Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (4): 661-675.doi: 10.3864/j.issn.0578-1752.2019.04.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Coupling Degree Diagnosis on Suitability Evaluation of Cultivated-Layer Quality for Slope Farmland in Purple Hilly Region of South-Western China

LOU YiBao1,SHI DongMei1(),JIN HuiFang1,JIANG GuangYi2,DUAN Teng1,JIANG Na1   

  1. 1College of Resources and Environment, Southwest University, Chongqing 400715
    2Chongqing Eco-environment Monitoring Station of Soil and Water Conservation, Chongqing 401147
  • Received:2018-07-13 Accepted:2018-09-10 Online:2019-02-16 Published:2019-02-27
  • Contact: DongMei SHI E-mail:shidm_1970@126.com

Abstract:

【Objective】As an important cultivated land resource type in southwest area, the quality of the cultivated-layer of slope farmland in purple hilly is concentrated in the phenomenon of severe erosion, low yield and unstable crop yield. The change of crop yield on the plot scale has a significant hysteresis effect compared with soil quality degradation. Based on the analysis of soil quality of sloping farmland in purple soil with different soil fertility grades, this paper quantitatively analyzed the suitability of crop quality of purple soil slope farmland to crops.【Method】The paper studied the suitability evaluation between crop growth and cultivated-layer for the different land productivity grades by the way of coupling degree model based on statistical analysis and clustering analysis. 【Result】The results showed: (1) the thickness of the cultivated-layer at different land productivity grades for purple slope farmland was from 19 to 21 cm and the effective thickness of the cultivated-layer was the range of 21-43 cm, which indicated that the thickness of cultivated-layer was stable and the thinning phenomenon of effective thickness for cultivated-layer was very serious. The limited factors of crop yield for five levels slope farmland were field slope, thickness of cultivated-layer and effective thickness of cultivated-layer. (2) the characteristics of variation of the three kinds of cultivated-layer types for purple soil slope farmland were very serious. Furthermore, soil in Type I of cultivated-layer indicated such features as weak acidic (pH 6.4) and the highest lower cation exchange capacity (20.99 cmol(+)·L -1). Soil in Type II of cultivated-layer was characteristic with smallest field slope (11.3°), the highest thickness of the effective soil layer (38cm) and thickness of cultivated-layer (22 cm), so was the soil available potassium (136.50 mg·kg -1). Soil in Type III showed such characteristics as the thinnest effective soil thickness (28 cm), acidic soil (pH 4.8) and the smallest cation exchange capacity (9.19 cmol(+)·L -1). The dominant factors affecting the crop yield of purple soil slope farmland included field slope, effective soil thickness, soil acidification and cation exchange capacity. (3) the suitability status of crop and cultivated-layer for the different land productivity grades existed two states, including coordinated development stage and maladjustment decay stage, and four types, which were synchro type, lag type, profit and loss type and common loss type. Crop was more sensitive than quality of cultivated-layer for the coupling coordination degrees under the same land productivity grades of slope farmland, which signified the more yield decrease. Crop-cultivated layer coupling coordination degrees (Cd) for Type I (0.4820) and Type II (0.5207) belonged to the basic coordination development stage and the lag type for crop - cultivated layer, which caused the crop growth was barely suitable. Meanwhile, Crop-cultivated layer coupling coordination degrees (Cd) for Type III (0.3343) was in mild dysregulation stage and profit and loss type, which meant the quality of cultivated-layer for crop growth was moderate unsuitable. 【Conclusion】 The thickness of cultivated-layer was stable and the thinning phenomenon of effective thickness for cultivated-layer was very serious. The suitability status of crop and cultivated-layer for the different land productivity grades existed two states, including coordinated development stage and maladjustment decay stage, and four types, including synchro type, lag type, profit and loss type and common loss type. Slope farmland improvement in purple soil should reduce the slope of the field, increase the thickness of effective soil layer, and adjust the soil pH. These results could provide some useful parameters for suitability diagnosis, regulation and construction of the cultivated-layer of purple soil slope farmland at plots level.

Key words: slope farmland, quality of cultivated-layer, coupling degree, reasonable cultivated-layer configuration, suitability, purple hilly area, South-Western China

Table 1

Soil quality and agricultural production conditions of plow layer on purple soil slope"

地块号Block number 行政区域
Adminis-trative
region
母质
Parent material
田面
坡度Slope
(°)
有效土
层厚度Effective
thickness
of soil
layer (cm)
耕层
厚度Topsoil
thickness
(cm)
pH
有机质
Soil
organic
matter
(g·kg-1)
阳离子
交换量Cation
exchange
Capacity (cmol
(+)·L-1)
全氮Total
nitrogen
(g·kg-1)
有效磷
Effective phosphate (mg·kg-1)
速效钾
Available potassium (mg·kg-1)
作物
产量Crop yield
(t·hm-2)
地力等级
Productivity
grade of
cultivated
land
1 万州区Wanzhou district 侏罗纪沙溪庙组
Jurassic Shaximiao Group
5 40 20 4.9 19.50 32.1 0.97 12.00 94.5 9.000
First
2 万州区Wanzhou district 侏罗纪沙溪庙组
Jurassic Shaximiao Group
5 45 22 5.2 10.00 27.6 0.66 10.00 79.1 6.750
Secondary
3 万州区Wanzhou district 侏罗纪遂宁组
Jurassic Suining Group
10 50 20 7.9 9.69 16.3 0.91 2.90 69.2 5.250
Third
4 万州区Wanzhou district 侏罗纪沙溪庙组
Jurassic Shaximiao Group
15 20 15 5.1 7.02 19.9 0.41 10.00 54.5 4.50
Fourth
5 万州区Wanzhou district 侏罗纪遂宁组Jurassic Suining Group 25 20 20 7.8 9.93 18.9 0.82 2.60 51.8 4.500
Fifth
6 云阳县Yunyang country 沙溪庙组
Shaximiao Group
6 40 25 6.9 14.60 31.8 0.89 9.39 88.7 9.750
First
7 云阳县Yunyang country 沙溪庙组
Shaximiao Group
7 50 25 6.2 8.99 21.1 0.61 6.61 114.0 9.250
Secondary
8 云阳县Yunyang country 巴东组
Padong Group
12 40 24 8.0 19.90 22.4 1.36 5.57 157.0 8.000
Third
9 云阳县Yunyang Country 蓬莱镇组
Penglai Group
16 40 20 6.5 12.30 24.8 0.72 3.74 55.1 6.500
Fourth
地块号Block number 行政区域
Adminis-trative
region
母质
Parent material
田面
坡度Slope
(°)
有效土
层厚度Effective
thickness
of soil
layer (cm)
耕层
厚度Topsoil
thickness
(cm)
pH
有机质
Soil
organic
matter
(g·kg-1)
阳离子
交换量Cation
exchange
Capacity (cmol
(+)·L-1)
全氮Total
nitrogen
(g·kg-1)
有效磷
Effective phosphate (mg·kg-1)
速效钾
Available potassium (mg·kg-1)
作物
产量Crop yield
(t·hm-2)
地力等级
Productivity
grade of
cultivated
land
10 云阳县Yunyang Country 蓬莱镇组
Penglai Group
20 20 20 8.3 5.29 28.4 0.41 4.31 170.0 5.250
Fifth
11 北碚区Beibei district 侏罗纪沙溪庙组
Jurassic Shaximiao Group
5 35 20 6.0 12.40 28.4 0.89 18.00 78.8 9.000
First
12 北碚区Beibei district 侏罗纪沙溪庙组
Jurassic Shaximiao Group
5 40 19 7.6 12.90 24.7 1.02 6.30 72.1 7.875
Secondary
13 北碚区Beibei district 须家河组
Xujiahe Group
10 30 20 5.1 16.60 17.4 1.14 45.00 47.3 7.125
Third
14 北碚区Beibei district 沙溪庙组
Shaximiao Group
15 25 25 7.9 10.00 20.8 0.61 1.20 50.5 6.375
Fourth
15 北碚区Beibei district 沙溪庙组
Shaximiao Group
25 15 15 4.9 10.60 28.8 0.65 6.10 44.4 5.625
Fifth
16 綦江区Qijiang district 侏罗纪沙溪庙组
Jurassic Shaximiao Group
5 40 20 6.8 12.20 12.9 0.80 29.00 39.6 9.300
First
17 綦江区Qijiang district 侏罗纪沙溪庙组
Jurassic Shaximiao Group
12 40 20 7.4 14.40 22.6 1.25 5.50 122.0 6.00
Secondary
18 綦江区Qijiang district 侏罗纪沙溪庙组
Jurassic Shaximiao Group
10 35 20 5.2 16.90 18.3 1.10 104.00 42.2 5.250
Third
19 綦江区Qijiang district 沙溪庙组
Shaximiao Group
12 40 25 5.3 16.80 12.7 0.64 19.00 43.6 4.500
Fourth
20 綦江区Qijiang district 页岩、沙岩风化物Shale, sandstone weathering 25 20 20 4.4 18.70 0.084 0.97 139.00 75.0 4.120
Fifth
21 江津区Jiangjin district 侏罗纪沙溪庙组
Jurassic Shaximiao Group
5 30 15 6.5 14.00 28.6 1.20 2.10 60.1 6.375
First
22 江津区Jiangjin district 侏罗纪沙溪庙组
Jurassic Shaximiao Group
5 40 19 7.6 12.90 21.5 1.02 6.30 72.1 6.000
Secondary
23 江津区Jiangjin district 侏罗纪沙溪庙组
Jurassic Shaximiao Group
10 40 20 6.7 10.50 15.8 0.75 1.40 111.0 5.250
Third
24 江津区Jiangjin district 侏罗纪沙溪庙组
Jurassic Shaximiao Group
15 30 20 5.4 21.10 16.6 1.14 14.00 46.6 4.500
Fourth
25 江津区Jiangjin district 页岩、沙岩风化物
Shale, sandstone weathering
15 30 20 7.1 16.30 14.1 1.17 0.00 86.2 4.125
Fifth
26 彭水县Pengshui county 巴东组紫色岩
Badong purple rock
5 45 20 7.3 19.60 11.5 1.30 3.90 60.2 9.750
First
27 彭水县Pengshui county 巴东组紫色岩
Badong purple rock
7 40 20 6.9 15.60 12.2 1.03 27.00 145.0 9.100
Secondary
28 彭水县Pengshui county 巴东组紫色岩
Badong purple rock
14 30 20 6.0 14.00 16.5 1.08 7.50 37.1 7.750
Third
29 彭水县Pengshui county 巴东组紫色岩
Badong purple rock
16 20 20 5.5 9.64 25.4 1.23 8.90 87.0 6.000
Fourth
30 彭水县Pengshui county 巴东组紫色岩Badong purple rock 22 20 20 7.1 23.40 10.4 1.54 3.50 48.3 5.550
Fifth

Table 2

Evaluation index system and index weight of crop-till layer coupling coordination"

目标层
Target layer
准则层
Criteria layer
指标层(xi)Indicator layer (xi) 综合权重Comprehensive weight
1级指标
Level 1 indicator
权重
Weights
2级指标
Level 2 indicator
权重
Weights
农作物-耕层耦合协调度
Crop-plough layer coupling coordination degree
农作物综合评价指数Crop comprehensive evaluation index(CCE 产量特征
Yield properties
1 作物产量
Crop yield
1 1
耕层综合评价指数Topsoil comprehensive evaluation index(PCE 物理特性
Physical properties
0.5 田面坡度
Slope
0.2970 0.1485
有效土层厚度
Effective thickness of soil layer
0.1634 0.0817
耕层厚度
Topsoil thickness
0.5396 0.2698
化学特性
Chemical properties
0.5 土壤有机质
Soil organic matter
0.3452 0.1726
阳离子交换量
Cation exchange capacity
0.0888 0.0444
土壤全氮
Soil total nitrogen
0.2441 0.1220
土壤有效磷
Soil effective phosphate
0.1551 0.0776
土壤速效钾
Soil available potassium
0.0691 0.0345
pH 0.0977 0.0498

Table 3

Classification and diagnosis standards of coupling degree of crop-plough coupling"

序号
No.
耦合协调度(Cd
Coupling coordination degree (Cd)
农作物-耕层耦合协调特征
Crop-plough layer coupling coordination properties
适宜程度
Suitability
1 0<Cd≤0.2 失调衰退型Offset decline 高度不适宜Highly unsuitable
2 0.2<Cd≤0.4 濒临失调型Endangered 中度不适宜Moderately inappropriate
3 0.4<Cd≤0.6 基本协调型Basic coordination 勉强适宜Basically suitable
4 0.6<Cd≤0.8 良好协调型Good coordination 中度适宜Moderately suitable
5 0.8<Cd≤1.0 高度协调型Highly coordinated 高度适宜Highly suitable

Table 4

Analysis of physical and chemical properties and yield of cultivated tillage on different slope farmland"

地力等级
Productivity grade
of cultivated land
土层深度
Soil depth (cm)
有机质
Organic
matter
(g·kg-1)
阳离子
交换量Cation
exchange
Capacity
(cmol(+)·L-1)
全氮
Total
nitrogen
(g·kg-1)
有效磷
Effective phosphate (mg·kg-1)
速效钾
Available potassium (mg·kg-1)
pH
田面坡度Slope (°) 有效土层
厚度Effective
thickness
of soil
layer (cm)
作物产量
Crop yield
(t·hm-2)

First
耕作层
Tillage layer
0-20 15.38 24.2 1.01 12.40 70.3 6.4 5 38 8.860
心土层
Heart layer
20-38 9.59 22.4 0.75 5.13 54.5 7.0
底土层Subsoil >38 7.85 16.6 0.97 3.60 56.5 7.4

Secondary
耕作层
Tillage layer
0-21 12.47 21.6 0.93 10.29 100.7 6.8 7 43 7.500
心土层
Heart layer
21-43 9.14 21.2 0.72 10.29 80.5 7.2
底土层Subsoil >43 6.24 21.6 0.56 4.45 71.8 7.4

Third
耕作层
Tillage layer
0-21 14.60 17.8 1.06 27.73 77.3 6.5 11 38 6.440
心土层
Heart layer
21-38 8.85 15.5 0.70 3.99 67.9 6.8
底土层Subsoil >38 7.59 16.0 0.67 4.00 72.9 6.6

Fourth
耕作层
Tillage layer
0-21 12.81 20.0 0.79 9.47 56.2 6.0 15 29 5.400
心土层
Heart layer
21-37 11.00 15.1 0.68 7.07 48.6 5.7
底土层Subsoil >37 7.79 16.5 0.55 3.35 53.4 5.4

Fifth
耕作层
Tillage layer
0-19 14.04 16.8 0.93 25.92 79.3 6.6 22 21 4.860
心土层
Heart layer
底土层Subsoil >19 15.10 7.6 0.91 62.10 68.6 5.9

Fig. 1

Cluster analysis of plowing type of slope farmland"

Table 5

Three types of sloping land plowing - the basic characteristics of crop system indicators"

分类
Sort
统计值
Statistics
田面坡度Slope (°) 有效土层
厚度Effective
thickness
of soil
layer (cm)
耕层
厚度Topsoil
thickness
(cm)
pH
有机质
Soil
organic
matter
(g·kg-1)
阳离子
交换量Cation
exchange
Capacity (cmol(+)·L-1)
全氮
Total
nitrogen
(g·kg-1)
有效磷
Effective phosphate (mg·kg-1)
速效钾
Available potassium (mg·kg-1)
作物产量
Crop yield
(t·hm-2)
I类
Class I
均值
Average value
12 33 20 6.4 13.89 21.0 0.95 10.07 62.1 6.640
标准差
Standard deviation
6.7 9.84 2.73 1.07 4.24 6.79 0.27 10.39 17.69 1.83
变异系数Coefficient of variation (%) 57.7 29.86 13.65 16.77 30.53 32.35 28.42 103.18 28.47 27.56
II类
Class II
均值
Average value
11 38 22 7.3 12.45 20.4 0.90 8.40 136.5 7.140
标准差
Standard deviation
4.8 9.83 2.35 0.80 5.22 5.69 0.37 9.29 24.42 1.87
变异系数Coefficient of variation (%) 42.4 25.65 10.93 11.03 41.93 27.86 41.11 110.60 17.89 26.19
III类
Class III
均值
Average value
18 28 20 4.8 17.80 9.2 1.04 121.50 58.6 4.690
标准差
Standard deviation
10.6 10.61 0.00 0.57 1.27 12.88 0.09 24.75 23.19 0.80
变异系数Coefficient of variation (%) 60.6 38.58 0.00 11.88 7.13 140.15 8.65 20.37 39.57 17.06
适宜性特征值[17,21] Suitability eigenvalue 40-60 20-25 8.99-22.8 21.1-32.1 0.66-1.02 6.3-18

Table 6

Slope plowland - crop coordination diagnosis based on different geotechnical grade"

地力等级
Productivity grade of cultivated land
行政区域
Administrative region
CCE PCE C T Cd CCE / PCE 农作物-耕层耦合协调特征Crop-plough layer coupling coordination properties 适宜程度
Suitability

First
万州区 Wanzhou district 0.8668 0.6105 0.4924 0.7386 0.6031 1.4198 良好协调农作物耕层同步型
Good coordination of crop plough synchronization
中度适宜Moderately suitable
云阳县Yunyang Country 1.0000 0.7038 0.4924 0.8519 0.6477 1.4209 良好协调农作物耕层同步型Good coordination of crop plough synchronization 中度适宜Moderately suitable
北碚区
Beibei
district
0.8668 0.5304 0.4853 0.6986 0.5822 1.6342 基本协调耕层滞后型
Basic coordination of ploughing
勉强适宜Marginally suitable
綦江区Qijiang district 0.9201 0.5145 0.4796 0.7173 0.5865 1.7883 基本协调耕层滞后型
Basic coordination of ploughing
勉强适宜Marginally suitable
江津区Jiangjin district 0.4005 0.4253 0.4998 0.4129 0.4543 0.9417 基本协调农作物耕层同步型
Basic coordination of crop plough synchronization
勉强适宜Marginally suitable
彭水县Pengshui County 1.0000 0.6469 0.4884 0.8235 0.6342 1.5458 良好协调耕层滞后型
Good coordination of ploughing
中度适宜Moderately suitable

Secondary
万州区 Wanzhou district 0.4671 0.5446 0.4985 0.5059 0.5022 0.8577 基本协调农作物耕层同步型
Basic coordination of crop plough synchronization
勉强适宜Marginally suitable
云阳县Yunyang Country 0.9112 0.6176 0.4907 0.7644 0.6124 1.4754 良好协调农作物耕层同步型
Good coordination of crop plough synchronization
中度适宜Moderately suitable
北碚区
Beibei
district
0.6670 0.5408 0.4973 0.6039 0.5480 1.2334 基本协调农作物耕层同步型Basic coordination of crop plough synchronization 勉强适宜Marginally suitable
綦江区Qijiang district 0.3339 0.5619 0.4835 0.4479 0.4654 0.5942 基本协调农作物滞后型
Basic coordination of crop lag
勉强适宜Marginally suitable
江津区Jiangjin district 0.3339 0.5363 0.4863 0.4351 0.4600 0.6226 基本协调农作物滞后型
Basic coordination of crop lag
勉强适宜Marginally suitable
彭水县Pengshui County 0.8845 0.5839 0.4894 0.7342 0.5994 1.5148 基本协调耕层滞后型
Basic coordination of ploughing
勉强适宜Marginally suitable

Third
万州区 Wanzhou district 0.2007 0.5006 0.4520 0.3507 0.3981 0.4009 濒临失调耕层损益型
On the verge of loss of plough layer
中度不适宜Moderately inappropriate
云阳县Yunyang Country 0.6892 0.7507 0.4995 0.7199 0.5997 0.9181 基本协调农作物耕层同步型
Basic coordination of crop plough synchronization
中度适宜Moderately suitable
北碚区
Beibei
district
0.5337 0.5286 0.5000 0.5312 0.5154 1.0096 基本协调农作物耕层同步型Basic coordination of crop plough synchronization 勉强适宜Marginally suitable
綦江区Qijiang district 0.2007 0.5730 0.4383 0.3868 0.4118 0.3503 基本协调耕层滞后型
Basic coordination of ploughing
勉强适宜Marginally suitable
江津区Jiangjin district 0.2007 0.4622 0.4595 0.3315 0.3902 0.4342 濒临失调耕层损益型
On the verge of loss of plough layer
中度不适宜Moderately inappropriate
彭水县Pengshui County 0.6448 0.4543 0.4924 0.5495 0.5202 1.4193 基本协调农作物耕层同步型Basic coordination of crop plough synchronization 勉强适宜Marginally suitable
地力等级
Productivity grade of cultivated land
行政区域
Administrative region
CCE PCE C T Cd CCE / PCE 农作物-耕层耦合协调特征Crop-plough layer coupling coordination properties 适宜程度
Suitability

Fourth
万州区 Wanzhou district 0.0675 0.1489 0.4633 0.1082 0.2239 0.4533 濒临失调农作物耕层共损型
On the verge of a total loss of topsoil offset crop type
中度不适宜Moderately inappropriate
云阳县Yunyang Country 0.4227 0.4282 0.5000 0.4255 0.4612 0.9872 基本协调农作物耕层同步型Basic coordination of crop plough synchronization 勉强适宜Marginally suitable
北碚区
Beibei
district
0.4005 0.5110 0.4963 0.4558 0.4756 0.7838 基本协调农作物耕层同步型Basic coordination of crop plough synchronization 勉强适宜Marginally suitable
綦江区Qijiang district 0.0675 0.6043 0.3006 0.3359 0.3178 0.1117 濒临失调农作物损益型
Type of crop losses on the verge of disorder
中度不适宜Moderately inappropriate
江津区Jiangjin district 0.0675 0.5196 0.3190 0.2936 0.3060 0.1299 濒临失调农作物损益型
Type of crop losses on the verge of disorder
中度不适宜Moderately inappropriate
彭水县Pengshui County 0.3339 0.4105 0.4974 0.3722 0.4302 0.8134 基本协调农作物耕层同步型Basic coordination of crop plough synchronization 勉强适宜Marginally suitable

Fifth
万州区 Wanzhou district 0.0675 0.3094 0.3834 0.1884 0.2688 0.2182 濒临失调农作物损益型
Type of crop losses on the verge of disorder
中度不适宜Moderately inappropriate
云阳县Yunyang Country 0.2007 0.3099 0.4884 0.2553 0.3531 0.6476 濒临失调农作物耕层共损型
On the verge of a total loss of topsoil offset crop type
中度不适宜Moderately inappropriate
北碚区
Beibei
district
0.2673 0.1285 0.4682 0.1979 0.3044 2.0802 濒临失调农作物耕层共损型
On the verge of a total loss of topsoil offset crop type
中度不适宜Moderately inappropriate
綦江区Qijiang district 0.0000 0.4223 0.0000 0.2111 0.0000 0.0000 失调衰退农作物损益型Disadvantaged decline crop profit and loss type 高度不适宜Highly unsuitable
江津区Jiangjin district 0.0009 0.4978 0.0422 0.2493 0.1025 0.0018 失调衰退农作物损益型Disadvantaged decline crop profit and loss type 高度不适宜Highly unsuitable
彭水县Pengshui County 0.2540 0.5171 0.4700 0.3855 0.4257 0.4912 基本协调农作物损益型
Basic coordination of crop losses and benefits
勉强适宜Marginally suitable

Table 7

Diagnosis of coupling degree of plough-agriculture coupling on three kinds of sloping farmland"

类型
Sort
CCE PCE C T Cd CCE / PCE 农作物-耕层耦合协调特征Crop-plough layer coupling coordination properties 适宜程度
Suitability
I类
Class I
0.4478 0.4824 0.4997 0.4651 0.4820 0.9283 基本协调农作物耕层同步型Basic coordination of crop plough synchronization 勉强适宜
Marginally suitable
II类
Class II
0.5367 0.5477 0.5000 0.5422 0.5207 0.9799 基本协调农作物耕层同步型Basic coordination of crop plough synchronization 勉强适宜
Marginally suitable
III类
Class III
0.1004 0.4976 0.3737 0.2990 0.3343 0.2018 濒临失调耕层损益型
On the verge of loss of plough layer
中度不适宜
Moderately inappropriate

Fig. 2

Effect of effective soil thickness on yield of purple soil slope farmland"

Fig. 3

Effect of soil erosion thickness on crop yield"

[1] 赵燮京, 刘定辉 . 四川紫色丘陵区旱作农业的土壤管理与水土保持. 水土保持学报, 2002,16(5):6-10, 16.
doi: 10.3321/j.issn:1009-2242.2002.05.002
ZHAO X J, LIU D H . Soil management and soil and water conservation of dryland agriculture in Sichuan Purple Hilly. Journal of Soil and Water Conservation, 2002,16(5):6-10, 16. (in Chinese)
doi: 10.3321/j.issn:1009-2242.2002.05.002
[2] 何毓蓉 . 中国紫色土(II). 北京: 科学出版社, 2003.
HE Y R. Purple Soil of China (II). Beijing: Science Press, 2003. (in Chinese)
[3] 韩晓增, 邹文秀, 陆欣春, 段景海 . 旱作土壤耕层及其肥力培育途径. 土壤与作物, 2015(4):145-150.
doi: 10.11689/j.issn.2095-2961.2015.04.001
HAN X Z, ZOU W X, LU X C, DUAN J H . The soil cultivated layer in dryland and technical patterns in cultivating soil fertility. Soil and Crop, 2015,4(4):145-150. (in Chinese)
doi: 10.11689/j.issn.2095-2961.2015.04.001
[4] 闫一凡, 刘建立, 张佳宝 . 耕地地力评价方法及模型分析. 农业工程学报, 2014,30(5):204-210.
doi: 10.3969/j.issn.1002-6819.2014.05.026
YAN Y F, LIU J L, ZHANG J B . Evaluation method and model analysis for productivity of cultivated land. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014,30(5):204-210. (in Chinese)
doi: 10.3969/j.issn.1002-6819.2014.05.026
[5] PIERCE F C, LARSON W E, DOWDY R H, GRAHAM W A . Productivity of soils: assessing long-term changes due to erosion. Journal of Soil and Water Conservation, 1983,38:39-44.
[6] MANNA P, BASILE A, BONFANTE A, MASCELLIS R D, TERRIBILE F . Comparative land evaluation approaches:An itinerary from FAO framework to simulation modeling. Geoderma, 2009,150:367-378
doi: 10.1016/j.geoderma.2009.02.020
[7] VOORDE T F J V D, PUTTEN W H V D, BEZEMER T M . Intra- and interspecific plant-soil interactions, soil legacies and priority effects during old-field succession. Journal of Ecology, 2011,99(4):945-953.
doi: 10.1111/j.1365-2745.2011.01815.x
[8] FUKAMI T, NAKAJIMA M . Complex plant soil interactions enhance plant species diversity by delaying community convergence. Journal of Ecology, 2013,101(2):316-324.
doi: 10.1111/1365-2745.12048
[9] 朱波, 况福虹, 高美荣, 汪涛, 王小国, 唐家良 . 土层厚度对紫色土坡地生产力的影响. 山地学报, 2009,27(6):735-739.
doi: 10.3969/j.issn.1008-2786.2009.06.014
ZHU B, KUANG F H, GAO M R, WANG T, WANG X G, TANG J L . Effects of soil thickness on productivity of sloping cropland of purple soil. Journal of Mountain Science, 2009,27(6):735-739. (in Chinese)
doi: 10.3969/j.issn.1008-2786.2009.06.014
[10] 焦菊英, 马祥华, 白文娟, 焦峰, 温仲明 . 黄土丘陵沟壑区退耕地植物群落与土壤环境因子的对应分析. 土壤学报, 2005,42(5):744-752.
doi: 10.11766/trxb200411110506
JIAO J Y, MA X H, BAI W J, JIAO F, WEN Z M . Correspondence analysis of vegetation communities and soil environmental factors on abandoned cropland on hilly-gullied Loess Plateau. Acta Pedologica Sinica, 2005,42(5):744-752. (in Chinese)
doi: 10.11766/trxb200411110506
[11] 王芳, 卓莉, 覃新导, 李少英, 杨朝辉, 黄鸿健 . 广东边际性土地能源植物种植潜力适宜性评价. 农业工程学报, 2015,31(19):276-284.
doi: 10.11975/j.issn.1002-6819.2015.19.038
WANG F, ZHUO L, QIN X D, LI S Y, YANG C H, HUANG H J . Evaluation on suitability of planting potential of energy plants on marginal land of Guangdong Province. Transactions of the Chinese Society of Agricultural Engineering, 2015,31(19):276-284. (in Chinese)
doi: 10.11975/j.issn.1002-6819.2015.19.038
[12] 徐明, 张健, 刘国彬, 邱甜甜, 郑明清 . 不同植被恢复模式沟谷地植被-土壤系统耦合关系评价. 自然资源学报, 2016,31(12):2137-2146.
XU M, ZHANG J, LIU G B, QIU T T, ZHENG M Q . Analysis on vegetation-soil coupling relationship in gullies with different vegetation restoration patterns. Journal of Natural Resources, 2016,31(12):2137-2146. (in Chinese)
[13] 彭晚霞, 宋同清, 曾馥平, 王克林, 杜虎, 鹿士杨 . 喀斯特峰丛洼地退耕还林还草工程的植被土壤耦合协调度模型. 农业工程学报, 2011,27(9):305-310.
doi: 10.3969/j.issn.1002-6819.2011.09.053
PENG W X, SONG T Q, ZENG F P, WANG K L, DU H, LU S Y . Models of vegetation and soil coupling coordinative degree in grain for green project in depressions between karst hills. Transactions of the Chinese Society of Agricultural Engineering, 2011,27(9):305-310. (in Chinese)
doi: 10.3969/j.issn.1002-6819.2011.09.053
[14] 张艳, 赵廷宁, 史常青, 吴海龙, 李丹雄, 孙永康 . 坡面植被恢复过程中植被与土壤特征评价. 农业工程学报, 2013,29(3):124-131.
doi: 10.3969/j.issn.1002-6819.2013.03.017
ZHANG Y, ZHAO T N, SHI C Q, WU H L, LI D X, SUN Y K . Evaluation of vegetation and soil characteristics during slope vegetation recovery procedure. Transactions of the Chinese Society of Agricultural Engineering, 2013,29(3):124-131. (in Chinese)
doi: 10.3969/j.issn.1002-6819.2013.03.017
[15] 赵彦锋, 程道全, 陈杰, 孙志英, 张化楠 . 耕地地力评价指标体系构建中的问题与分析逻辑. 土壤学报, 2015(6):1197-1208.
ZHAO Y F, CHENG D Q, CHEN J, ZHANG Z Y, ZHANG H N . Problems and analytical logic in building cultivated land productivity evaluation index system. Acta Pedologica Sinica, 2015(6):1197-1208. (in Chinese)
[16] 李伟 . 重庆耕地地力研究与评价(一)(二)(三). 北京: 中国农业出版社, 2011.
LI W. Research and Evaluation of Cultivated Land Fertility in Chongqing (I) (II) (III). Beijing: China Agriculture Press, 2011. (in Chinese)
[17] 史东梅, 蒋光毅, 蒋平, 娄义宝, 丁文斌, 金慧芳 . 土壤侵蚀因素对紫色丘陵区坡耕地耕层质量影响. 农业工程学报, 2017,33(13):270-279.
doi: 10.11975/j.issn.1002-6819.2017.13.036
SHI D M, JIANG G Y, JIANG P, LOU Y B, DING W B, JIN H F . Effects of soil erosion factors on cultivated-layer quality of slope farmland in purple hilly area. Transactions of the Chinese Society of Agricultural Engineering, 2017,33(13):270-279. (in Chinese)
doi: 10.11975/j.issn.1002-6819.2017.13.036
[18] 刘耀彬, 李仁东, 张守忠 . 城市化与生态环境协调标准及其评价模型研究. 中国软科学, 2005(5):140-148.
doi: 10.3969/j.issn.1002-9753.2005.05.027
LIU Y B, LI R D, ZHANG S Z . Study on the coordinative criteria and coordination degree model between regional urbanization and eco-environment. China Soft Science, 2005(5):140-148. (in Chinese)
doi: 10.3969/j.issn.1002-9753.2005.05.027
[19] 曾珍香 . 可持续发展协调性分析. 系统工程理论与实践, 2001,21(3):18-21.
doi: 10.3321/j.issn:1000-6788.2001.03.004
ZENG Z X . The analysis of coordination and sustainable development. Systems Engineering-theory and Practice, 2001(3):18-21. (in Chinese)
doi: 10.3321/j.issn:1000-6788.2001.03.004
[20] 刘定惠, 杨永春 . 区域经济-旅游-生态环境耦合协调度研究——以安徽省为例. 长江流域资源与环境, 2011,20(7):892-896.
LIU D H, YANG Y C . Coupling coordinative degree of regional economy-tourism-ecological environment-a case study of Anhui Province. Resources and Environment in the Yangtze Basin, 2011,20(7):892-896. (in Chinese)
[21] 章家恩, 徐琪 . 三峡库区退化土壤的恢复与重建研究. 长江流域资源与环境, 1998(3):248-254.
ZHANG J E, XU Q . The restoration and reconstruction of degraded soils in the Three-gorge Reservoir Area. Resources and Environment in The Yangtze Basin, 1998(3):248-254. (in Chinese)
[22] 张兴义, 刘晓冰, 隋跃宇, 张少良, 张久明, 刘焕军, Stephen J. Herbert . 人为剥离黑土层对大豆干物质积累及产量的影响. 大豆科学, 2006,25(2):123-126.
doi: 10.3969/j.issn.1000-9841.2006.02.006
ZHANG X Y, LIU X B, SUI Y Y, ZHANG S L, ZHANG J M, LIU H J, HERBERT S J . Effects of artificial topsoil removal on soybean day mater accumulation and yield in Chinese Mollisols. Soybean Science, 2006,25(2):123-126. (in Chinese)
doi: 10.3969/j.issn.1000-9841.2006.02.006
[23] 郭云周, 刘建香, 涂仕华, 贾秋鸿, 赵德柱 . 土壤侵蚀对坡耕地生产力影响的模拟研究. 土壤通报, 2012(6):1480-1485.
GUO Y Z, LIU J X, XU S H, JIA Q H, ZHAO D Z . Impact of Soil Erosion on Productivity of Sloping Lands in a Simulated Pot Experiment. Chinese Journal of Soil Science, 2012(6):1480-1485. (in Chinese)
[24] 王志强, 刘宝元, 王旭艳, 高晓飞, 刘刚 . 东北黑土区土壤侵蚀对土地生产力影响试验研究. 中国科学D辑: 地球科学, 2009,39(10):1397-1412.
WANG Z Q, LIU B Y, WANG X Y, GAO X F, LIU G . Erosion effect on the productivity of black soil in Northeast China. Science China Ser D-Earth Science, 2009,39(10):1397-1412. (in Chinese)
[25] 迟仁立, 左淑珍 . 土壤耕作现代化的探讨. 农业现代化研究, 1982,3(1):23-26.
CHI R L, ZOU S Z . Discussion on Soil Cultivation Modernization. Research of Agricultural Modernization, 1982,3(1):23-26. (in Chinese)
[26] 闫玉芹, 杨树山, 孙凤海, 康洪庆 . 玉米合理耕层构建与深松整地技术. 农村科学实验, 2010(9):13.
YAN Y Q, YANG S S, SUN F H, KANG H Q . Construction of corn reasonable subsoil and deep pine land preparation technology. Scientific Experiment in Countryside, 2010(9):13. (in Chinese)
[27] 宫亮, 邢月华, 刘艳, 包红静, 尹同波, 刘玉军, 孙文涛 . 棕壤土合理耕层标准调查研究. 玉米科学, 2016(5):94-99.
GONG L, XING Y H, LIU Y, BAO H J, YIN T B, LIU Y J, LIU W T . Investigation on standards of the rational plough layer of brown soil. Journal of Maize Sciences, 2016(5):94-99. (in Chinese)
[28] 王立春, 马虹, 郑金玉 . 东北春玉米耕地合理耕层构造研究. 玉米科学, 2008,16(4):13-17.
WANG L C, MA H, ZHENG J Y . Research on rational plough layer construction of spring maize soil in Northeast China. Journal of Maize Sciences, 2008,16(4):13-17. (in Chinese)
[29] 郑洪兵, 齐华, 刘武仁, 郑金玉, 罗洋, 李瑞平, 李伟堂 . 玉米农田耕层现状、存在问题及合理耕层构建探讨. 耕作与栽培, 2014(5):39-42.
doi: 10.3969/j.issn.1008-2239.2014.05.018
ZHENG H B, QI H, LIU W R, ZHENG J Y, LUO Y, LI R P, LI W T . Present and problem of tillage layer of maize cropland and discussion of optimum tillage layer. Tillage and Cultivation, 2014(5):39-42. (in Chinese)
doi: 10.3969/j.issn.1008-2239.2014.05.018
[30] 朱瑞祥, 张军昌, 薛少平, 姚万生, 李俊耀, 邓海涛 . 保护性耕作条件下的深松技术试验. 农业工程学报, 2009,25(6):145-147.
doi: 10.3969/j.issn.1002-6819.2009.06.027
ZHU R X, ZHANG J C, XUE S P, YANG W S, LI J Y, DENG H T . Experimentation about subsoiling technique for conservation tillage. Transactions of the Chinese Society of Agricultural Engineering, 2009,25(6):145-147. (in Chinese)
doi: 10.3969/j.issn.1002-6819.2009.06.027
[31] 郭志军, 佟金, 周志立, 任露泉 . 深松技术研究现状与展望. 农业工程学报, 2001,17(6):169-174.
doi: 10.3321/j.issn:1002-6819.2001.06.042
GUO Z J, TONG J, ZHOU Z L, REN L Q . Review of subsoiling techniques and their applications. Transactions of the Chinese Society of Agricultural Engineering, 2001,17(6):169-174. (in Chinese)
doi: 10.3321/j.issn:1002-6819.2001.06.042
[32] 邵长发, 郑志安, 林启瑞 . 全方位深松在农业可持续发展中的作用研究. 农业机械学报, 1999,30(5):81-85.
doi: 10.3969/j.issn.1000-1298.1999.05.018
SHAO C F, ZHENG Z A, LIN Q R . A Study on affects of bluck sub-soiling diggers in all directions for the sustainable agricultural development. Transactions of the Chinese Society of Agricultural Machinery, 1999,30(5):81-85. (in Chinese)
doi: 10.3969/j.issn.1000-1298.1999.05.018
[1] SONG Ge,SHI DongMei,JIANG GuangYi,JIANG Na,YE Qing,ZHANG JianLe. Effects of Different Fertilization Methods on Restoration of Eroded and Degraded Cultivated-Layer in Slope Farmland [J]. Scientia Agricultura Sinica, 2021, 54(8): 1702-1714.
[2] YAO YiWen,DAI QuanHou,GAN YiXian,GAO RuXue,YAN YouJin,WANG YuHong. Effects of Rainfall Intensity and Underground Hole (Fracture) Gap on Nutrient Loss in Karst Sloping Farmland [J]. Scientia Agricultura Sinica, 2021, 54(1): 140-151.
[3] Na JIANG,DongMei SHI,GuangYi JIANG,Ge SONG,ChengJing SI,Qing YE. Effects of Soil Erosion on Physical and Mechanical Properties of Cultivated Layer of Purple Soil Slope Farmland [J]. Scientia Agricultura Sinica, 2020, 53(9): 1845-1859.
[4] Ge SONG,DongMei SHI,XiaoYing ZENG,GuangYi JIANG,Na JIANG,Qing YE. Quality Barrier Characteristics of Cultivated Layer for Sloping Farmland in Purple Hilly Region [J]. Scientia Agricultura Sinica, 2020, 53(7): 1397-1410.
[5] LI Chao, LI WenFeng, ZHAO Yao, SHANG JingMin. A Method of Ecological Suitability Evaluation and Its Application for Maize Planted in Mountain Farmland Based on GIS (Case Study: Xundian County) [J]. Scientia Agricultura Sinica, 2019, 52(3): 445-454.
[6] ZHANG Biao,LIU Xuan,BI JinFeng,WU XinYe,JIN Xin,LI Xuan,LI Xiao. Suitability Evaluation of Apple for Chips-Processing Based on BP Artificial Neural Network [J]. Scientia Agricultura Sinica, 2019, 52(1): 129-142.
[7] LIU Wei, LI YiJun, Lü HouQuan. Responses of Heading to Flowering to Maturity of Early Rice to Climate Change and Different Transplant Periods [J]. Scientia Agricultura Sinica, 2018, 51(1): 49-59.
[8] WANG Chun-qing, LI Xia, ZHANG Chun-hui, LI Xue-ke, DU Gui-hong, LI Hai, XIE Xiao-lei. Suitability Evaluation of Different Varieties of Chicken for Cooking Process [J]. Scientia Agricultura Sinica, 2015, 48(15): 3090-3100.
[9] LIU Shao-jun, ZHOU Guang-sheng, FANG Shi-bo. Climatic Suitability Regionalization of Rubber Plantation in China [J]. Scientia Agricultura Sinica, 2015, 48(12): 2335-2345.
[10] PU Yu-Lin-1, 2 , 3 , XIE De-Ti-1, 3 , NI Jiu-派1, 3 , WEI Chao-Fu-1, 3 , LIN Chao-Wen-4. Effects of Hedgerow Patterns on Soil Shear Strength and Anti-scouribility on Slope Farmland in Purple Soil Area [J]. Scientia Agricultura Sinica, 2014, 47(5): 934-945.
[11] ZHAO Hong-hai, DING Hai-yan, WANG Feng-long. Comparison and Analysis of the Field Infection Characteristics of Heterodera glycines Between Soybean and Tobacco [J]. Scientia Agricultura Sinica, 2014, 47(22): 4417-4425.
[12] ZHAO Jin, YANG Xiao-guang, LIU Zhi-Juan, LV Shuo, WANG Jing, CHEN Fu. The Possible Effects of Global Warming on Cropping Systems in China Ⅹ. The Possible Impacts of Climate Change on Climatic Suitability of Spring Maize in the Three Provinces of Northeast China [J]. Scientia Agricultura Sinica, 2014, 47(16): 3143-3156.
[13] ZHOU Dong-Mei-1, ZHANG Ren-Zhi-1, 2 , SUN Wan-Cang-2, 3 , ZHANG Jun-1, 2 , WANG He-Ling-4. Study on Climatic Suitability for Winter Rapeseed Planting in Arid and Cold Regions in North China [J]. Scientia Agricultura Sinica, 2014, 47(13): 2541-2551.
[14] WANG San-Shu-1, LIU De-Zhong-2, SHI Dong-Mei-1, HUANG Xian-Zhi-3, TANG Xue-Wen-4, LI Ye-Xin-1, GAN Xue-Lian-5. Analysis on the Soil and Water Conservation Benefits of Four Bunds at Edges of Sloping Land in Purple Hilly Area [J]. Scientia Agricultura Sinica, 2013, 46(19): 4091-4100.
[15] HU Ya-南12, LIU Ying-Jie-34. Planting Distribution of Spring Maize and Its Productivity Under RCP4.5 Scenario in Northeast China in 2011—2050 [J]. Scientia Agricultura Sinica, 2013, 46(15): 3105-3114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!