Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (8): 1545-1555.doi: 10.3864/j.issn.0578-1752.2020.08.005
• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles Next Articles
ZHAO Jing1,2,LI ZhiMing1,2,LU LiQun2,3,JIA Peng1,2,YANG HuanBo1,2,LAN YuBin1,2()
[1] | 翁凌云 . 我国玉米生产现状及发展对策分析. 中国食物与营养, 2010(1):22-25. |
WENG L Y . Status of corn production in China and its countermeasures. Food and Nutrition in China, 2010(1):22-25. (in Chinese) | |
[2] | LOUARGANT M, VILLETTE S, JONES G, VIGNEAU N, PAOLI J, GÉE C . Weed detection by UAV: Simulation of the impact of spectral mixing in multispectral images. Precision Agriculture, 2017,18:932-951. |
[3] | 山东省农业农村厅. 山东省到2020年农药使用量零增长行动方案. 山东农药信息, 2015(4):13-14. |
Shandong Provincial Department of Agricultural and Rural Affairs. Shandong province issued the action plan for zero increase of pesticide use in Shandong province by 2020. Shandong Pesticide News, 2015(4):13-14. (in Chinese) | |
[4] | 周志艳, 明锐, 臧禹, 何新刚, 罗锡文, 兰玉彬 . 中国农业航空发展现状及对策建议. 农业工程学报, 2017,33(20):1-13. |
ZHOU Z Y, MING R, ZANG Y, HE X G, LUO X W, LAN Y B . Development status and countermeasures of agricultural aviation in China. Transactions of the Chinese Society of Agricultural Engineering, 2017,33(20):1-13. (in Chinese) | |
[5] | 兰玉彬 . 精准农业航空技术现状及未来展望. 农业工程技术, 2017,37(30):27-30. |
LAN Y B . Current status and future prospects of precision agricultural aviation technology. Agricultural Engineering Technology, 2017,37(30):27-30. (in Chinese) | |
[6] | 何东健, 何勇, 李明赞, 洪添胜, 王成红, 宋苏, 刘允刚 . 精准农业中信息相关科学问题研究进展. 中国科学基金, 2011,25(1):10-16. |
HE D J, HE Y, LI M Z, HONG T S, WANG C H, SONG S, LIU Y G . Research progress of information science-related problems in precision agriculture. Bulletin of National Natural Science Foundation of China, 2011,25(1):10-16. (in Chinese) | |
[7] | 兰玉彬, 王国宾 . 中国植保无人机的行业发展概况和发展前景. 农业工程技术, 2018,38(9):17-27. |
LAN Y B, WANG G B . China's plant protection drone industry development overview and development prospects. Agricultural Engineering Technology, 2018,38(9):17-27. (in Chinese) | |
[8] | 史舟, 梁宗正, 杨媛媛, 郭燕 . 农业遥感研究现状与展望. 农业机械学报, 2015,46(2):247-260. |
SHI Z, LIANG Z Z, YANG Y Y, GUO Y . Status and prospect of agricultural remote sensing. Transactions of the Chinese Society for Agricultural Machinery, 2015,46(2):247-260. (in Chinese) | |
[9] | 金小俊, 陈勇, 孙艳霞 . 农田杂草识别方法研究进展. 农机化研究, 2011,33(7):23-27. |
JIN X J, CHEN Y, SUN Y X . Research advances of weed identification in agricultural fields. Journal of Agricultural Mechanization Research, 2011,33(7):23-27. (in Chinese) | |
[10] | 毛文华, 张银桥, 王辉, 赵博, 张小超 . 杂草信息实时获取技术与设备研究进展. 农业机械学报, 2013,44(1):190-195. |
MAO W H, ZHANG Y Q, WANG H, ZHAO B, ZHANG X C . Advance techniques and equipments for real-time weed detection. Transactions of the Chinese Society for Agricultural Machinery, 2013,44(1):190-195. (in Chinese) | |
[11] | 邓向武, 齐龙, 马旭, 蒋郁, 陈学深, 刘云海, 陈伟烽 . 基于多特征融合和深度置信网络的稻田苗期杂草识别. 农业工程学报, 2018,34(14):165-172. |
DENG X W, QI L, MA X, JIANG Y, CHEN X S, LIU Y H, CHEN W F . Recognition of weeds at seedling stage in paddy fields using multi-feature fusion and deep belief networks. Transactions of the Chinese Society of Agricultural Engineering, 2018,34(14):165-172. (in Chinese) | |
[12] | 孙俊, 何小飞, 谭文军, 武小红, 沈继峰, 路虎 . 空洞卷积结合全局池化的卷积神经网络识别作物幼苗与杂草. 农业工程学报, 2018,34(11):159-165. |
SUN J, HE X F, TAN W J, WU X H, SHEN J F, LU H . Recognition of crop seedling and weed recognition based on dilated convolution and global pooling in CNN. Transactions of the Chinese Society of Agricultural Engineering, 2018,34(11):159-165. (in Chinese) | |
[13] | 何东健, 乔永亮, 李攀, 高瞻, 李海洋, 唐晶磊 . 基于SVM-DS多特征融合的杂草识别. 农业机械学报, 2013,44(2):182-187. |
HE D J, QIAO Y L, LI P, GAO Z, LI H Y, TANG J L . Weed recognition based on SVM-DS multi-feature fusion. Transactions of the Chinese Society for Agricultural Machinery, 2013,44(2):182-187. (in Chinese) | |
[14] | 潘冉冉, 骆一凡, 王昌, 张初, 何勇, 冯雷 . 高光谱成像的油菜和杂草分类方法. 光谱学与光谱分析, 2017,37(11):3567-3572. |
PAN R R, LUO Y F, WANG C, ZHANG C, HE Y, FENG L . Classifications of oilseed rape and weeds based on hyperspectral imaging. Spectroscopy and Spectral Analysis, 2017,37(11):3567-3572. (in Chinese) | |
[15] | 王海华, 朱梦婷, 李莉, 王丽燕, 赵海英, 梅树立 . 基于剪切波变换和无人机麦田图像的区域杂草识别方法. 农业工程学报, 2017,33(S1):99-106. |
WANG H H, ZHU M T, LI L, WANG L Y, ZHAO H Y, MEI S L . Regional weed identification method from wheat field based on unmanned aerial vehicle image and shearlets. Transactions of the Chinese Society of Agricultural Engineering, 2017,33(S1):99-106. (in Chinese) | |
[16] | 肖武, 任河, 吕雪娇, 闫皓月, 孙诗睿 . 基于无人机遥感的高潜水位采煤沉陷湿地植被分类. 农业机械学报, 2019,50(2):177-186. |
XIAO W, REN H, LÜ X J, YAN H Y, SUN S R . Vegetation classification by using UAV remote sensing in coal mining subsidence wetland with high ground-water level. Transactions of the Chinese Society for Agricultural Machinery, 2019,50(2):177-186. (in Chinese) | |
[17] | NOBUYUKI O . A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man and Cybernetics, 1979,1(1):62-66. |
[18] | 孙滨峰, 赵红, 陈立才, 舒时富, 叶春, 李艳大 . 基于植被指数选择算法和决策树的生态系统识别. 农业机械学报, 2019,50(6):194-200. |
SUN B F, ZHAO H, CHEN L C, SHU S F, YE C, LI Y D . Identification of ecosystems based on vegetation indices selection algorithm and decision tree. Transactions of the Chinese Society for Agricultural Machinery, 2019,50(6):194-200. (in Chinese) | |
[19] | 刘畅, 杨贵军, 李振海, 汤伏全, 王健雯, 张春兰, 张丽妍 . 融合无人机光谱信息与纹理信息的冬小麦生物量估测. 中国农业科学, 2018,51(16):3060-3073. |
LIU C, YANG G J, LI Z H, TANG F Q, WANG J W, ZHANG C L, ZHANG L Y . Biomass estimation in winter wheat by UAV spectral information and texture information fusion. Scientia Agricultura Sinica, 2018,51(16):3060-3073. (in Chinese) | |
[20] | ROUSE J W, HAAS R W, SCHELL J A, DEERING D W, HARLAN J C . Monitoring the vernal advancement and retrogradation (Greenwave effect) of natural vegetation Final Rep. RSC 1978-4. Remote Sensing Center, Texas A&M University, College Station, 1974. |
[21] | JORDAN C F . Derivation of leaf-area index from quality of light on the forest floor. Ecology, 1969,50:663-666. |
[22] | PEARSON R L, MILLER L D . Remote mapping of standing crop biomass for estimation of the productivity of the short-grass prairie. Proceedings of the 8th International Symposium on Remote Sensing of Environment. Environmental Research Institute of Michigan. Ann Arbor, MI, USA, 1972: 1357-1381. |
[23] | HUETE A R . A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 1988,25:295-309. |
[24] | RONDEAUX G, STEVEN M, BARET F . Optimization of soil- adjusted vegetation indices. Remote Sensing of Environment, 1996,55:95-107. |
[25] | GITELSON A A, KAUFMAN Y J, MERZLYAK M N . Use of a green channel in remote sensing of global vegetation from EOS- MODIS. Remote Sensing of Environment, 1996,58:289-298. |
[26] | HUETE A, DIDAN K, MIURA T, RODRIGUEZ E P, GAO X, FERREIRA L G . Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 2002,83:195-213. |
[27] | 周志华 . 机器学习. 北京: 清华大学出版社, 2017. |
ZHOU Z H . Machine Learning. Beijing: Tsinghua University Press, 2017. (in Chinese) | |
[28] | 李慧, 祁力钧, 张建华, 冀荣华 . 基于PCA-SVM的棉花出苗期杂草类型识别. 农业机械学报, 2012,43(9):184-189, 196. |
LI H, QI L J, ZHANG J H, JI R H . Recognition of weed during cotton emergence based on principal component analysis and support vector machine. Transactions of the Chinese Society for Agricultural Machinery, 2012,43(9):184-189, 196. (in Chinese) | |
[29] | 李俊秀, 姜三平 . 基于主成分分析的图像自适应阈值去噪算法. 红外技术, 2014,36(4):311-314, 319. |
LI J X, JIANG S P . Adaptive threshold image denoising algorithm based on principal component analysis. Infrared Technology, 2014,36(4):311-314, 319. (in Chinese) | |
[30] | HARALICK R M, SHANMUGAM K . Textural features for image classification. IEEE Transactions on Systems, Man and Cybernetics, 1973,3(6):610-621. |
[31] | 吴文涵, 陶华敏, 肖山竹, 汤朋文 . 灰度共生矩阵纹理特征提取算法的优化与实现. 数字技术与应用, 2015(6):124-126. |
WU W H, TAO H M, XIAO S Z, TANG P W . Optimization and implementation of texture feature extraction algorithm for gray level co-occurrence matrix. Digital Technology and Application, 2015(6):124-126. (in Chinese) | |
[32] | 韩文霆, 孙瑜, 徐腾飞, 陈香维, SU K O . 基于RGB图像处理的玉米叶片含水率监测方法研究. 农业工程技术, 2016,36(12):75. |
HAN W T, SUN Y, XU T F, CHEN X W, SU K O . Detecting maize leaf water status by using digital RGB images. Agricultural Engineering Technology, 2016,36(12):75. (in Chinese) | |
[33] | 侯群群, 王飞, 严丽 . 基于灰度共生矩阵的彩色遥感图像纹理特征提取. 国土资源遥感, 2013,25(4):26-32. |
HOU Q Q, WANG F, YAN L . Extraction of color image texture feature based on gray-level co-occurrence matrix. Remote Sensing for Land & Resources, 2013,25(4):26-32. (in Chinese) | |
[34] | 韩文霆, 李广, 苑梦婵, 张立元, 师志强 . 基于无人机遥感技术的玉米种植信息提取方法研究. 农业机械学报, 2017,48(1):139-147. |
HAN W T, LI G, YUAN M C, ZHANG L Y, SHI Z Q . Extraction method of maize planting information based on UAV remote sensing technology. Transactions of the Chinese Society for Agricultural Machinery, 2017,48(1):139-147. (in Chinese) | |
[35] | 黄晓娟, 张莉 . 改进的多类支持向量机递归特征消除在癌症多分类中的应用. 计算机应用, 2015,35(10):2798-2802. |
HUANG X J, ZHANG L . Modified multi-class support vector machine recursive feature elimination for cancer multi-classification. Journal of Computer Applications, 2015,35(10):2798-2802. (in Chinese) | |
[36] | 王君 . 基于SVM-RFE的特征选择方法研究[D]. 大连: 大连理工大学, 2015. |
WANG J . The research of feature selection algorithm based on SVM- RFE[D]. Dalian: Dalian University of Technology, 2015. (in Chinese) | |
[37] | 蒋玉娇, 王晓丹, 王文军, 毕凯 . 一种基于PCA和ReliefF的特征选择方法. 计算机工程与应用, 2010,46(26):170-172. |
JIANG Y J, WANG X D, WANG W J, BI K . New feature selection approach by PCA and ReliefF. Computer Engineering and Applications, 2010,46(26):170-172. (in Chinese) | |
[38] | 戴建国, 张国顺, 郭鹏, 曾窕俊, 崔美娜, 薛金利 . 基于无人机遥感可见光影像的北疆主要农作物分类方法. 农业工程学报, 2018,34(18):122-129. |
DAI J G, ZHANG G S, GUO P, ZENG T J, CUI M N, XUE J L . Classification method of main crops in northern Xinjiang based on UAV visible waveband images. Transactions of the Chinese Society of Agricultural Engineering, 2018,34(18):122-129. (in Chinese) |
[1] | ZHANG Xiao-Dong, MAO Han-Ping, ZUO Zhi-Yu, SUN Jun, ZHANG Hong-Tao. Multi-Spectral Images Estimation Models for Nitrogen Contents of Rape [J]. Scientia Agricultura Sinica, 2011, 44(16): 3323-3332. |
|