141 0.0578 0.0570 0.2807 11
苏薯29 Sushu 29 0.0028 0.0870 0.0615 0.2288 0.0910 0.1880 0.6784 5
湘薯98 Xiangshu 98 0.0692 0.0157 0.0462 0.0012 0.0531 0.0447 0.2367 12
徐薯22 Xushu 22 0.0848 0.0761 0.0523 0.1117 0.1315 0.1231 0.5964 7
徐紫薯5号 Xuzishu 5 0.0731 0.0727 0.0434 0.2143 0.0514 0.1000 0.5711 8

Table 6

The decision-making matrix R and analysis results of TOPSIS"

品种
Cultivars
决策矩阵R Ci 排序
Sorting
硬度
Hardness (N)
黏附性
Adhesiveness (J)
内聚性
Cohesiveness
弹性
Springiness (mm)
胶黏性
Gumminess (N)
咀嚼性
Chewiness (N)
166-7 0.0000 0.0646 0.0795 0.0000 0.0000 0.0000 0.1482 32
北京553 Beijing553 0.0948 0.0670 0.0769 0.0904 0.1018 0.0923 0.5385 24
潮薯1号 Chaoshu 1 0.0889 0.1489 0.0654 0.0994 0.0830 0.0819 0.5840 20
广薯87 Guangshu 87 0.1140 0.1471 0.0564 0.1137 0.0995 0.0994 0.6484 9
红皮白心 Hongpibaixin 0.0951 0.0517 0.0000 0.1554 0.0352 0.0617 0.4107 28
红香蕉 Hongxiangjiao 0.0543 0.1050 0.0923 0.1396 0.0655 0.0797 0.5521 22
冀紫薯2号 Jizishu 2 0.0814 0.0353 0.0769 0.2136 0.0960 0.2023 0.7260 7
龙薯14 Longshu 14 0.0863 0.0496 0.0128 0.0464 0.0337 0.0333 0.2698 31
龙薯9号 Longshu 9 0.0760 0.1133 0.0846 0.0911 0.1121 0.1010 0.5951 18
龙薯515 Longshu 515 0.0599 0.1427 0.0769 0.1162 0.0621 0.0713 0.5446 23
龙紫薯6号 Longzishu 6 0.1137 0.0577 0.0769 0.0164 0.1272 0.0848 0.4906 26
宁薯10号 Ningshu 10 0.0332 0.1373 0.0923 0.0669 0.0509 0.0496 0.4428 27
宁菜薯13 Ningcaishu 13 0.0619 0.1387 0.0462 0.1960 0.1256 0.1450 0.7341 5
宁紫薯2号 Ningzushu 2 0.0823 0.1523 0.0769 0.1185 0.1006 0.1918 0.7436 4
普薯32 Pushu 32 0.0674 0.0000 0.0154 0.1596 0.0000 0.1484 0.4022 29
秦紫薯2号 Qinzishu 2 0.0166 0.1000 0.0923 0.1760 0.0377 0.1738 0.6138 14
商徐紫1号 Shangxuzishu 1 0.0094 0.1113 0.0615 0.1326 0.0993 0.2000 0.6322 13
苏薯16 Sushu 16 0.1147 0.1180 0.0769 0.2101 0.1542 0.2069 0.9066 1
苏薯25 Sushu 25 0.0844 0.0737 0.0615 0.1033 0.1404 0.1250 0.6055 16
苏渝303 Suyu 303 0.1005 0.0783 0.0462 0.1467 0.1173 0.1287 0.6357 12
台湾英沟 Taiwanyingou 0.0731 0.1560 0.0923 0.0622 0.0969 0.0801 0.5770 21
西农431 Xinong 431 0.0900 0.1063 0.0615 0.0000 0.1524 0.1748 0.6022 17
湘菜薯2号 Xiangcaishu 2 0.0908 0.0963 0.0615 0.1619 0.1456 0.1538 0.7308 6
心香 Xinxiang 0.0354 0.0503 0.0189 0.1266 0.1432 0.1357 0.5249 25
徐薯32 Xushu 32 0.0681 0.1263 0.0769 0.1831 0.1519 0.1759 0.8051 3
徐紫薯8号 Xuzishu 8 0.0326 0.1233 0.0923 0.1162 0.0577 0.2167 0.6575 8
遗字138 Yizi 138 0.1110 0.0730 0.0462 0.1420 0.1058 0.1117 0.6069 15
豫薯10号 Yushu 10 0.0519 0.0927 0.0679 0.1534 0.0966 0.1077 0.5869 19
浙薯33 Zheshu 33 0.0862 0.0630 0.0769 0.1056 0.1590 0.1384 0.6475 10
浙薯13 Zheshu 13 0.0662 0.0000 0.0154 0.0047 0.0115 0.0000 0.1006 33
浙紫薯1号 Zhezishu 1 0.0153 0.0667 0.0923 0.0481 0.0331 0.0476 0.3119 30
郑薯20 Zhengshu 20 0.0948 0.1460 0.0462 0.1760 0.0677 0.0932 0.6421 11
紫罗兰 Ziluolan 0.1113 0.1557 0.0769 0.1303 0.1441 0.1995 0.8417 2
[1] LARYEA D, KOOMSON D, ODURO I, CAREY E . Evaluation of 10 genotypes of sweetpotato for fries. Food Science & Nutrition, 2019,7(2):589-598.
[2] 吴银亮, 王红霞, 杨俊, 范维娟, 杨楠, 殷旻昊, 张鹏 . 甘薯储藏根形成及其调控机制研究进展. 植物生理学报, 2017,53(5):749-757.
WU Y L, WANG H X, YANG J, FAN W J, YANG N, YIN W H, ZHANG P . Advances in storage root development and regulation in sweetpotato [Ipomoea batatas (L.) Lam.]. Plant Physiology Journal, 2017,53(5):749-757. (in Chinese)
[3] FLIS B, TATAROWSKA B, MILCZAREK D, PLICH J . Effect of location on starch content and tuber texture characteristics in potato breeding lines and cultivars. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 2017,67(5):453-461.
[4] SATO A, TRUONG V D, JOHANNINGSMEIER S D, REYNOLDS R, PECOTA K V, YENCHO G C . Chemical constituents of sweetpotato genotypes in relation to textural characteristics of processed french fries. Food Chemistry, 2018,83(1):60-73.
[5] 潘超, 陈春晓, 叶夏芳, 吴鑫, 陈丽, 陆国权 . 甘薯块根质构特性的检测方法优化. 保鲜与加工, 2018,18(2):94-99.
PAN C, CHEN C X, YE X F, WU X, CHEN L, LU G Q . Optimization of detection method of the texture properties of sweetpotato root tuber. Storage and Process, 2018,18(2):94-99. (in Chinese)
[6] SZCZESNIAK A . Texture is a sensory property. Food Quality & Preference, 2002,13(4):215-225.
[7] TANIWAKI M, KOHYAMA K . Mechanical and acoustic evaluation of potato chip crispness using a versatile texture analyzer. Journal of Food Engineering, 2012,112(4):268-273.
doi: 10.1016/j.jfoodeng.2012.05.015
[8] 刘丙花, 王开芳, 王小芳, 梁静, 白瑞亮, 谢小锋, 孙蕾 . 基于主成分分析的蓝莓果实质地品质评价. 核农学报, 2019,33(5):93-101.
LIU B H, WANG K F, WANG X F, LIANG J, BAI R L, XIE X F, SUN L . Evaluation of fruit texture quality of blueberry based on principal component analysis. Journal of Nuclear Agricultural Sciences, 2019,33(5):93-101. (in Chinese)
[9] SAMUEL O W, ASOGBON G M, SANGAIAH A K, PENG F, GUANGLIN L . An integrated decision support system based on ANN and fuzzy AHP for heart failure risk prediction. Expert Systems with Applications, 2017,68(2017):163-172.
doi: 10.1016/j.eswa.2016.10.020
[10] 骆汝九, 胡治球, 宋雯, 徐辰武 . 多性状综合评定的秩和差测验方法. 中国农业科学, 2010,43(10):2008-2015.
LUO R J, HU Z Q, SONG W, XU C W . A rank-sum-difference testing method for multi-trait comprehensive ranking. Scientia Agricultura Sinica, 2010,43(10):2008-2015. (in Chinese)
[11] SOUSA C C , DAMASCENO-SILVA K J, BASTOS E A, ROCHA M M. Selection of cowpea progenies with enhanced drought-tolerance traits using principal component analysis. Genetics and Molecular Research, 2015,14(4):1598-1605.
[12] 骆汝九, 胡治球, 宋雯, 徐辰武 . 多性状综合评定的秩和测验方法及其应用. 中国农业科学, 2009,42(8):2686-2694.
LUO R J, HU Z Q, SONG W, XU C W . A rank-sum testing method for multi-trait comprehensive ranking and its application. Scientia Agricultura Sinica, 2009,42(8):2686-2694. (in Chinese)
[13] 徐小万, 雷建军, 李颖, 罗少波, 王恒明, 徐晓美, 李涛 . 现蕾期辣椒耐高温多湿性CA-TOPSIS综合评定. 热带作物学报, 2013,34(9):1747-1751.
XU X W, LEI J J, LI Y, LUO S B, WANG H M, XU X M, LI T . Comprehensive evaluation for high temperature and humidity resistance in pepper( Capsicum annuum L.)budding. Chinese Journal of Tropical Crops, 2013,34(9):1747-1751. (in Chinese)
[14] ZHOU S, LIU B, MENG J . Quality evaluation of raw moutan cortex using the AHP and gray correlation-TOPSIS method. Pharmacognosy Magazine, 2017,13(51):528-533.
doi: 10.4103/0973-1296.211029
[15] ALESSANDRINI L, BALESTRA F, ROMANI S, ROCCULI P, ROSA M D . Physicochemical and sensory properties of fresh potato-based pasta (gnocchi). Journal of Food Science, 2010,75(9):542-547.
[16] LIANG X D, LIU C M, LI Z . Measurement of scenic spots sustainable capacity based on PCA-entropy TOPSIS: A case study from 30 provinces, China. International Journal of Environmental Research and Public Health, 2017,15(1):10-29.
doi: 10.3390/ijerph15010010
[17] SINGH V, GUIZANI N, AL-ALAWI A, CLAEREBOUDTB M, RAHMANA M S . Instrumental texture profile analysis (TPA) of date fruits as a function of its physico-chemical properties. Industrial Crops and Products, 2013,50(10):866-873.
doi: 10.1016/j.indcrop.2013.08.039
[18] LANZA B, AMORUSO F . Measurement of kinaesthetic properties of in-brine table olives by microstructure of fracture surface, sensory evaluation, and texture profile analysis (TPA). Journal of the Science of Food and Agriculture, 2018,98(11):4142-4150.
doi: 10.1002/jsfa.2018.98.issue-11
[19] 陈丽 . 甘薯块根质构特性的评价研究[D]. 杭州: 浙江农林大学, 2013.
CHEN L . Evaluation of the texture characteristics of sweetpotato roots[D]. Hangzhou: Zhejiang Agriculture and Forestry University, 2013. ( in Chinese)
[20] BIANCHI T, GUERRERO L, GRATACÓS-CUBARSÍ M, CLARET A, ARGYRIS J, GARCIA-MAS L, HORTÓS M, . Textural properties of different melon (Cucumis melo L.) fruit types: Sensory and physical-chemical evaluation. Scientia Horticulturae, 2016,201(30):46-56.
doi: 10.1016/j.scienta.2016.01.028
[21] LI C Y, LUO J W, MACLEAN D . A novel instrument to delineate varietal and harvest effects on blue berry fruit texture during storage. Journal of the Science of Food and Agriculture, 2011,91(9):1653-1658.
doi: 10.1002/jsfa.4362
[22] 杨玲, 肖龙, 王强, 张彩霞, 丛佩华, 田义 . 质地多面分析(TPA)法测定苹果果肉质地特性. 果树学报, 2014,31(5):977-985.
YANG L, XIAO L, WANG Q, ZHANG C X, CONG P H, TIAN Y . Study on texture properties of apple flesh by using texture profile analysis. Journal of Fruit Science, 2014,31(5):977-985. (in Chinese)
[23] 刘莉, 高星, 华德平, 刘翔, 李志文, 张平, 李三培, 张少慧 . 不同的质构检测方法对甜瓜果肉质构的评价. 天津大学学报(自然科学与工程技术版), 2016,49(8):875-881.
LIU L, GAO X, HUA D P, LIU X, LI Z W, ZHANG P, LI S P, ZHANG S H . Evaluation of texture of melon pulp by different texture detection methods. Journal of Tianjin University(Natural Science and Engineering Technology Edition), 2016,49(8):875-881. (in Chinese)
[24] 公丽艳, 孟宪军, 刘乃侨, 毕金峰 . 基于主成分与聚类分析的苹果加工品质评价. 农业工程学报, 2014,30(13):276-285.
GONG L Y, MENG X J, LIU N Q, BI J F . Evaluation of apple quality based on principal component and hierarchical cluster analysis. Transactions of the Chinese Society of Agricultural Engineering, 2014,30(13):276-285. (in Chinese)
[25] GOYENECHE R, ROURA S, DI SCALA K . Principal component and hierarchical cluster analysis to select hurdle technologies for minimal processed radishes. LWT - Food Science and Technology, 2014,57(2):522-529.
doi: 10.1016/j.lwt.2014.02.022
[26] NAKAMURA Y, KURANOUCHI T, AKIKO O T, ISHIDA N, KODA I, IWASAWA N, MATSUDA T, KUMAGAI T . Cell structure, water status and starch properties in tuberous root tissue in relation to the texture of steamed sweetpotato (Ipomoea batatas (L.) Lam). Japanese Journal of Crop Science, 2010,79(3):284-295.
doi: 10.1626/jcs.79.284
[27] NAKAMURA Y, AKIKO O T, KURANOUCHI T, KATAYAMA K . Disintegration of steamed root tissues of sweetpotato and its relation to texture and the contents of starch, calcium and pectic substances. Nippon Shokuhin Kagaku Kogaku Kaishi, 2015,62(12):555-562.
doi: 10.3136/nskkk.62.555
[28] ANDO T, YASUDA M, HISAKA H . Effect of storage period on free sugar and starch contents of six sweetpotato varieties with different taste on baking, and quantification of sweetness and texture. Horticultural Research, 2018,17(4):449-457.
[29] YOON H, NO J, KIM W, SHIN M . Textural character of sweetpotato root of Korean cultivars in relation to chemical constituents and their properties. Food Science and Biotechnology, 2018,27(6):1627-1637.
doi: 10.1007/s10068-018-0429-7
[30] TRUONG V D, HAMANN D D, WALTER W M . Relationship between instrumental and sensory parameters of cooked sweetpotato texture. Journal of Texture Studies, 1997,28(2):163-185.
doi: 10.1111/jts.1997.28.issue-2
[31] 林子龙, 郭其茂, 陈根辉, 黄艳霞, 杨立明 . 高产优质兼用型甘薯新品种龙薯31号的选育[J]. 福建农业学报, 2018,172(3):34-39.
LIN Z L, GUO Q M, CHEN G H, HUANG Y X, YANG L M . Breeding a new sweetpotato variety, Longshu 31. Fujian Journal of Agricultural Sciences, 2018,172(3):34-39. (in Chinese)
[32] 唐忠厚, 魏猛, 陈晓光, 史新敏, 张爱君, 李洪民, 丁艳锋 . 不同肉色甘薯块根主要营养品质特征与综合评价. 中国农业科学, 2014,47(9):1705-1714.
doi: 10.3864/j.issn.0578-1752.2014.09.005
TANG Z H, WEI M, CHEN X G, SHI X M, ZHANG A J, LI H M, DING Y F . Characters and comprehensive evaluation of nutrient quality of sweetpotato storage root with different flesh colors. Scientia Agricultura Sinica, 2014,47(9):1705-1714. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.09.005
[33] 鞠栋 . 薯渣复配粉营养与功能特性分析及馒头加工工艺研究[D]. 北京: 中国农业科学院, 2017.
JU D . Study on the nutritional and functional properties of potato/ sweetpotato residue compound flour and steamed bread processing technology thereof[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. ( in Chinese)
[34] 谢一芝, 郭小丁, 贾赵东, 马佩勇, 边小峰 . 食用甘薯新品种苏薯16号的选育及栽培技术. 江苏农业科学, 2012,40(7):104-105.
XIE Y Z, GUO X D, JIA Z D, MA P Y, BIAN X F . Breeding and cultivation techniques of edible sweetpotato variety Sushu 16. Jiangsu Journal of Agricultural Sciences, 2012,40(7):104-105. (in Chinese)
[35] 尹艳, 梁艳梅, 林善梦, 罗小梅, 宋冠华, 段纯 . 热浸提“紫罗兰”紫薯花青素的工艺条件优化研究. 北方园艺, 2015(18):136-139.
YIN Y, LIANG Y M, LIN S M, LUO X M, SONG G H, DUAN C . Optimization of hot extraction conditions of anthocyanins from ‘Violet’ purple sweetpotato.Northern Gardening, 2015(18):136-139. (in Chinese)
[36] 唐忠厚, 张爱君, 陈晓光, 魏猛, 靳容, 李洪民 . 优质鲜食型甘薯新品种‘徐薯32’的选育及特性分析. 植物科学学报, 2016,34(5):781-789.
doi: 10.11913/PSJ.2095-0837.2016.50781
TANG Z H, ZHANG A J, CHEN X G, WEI M, JIN R, LI H M . Breeding and appraisal of new sweetpotato cultivar ‘Xushu 32’with high quality. Plant Science Journal, 2016,34(5):781-789. (in Chinese)
doi: 10.11913/PSJ.2095-0837.2016.50781
[1] XIANG YuTing, WANG XiaoLong, HU XinZhong, REN ChangZhong, GUO LaiChun, LI Lu. Lipase Activity Difference of Oat Varieties and Prediction of Low Lipase Activity Variety with High Quality [J]. Scientia Agricultura Sinica, 2022, 55(21): 4104-4117.
[2] DONG MingMing,ZHAO FanFan,GE JianJun,ZHAO JunLiang,WANG Dan,XU Lei,ZHANG MengHua,ZHONG LiWei,HUANG XiXia,WANG YaChun. Heritability Estimation and Correlation Analysis of Longevity and Milk Yield of Holstein Cattle in Xinjiang Region [J]. Scientia Agricultura Sinica, 2022, 55(21): 4294-4303.
[3] LIU Feng,JIANG JiaLi,ZHOU Qin,CAI Jian,WANG Xiao,HUANG Mei,ZHONG YingXin,DAI TingBo,CAO WeiXing,JIANG Dong. Analysis of American Soft Wheat Grain Quality and Its Suitability Evaluation According to Chinese Weak Gluten Wheat Standard [J]. Scientia Agricultura Sinica, 2022, 55(19): 3723-3737.
[4] CUI Peng,ZHAO YiRen,YAO ZhiPeng,PANG LinJiang,LU GuoQuan. Starch Physicochemical Properties and Expression Levels of Anabolism Key Genes in Sweetpotato Under Low Temperature [J]. Scientia Agricultura Sinica, 2022, 55(19): 3831-3840.
[5] JIANG XiaoTing,HUANG GaoXiang,XIONG XiaoYing,HUANG YunPei,DING ChangFeng,DING MingJun,WANG Peng. Effects of Seedlings Enriched with Zinc on Cadmium Accumulations and Related Transporter Genes Expressions in Different Rice Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(17): 3267-3277.
[6] FENG JunJie,ZHAO WenDa,ZHANG XinQuan,LIU YingJie,YUAN Shuai,DONG ZhiXiao,XIONG Yi,XIONG YanLi,LING Yao,MA Xiao. DUS Traits Variation Analysis and Application of Standard Varieties of Lolium multiflorum Introduced from Japan [J]. Scientia Agricultura Sinica, 2022, 55(12): 2447-2460.
[7] FAN WenJing,LIU Ming,ZHAO Peng,ZHANG QiangQiang,WU DeXiang,GUO PengYu,ZHU XiaoYa,JIN Rong,ZHANG AiJun,TANG ZhongHou. Screening of Sweetpotato Varieties Tolerant to Low Nitrogen at Seedling Stage and Evaluation of Different Nitrogen Efficiencies [J]. Scientia Agricultura Sinica, 2022, 55(10): 1891-1902.
[8] WU YaRui,LIU XiJian,YANG GuoMin,LIU HongWei,KONG WenChao,WU YongZhen,SUN Han,QIN Ran,CUI Fa,ZHAO ChunHua. Genetic Analysis of Flag Leaf Traits in Wheat Under High and Low Nitrogen [J]. Scientia Agricultura Sinica, 2022, 55(1): 1-11.
[9] Ting ZHANG,GenPing WANG,YanJie LUO,Lin LI,Xiang GAO,RuHong CHENG,ZhiGang SHI,Li DONG,XiRui ZHANG,WeiHong YANG,LiShan XU. Color Difference Analysis in the Application of High Quality Foxtail Millet Breeding [J]. Scientia Agricultura Sinica, 2021, 54(5): 901-908.
[10] LI KaiFeng,YIN YuHe,WANG Qiong,LIN TuanRong,GUO HuaChun. Correlation Analysis of Volatile Flavor Components and Metabolites Among Potato Varieties [J]. Scientia Agricultura Sinica, 2021, 54(4): 792-803.
[11] WANG Xin,LI Qiang,CAO QingHe,MA DaiFu. Current Status and Future Prospective of Sweetpotato Production and Seed Industry in China [J]. Scientia Agricultura Sinica, 2021, 54(3): 483-492.
[12] JIN Rong,LIU Ming,ZHAO Peng,ZHANG QiangQiang,ZHANG AiJun,TANG ZhongHou. IbMKP6, A Mitogen-Activated Protein Kinase, Confers Low Temperature Tolerance in Sweetpotato [J]. Scientia Agricultura Sinica, 2021, 54(20): 4265-4273.
[13] ZHANG BinBin,CAI ZhiXiang,SHEN ZhiJun,YAN Juan,MA RuiJuan,YU MingLiang. Diversity Analysis of Phenotypic Characters in Germplasm Resources of Ornamental Peaches [J]. Scientia Agricultura Sinica, 2021, 54(11): 2406-2418.
[14] YIN SiJia,LI Hui,XU ZhiQiang,PEI JiuBo,DAI JiGuang,LIU YuWei,LI AiMeng,YU YaXi,LIU Wei,WANG JingKuan. Spatial Variations and Relationships of Topsoil Fertility Indices of Drylands in the Typical Black Soil Region of Northeast China [J]. Scientia Agricultura Sinica, 2021, 54(10): 2132-2141.
[15] ZHAO Peng,LIU Ming,JIN Rong,CHEN XiaoGuang,ZHANG AiJun,TANG ZhongHou,WEI Meng. Effects of Long-Term Application of Organic Fertilizer on Carbon and Nitrogen Accumulation and Distribution of Sweetpotato in Fluvo- Aquic Soil Area [J]. Scientia Agricultura Sinica, 2021, 54(10): 2142-2153.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!